Peter Barker
6 years ago
committed by
Andrew Tridgell
5 changed files with 273 additions and 1 deletions
@ -0,0 +1,192 @@
@@ -0,0 +1,192 @@
|
||||
// See https://github.com/OneLoneCoder/synth
|
||||
|
||||
#ifndef SYNTH_HPP |
||||
#define SYNTH_HPP |
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// Headers
|
||||
////////////////////////////////////////////////////////////
|
||||
#include <SFML/Audio.hpp> |
||||
#include <cmath> |
||||
|
||||
namespace Synth |
||||
{ |
||||
enum eWaveType { OSC_SINE, OSC_SQUARE, OSC_TRIANGLE, OSC_SAW_ANA, OSC_SAW_DIG, OSC_NOISE }; |
||||
|
||||
struct sEnvelope |
||||
{ |
||||
double dAttackTime = 0.0; |
||||
double dDecayTime = 0.0; |
||||
double dSustainTime = 1.0; |
||||
double dReleaseTime = 0.0; |
||||
double dStartAmplitude = 1.0; |
||||
double dSustainAmplitude = 1.0; |
||||
}; |
||||
struct sTone |
||||
{ |
||||
eWaveType waveType = OSC_SINE; |
||||
double dStartFrequency = 440.0; |
||||
double dEndFrequency = 440.0; |
||||
double dAmplitude = 1.0; |
||||
}; |
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// Converts frequency (Hz) to angular velocity
|
||||
////////////////////////////////////////////////////////////
|
||||
const double PI = 3.14159265359; |
||||
double w(const double dHertz) |
||||
{ |
||||
return dHertz * 2.0 * PI; |
||||
} |
||||
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// Multi-Function Oscillator
|
||||
//
|
||||
// This function was mostly "borrowed" from One Lone Coder blog at
|
||||
// wwww.onelonecoder.com
|
||||
//
|
||||
////////////////////////////////////////////////////////////
|
||||
double osc(double dHertz, double dTime, eWaveType waveType) |
||||
{ |
||||
switch (waveType) |
||||
{ |
||||
case OSC_SINE: // Sine wave bewteen -1 and +1
|
||||
return sin(w(dHertz) * dTime); |
||||
|
||||
case OSC_SQUARE: // Square wave between -1 and +1
|
||||
return sin(w(dHertz) * dTime) > 0 ? 1.0 : -1.0; |
||||
|
||||
case OSC_TRIANGLE: // Triangle wave between -1 and +1
|
||||
return asin(sin(w(dHertz) * dTime)) * (2.0 / PI); |
||||
|
||||
case OSC_SAW_ANA: // Saw wave (analogue / warm / slow)
|
||||
{ |
||||
double dOutput = 0.0; |
||||
// this variable defines warmth, larger the number harsher and more similar do OSC_SAW_DIG sound becomes
|
||||
double dWarmth = 30.0; |
||||
|
||||
for (double n = 1.0; n < dWarmth; n++) |
||||
dOutput += (sin(n * w(dHertz) * dTime)) / n; |
||||
|
||||
return dOutput * (2.0 / PI); |
||||
} |
||||
|
||||
case OSC_SAW_DIG: // Saw Wave (optimised / harsh / fast)
|
||||
return (2.0 / PI) * (dHertz * PI * fmod(dTime, 1.0 / dHertz) - (PI / 2.0)); |
||||
|
||||
case OSC_NOISE: // Pseudorandom noise
|
||||
return 2.0 * ((double)rand() / (double)RAND_MAX) - 1.0; |
||||
|
||||
default: |
||||
return 0.0; |
||||
} |
||||
} |
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// Amplitude Modulator
|
||||
////////////////////////////////////////////////////////////
|
||||
double amplitude(double dTime, sEnvelope env) |
||||
{ |
||||
// double dTimeOn = 0;
|
||||
double dTimeOff = env.dAttackTime + env.dDecayTime + env.dSustainTime; |
||||
double dAmplitude = 0.0; |
||||
|
||||
if (dTime > dTimeOff) // Release phase
|
||||
dAmplitude = ((dTime - dTimeOff) / env.dReleaseTime) * (0.0 - env.dSustainAmplitude) + env.dSustainAmplitude; |
||||
|
||||
else if (dTime > (env.dAttackTime + env.dDecayTime)) // Sustain phase
|
||||
dAmplitude = env.dSustainAmplitude; |
||||
|
||||
else if (dTime > env.dAttackTime && dTime <= (env.dAttackTime + env.dDecayTime)) // Decay phase
|
||||
dAmplitude = ((dTime - env.dAttackTime) / env.dDecayTime) * (env.dSustainAmplitude - env.dStartAmplitude) + env.dStartAmplitude; |
||||
|
||||
else if (dTime <= env.dAttackTime) // Attack phase
|
||||
dAmplitude = (dTime / env.dAttackTime) * env.dStartAmplitude; |
||||
|
||||
// Amplitude should not be negative, check just in case
|
||||
if (dAmplitude <= 0.000) |
||||
dAmplitude = 0.0; |
||||
|
||||
return dAmplitude; |
||||
} |
||||
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
/// \brief Generate sound and store in SoundBuffer
|
||||
///
|
||||
/// This function uses case-in
|
||||
///
|
||||
/// \param buffer is address to SoundBuffer where the result will be stored
|
||||
/// \param envelope structure defining the ADSR Envelope
|
||||
/// \param tones vector of tone structures to be stacked
|
||||
/// \param master volume for the volume of sound
|
||||
/// \param sample rate to set quality of sound
|
||||
///
|
||||
/// \return True if the sound was generate, false if it failed
|
||||
///
|
||||
////////////////////////////////////////////////////////////
|
||||
bool generate(sf::SoundBuffer* buffer, sEnvelope env, std::vector<sTone> tones, unsigned uMasterVol, unsigned uSampleRate) |
||||
{ |
||||
if (!buffer) |
||||
return false; |
||||
|
||||
// Calculate and allocate buffer
|
||||
double dTotalDuration = env.dAttackTime + env.dDecayTime + env.dSustainTime + env.dReleaseTime; |
||||
unsigned iBufferSize = unsigned(dTotalDuration * uSampleRate); |
||||
sf::Int16 * iRaw; |
||||
iRaw = new sf::Int16[iBufferSize]; |
||||
|
||||
// Generate sound
|
||||
double dIncrement = 1.0 / double(uSampleRate); |
||||
double dTime = 0.0; |
||||
for (unsigned i = 0; i < iBufferSize; i++) |
||||
{ |
||||
double signal = 0.0; |
||||
|
||||
// Generate multiple tones and stack them together
|
||||
for (sTone t : tones) |
||||
{ |
||||
double dFrequency = t.dStartFrequency + ((t.dEndFrequency - t.dStartFrequency) * (double(i) / double(iBufferSize))); |
||||
signal = signal + (osc(dFrequency, dTime, t.waveType) * t.dAmplitude); |
||||
} |
||||
|
||||
// Calculate Amplitude based on ADSR envelope
|
||||
double dEnvelopeAmplitude = amplitude(dTime, env); |
||||
|
||||
// Apply master volume, envelope and store to buffer
|
||||
*(iRaw + i) = sf::Int16(uMasterVol * signal * dEnvelopeAmplitude); |
||||
|
||||
dTime += dIncrement; |
||||
} |
||||
|
||||
// Load into SFML SoundBuffer
|
||||
bool bSuccess = buffer->loadFromSamples(iRaw, iBufferSize, 1, uSampleRate); |
||||
delete[] iRaw; |
||||
|
||||
return bSuccess; |
||||
} |
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
/// \brief Generate sound and store in SoundBuffer
|
||||
///
|
||||
/// This function uses case-in
|
||||
///
|
||||
/// \param buffer is address to SoundBuffer where the result will be stored
|
||||
/// \param envelope structure defining the ADSR Envelope
|
||||
/// \param tone structure for simple tone definition
|
||||
/// \param master volume for the volume of sound
|
||||
/// \param sample rate to set quality of sound
|
||||
///
|
||||
/// \return True if the sound was generate, false if it failed
|
||||
///
|
||||
////////////////////////////////////////////////////////////
|
||||
bool generate(sf::SoundBuffer* buffer, sEnvelope env, sTone tone, unsigned uMasterVol, unsigned uSampleRate) |
||||
{ |
||||
std::vector<sTone> tones; |
||||
tones.push_back(tone); |
||||
return generate(buffer, env, tones, uMasterVol, uSampleRate); |
||||
} |
||||
} |
||||
#endif // SYNTH_HPP
|
@ -0,0 +1,53 @@
@@ -0,0 +1,53 @@
|
||||
#ifdef WITH_SITL_TONEALARM |
||||
|
||||
#include "ToneAlarm_SF.h" |
||||
|
||||
#include <stdio.h> |
||||
|
||||
#ifdef HAVE_SFML_AUDIO_H |
||||
#include <SFML/Audio.h> |
||||
#else |
||||
#include <SFML/Audio.hpp> |
||||
#endif |
||||
|
||||
#include "Synth.hpp" |
||||
|
||||
using namespace HALSITL; |
||||
|
||||
sf::SoundBuffer soundBuffer; |
||||
sf::Sound demoSound; |
||||
Synth::sEnvelope envelope; |
||||
|
||||
void ToneAlarm_SF::set_buzzer_tone(float frequency, float volume, float duration_ms) |
||||
{ |
||||
if (frequency <= 0) { |
||||
return; |
||||
} |
||||
|
||||
Synth::sTone tone; |
||||
tone.waveType = Synth::OSC_SQUARE; |
||||
tone.dStartFrequency = frequency; |
||||
tone.dEndFrequency = frequency; |
||||
tone.dAmplitude = 1; |
||||
|
||||
envelope.dSustainTime = duration_ms/1000.0f; |
||||
|
||||
Synth::generate(&soundBuffer, envelope, tone, 20000, 44100); |
||||
demoSound.setBuffer(soundBuffer); |
||||
demoSound.play(); |
||||
} |
||||
|
||||
bool ToneAlarm_SF::init() |
||||
{ |
||||
// LASER
|
||||
envelope.dAttackTime = 0.00001; |
||||
envelope.dDecayTime = 0.00001; |
||||
envelope.dSustainTime = 0.3; |
||||
envelope.dReleaseTime = 0.00001; |
||||
envelope.dStartAmplitude = 1.0; |
||||
envelope.dSustainAmplitude = 1.0; |
||||
|
||||
return true; |
||||
} |
||||
|
||||
#endif |
@ -0,0 +1,11 @@
@@ -0,0 +1,11 @@
|
||||
#pragma once |
||||
|
||||
#include "AP_HAL_SITL.h" |
||||
|
||||
namespace HALSITL { |
||||
class ToneAlarm_SF { |
||||
public: |
||||
void set_buzzer_tone(float frequency, float volume, float duration_ms); |
||||
bool init(); |
||||
}; |
||||
} |
Loading…
Reference in new issue