|
|
|
@ -2026,17 +2026,21 @@ bool AP_AHRS_NavEKF::attitudes_consistent(char *failure_msg, const uint8_t failu
@@ -2026,17 +2026,21 @@ bool AP_AHRS_NavEKF::attitudes_consistent(char *failure_msg, const uint8_t failu
|
|
|
|
|
// check primary vs ekf2
|
|
|
|
|
for (uint8_t i = 0; i < EKF2.activeCores(); i++) { |
|
|
|
|
Quaternion ekf2_quat; |
|
|
|
|
Vector3f angle_diff; |
|
|
|
|
EKF2.getQuaternionBodyToNED(i, ekf2_quat); |
|
|
|
|
primary_quat.angular_difference(ekf2_quat).to_axis_angle(angle_diff); |
|
|
|
|
float diff = safe_sqrt(sq(angle_diff.x)+sq(angle_diff.y)); |
|
|
|
|
if (diff > ATTITUDE_CHECK_THRESH_ROLL_PITCH_RAD) { |
|
|
|
|
hal.util->snprintf(failure_msg, failure_msg_len, "EKF2 Roll/Pitch inconsistent by %d deg", (int)degrees(diff)); |
|
|
|
|
|
|
|
|
|
// check roll and pitch difference
|
|
|
|
|
const float rp_diff_rad = primary_quat.roll_pitch_difference(ekf2_quat); |
|
|
|
|
if (rp_diff_rad > ATTITUDE_CHECK_THRESH_ROLL_PITCH_RAD) { |
|
|
|
|
hal.util->snprintf(failure_msg, failure_msg_len, "EKF2 Roll/Pitch inconsistent by %d deg", (int)degrees(rp_diff_rad)); |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
diff = fabsf(angle_diff.z); |
|
|
|
|
if (check_yaw && (diff > ATTITUDE_CHECK_THRESH_YAW_RAD)) { |
|
|
|
|
hal.util->snprintf(failure_msg, failure_msg_len, "EKF2 Yaw inconsistent by %d deg", (int)degrees(diff)); |
|
|
|
|
|
|
|
|
|
// check yaw difference
|
|
|
|
|
Vector3f angle_diff; |
|
|
|
|
primary_quat.angular_difference(ekf2_quat).to_axis_angle(angle_diff); |
|
|
|
|
const float yaw_diff = fabsf(angle_diff.z); |
|
|
|
|
if (check_yaw && (yaw_diff > ATTITUDE_CHECK_THRESH_YAW_RAD)) { |
|
|
|
|
hal.util->snprintf(failure_msg, failure_msg_len, "EKF2 Yaw inconsistent by %d deg", (int)degrees(yaw_diff)); |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
@ -2047,17 +2051,21 @@ bool AP_AHRS_NavEKF::attitudes_consistent(char *failure_msg, const uint8_t failu
@@ -2047,17 +2051,21 @@ bool AP_AHRS_NavEKF::attitudes_consistent(char *failure_msg, const uint8_t failu
|
|
|
|
|
// check primary vs ekf3
|
|
|
|
|
for (uint8_t i = 0; i < EKF3.activeCores(); i++) { |
|
|
|
|
Quaternion ekf3_quat; |
|
|
|
|
Vector3f angle_diff; |
|
|
|
|
EKF3.getQuaternionBodyToNED(i, ekf3_quat); |
|
|
|
|
primary_quat.angular_difference(ekf3_quat).to_axis_angle(angle_diff); |
|
|
|
|
float diff = safe_sqrt(sq(angle_diff.x)+sq(angle_diff.y)); |
|
|
|
|
if (diff > ATTITUDE_CHECK_THRESH_ROLL_PITCH_RAD) { |
|
|
|
|
hal.util->snprintf(failure_msg, failure_msg_len, "EKF3 Roll/Pitch inconsistent by %d deg", (int)degrees(diff)); |
|
|
|
|
|
|
|
|
|
// check roll and pitch difference
|
|
|
|
|
const float rp_diff_rad = primary_quat.roll_pitch_difference(ekf3_quat); |
|
|
|
|
if (rp_diff_rad > ATTITUDE_CHECK_THRESH_ROLL_PITCH_RAD) { |
|
|
|
|
hal.util->snprintf(failure_msg, failure_msg_len, "EKF3 Roll/Pitch inconsistent by %d deg", (int)degrees(rp_diff_rad)); |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
diff = fabsf(angle_diff.z); |
|
|
|
|
if (check_yaw && (diff > ATTITUDE_CHECK_THRESH_YAW_RAD)) { |
|
|
|
|
hal.util->snprintf(failure_msg, failure_msg_len, "EKF3 Yaw inconsistent by %d deg", (int)degrees(diff)); |
|
|
|
|
|
|
|
|
|
// check yaw difference
|
|
|
|
|
Vector3f angle_diff; |
|
|
|
|
primary_quat.angular_difference(ekf3_quat).to_axis_angle(angle_diff); |
|
|
|
|
const float yaw_diff = fabsf(angle_diff.z); |
|
|
|
|
if (check_yaw && (yaw_diff > ATTITUDE_CHECK_THRESH_YAW_RAD)) { |
|
|
|
|
hal.util->snprintf(failure_msg, failure_msg_len, "EKF3 Yaw inconsistent by %d deg", (int)degrees(yaw_diff)); |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
@ -2067,12 +2075,12 @@ bool AP_AHRS_NavEKF::attitudes_consistent(char *failure_msg, const uint8_t failu
@@ -2067,12 +2075,12 @@ bool AP_AHRS_NavEKF::attitudes_consistent(char *failure_msg, const uint8_t failu
|
|
|
|
|
// check primary vs dcm
|
|
|
|
|
if (!always_use_EKF() || (total_ekf_cores == 1)) { |
|
|
|
|
Quaternion dcm_quat; |
|
|
|
|
Vector3f angle_diff; |
|
|
|
|
dcm_quat.from_rotation_matrix(get_DCM_rotation_body_to_ned()); |
|
|
|
|
primary_quat.angular_difference(dcm_quat).to_axis_angle(angle_diff); |
|
|
|
|
float diff = safe_sqrt(sq(angle_diff.x)+sq(angle_diff.y)); |
|
|
|
|
if (diff > ATTITUDE_CHECK_THRESH_ROLL_PITCH_RAD) { |
|
|
|
|
hal.util->snprintf(failure_msg, failure_msg_len, "DCM Roll/Pitch inconsistent by %d deg", (int)degrees(diff)); |
|
|
|
|
|
|
|
|
|
// check roll and pitch difference
|
|
|
|
|
const float rp_diff_rad = primary_quat.roll_pitch_difference(dcm_quat); |
|
|
|
|
if (rp_diff_rad > ATTITUDE_CHECK_THRESH_ROLL_PITCH_RAD) { |
|
|
|
|
hal.util->snprintf(failure_msg, failure_msg_len, "DCM Roll/Pitch inconsistent by %d deg", (int)degrees(rp_diff_rad)); |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -2083,9 +2091,11 @@ bool AP_AHRS_NavEKF::attitudes_consistent(char *failure_msg, const uint8_t failu
@@ -2083,9 +2091,11 @@ bool AP_AHRS_NavEKF::attitudes_consistent(char *failure_msg, const uint8_t failu
|
|
|
|
|
using_external_yaw = ekf_type() == EKFType::THREE && EKF3.using_external_yaw(); |
|
|
|
|
#endif |
|
|
|
|
if (!always_use_EKF() && !using_external_yaw) { |
|
|
|
|
diff = fabsf(angle_diff.z); |
|
|
|
|
if (check_yaw && (diff > ATTITUDE_CHECK_THRESH_YAW_RAD)) { |
|
|
|
|
hal.util->snprintf(failure_msg, failure_msg_len, "DCM Yaw inconsistent by %d deg", (int)degrees(diff)); |
|
|
|
|
Vector3f angle_diff; |
|
|
|
|
primary_quat.angular_difference(dcm_quat).to_axis_angle(angle_diff); |
|
|
|
|
const float yaw_diff = fabsf(angle_diff.z); |
|
|
|
|
if (check_yaw && (yaw_diff > ATTITUDE_CHECK_THRESH_YAW_RAD)) { |
|
|
|
|
hal.util->snprintf(failure_msg, failure_msg_len, "DCM Yaw inconsistent by %d deg", (int)degrees(yaw_diff)); |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|