|
|
|
@ -4,41 +4,30 @@
@@ -4,41 +4,30 @@
|
|
|
|
|
|
|
|
|
|
// These are function definitions so the Menu can be constructed before the functions |
|
|
|
|
// are defined below. Order matters to the compiler. |
|
|
|
|
static int8_t test_radio_pwm(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
static int8_t test_radio(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
//static int8_t test_failsafe(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
//static int8_t test_stabilize(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
static int8_t test_gps(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
//static int8_t test_tri(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
//static int8_t test_adc(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
static int8_t test_ins(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
//static int8_t test_imu(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
//static int8_t test_dcm_eulers(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
//static int8_t test_dcm(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
//static int8_t test_omega(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
//static int8_t test_stab_d(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
static int8_t test_battery(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
//static int8_t test_toy(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
static int8_t test_wp_nav(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
//static int8_t test_reverse(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
static int8_t test_tuning(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
static int8_t test_relay(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
static int8_t test_wp(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE && HIL_MODE != HIL_MODE_SENSORS |
|
|
|
|
static int8_t test_baro(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
static int8_t test_sonar(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
#endif |
|
|
|
|
static int8_t test_mag(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
static int8_t test_optflow(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
static int8_t test_logging(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
//static int8_t test_xbee(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
static int8_t test_battery(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
static int8_t test_compass(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
static int8_t test_eedump(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
//static int8_t test_rawgps(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
//static int8_t test_mission(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
static int8_t test_gps(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
static int8_t test_ins(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
static int8_t test_logging(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
static int8_t test_motors(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
static int8_t test_nav(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
static int8_t test_optflow(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
static int8_t test_radio_pwm(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
static int8_t test_radio(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
static int8_t test_relay(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 |
|
|
|
|
static int8_t test_shell(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
static int8_t test_shell(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
#endif |
|
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE && HIL_MODE != HIL_MODE_SENSORS |
|
|
|
|
static int8_t test_sonar(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
#endif |
|
|
|
|
static int8_t test_motors(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
//static int8_t test_toy(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
static int8_t test_tuning(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
static int8_t test_wp(uint8_t argc, const Menu::arg *argv); |
|
|
|
|
|
|
|
|
|
// This is the help function |
|
|
|
|
// PSTR is an AVR macro to read strings from flash memory |
|
|
|
@ -60,29 +49,30 @@ static int8_t test_motors(uint8_t argc, const Menu::arg *argv);
@@ -60,29 +49,30 @@ static int8_t test_motors(uint8_t argc, const Menu::arg *argv);
|
|
|
|
|
// User enters the string in the console to call the functions on the right. |
|
|
|
|
// See class Menu in AP_Coommon for implementation details |
|
|
|
|
const struct Menu::command test_menu_commands[] PROGMEM = { |
|
|
|
|
{"pwm", test_radio_pwm}, |
|
|
|
|
{"radio", test_radio}, |
|
|
|
|
{"gps", test_gps}, |
|
|
|
|
{"ins", test_ins}, |
|
|
|
|
{"battery", test_battery}, |
|
|
|
|
{"tune", test_tuning}, |
|
|
|
|
{"relay", test_relay}, |
|
|
|
|
{"wp", test_wp}, |
|
|
|
|
// {"toy", test_toy}, |
|
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE && HIL_MODE != HIL_MODE_SENSORS |
|
|
|
|
{"baro", test_baro}, |
|
|
|
|
{"sonar", test_sonar}, |
|
|
|
|
#endif |
|
|
|
|
{"compass", test_mag}, |
|
|
|
|
{"optflow", test_optflow}, |
|
|
|
|
//{"xbee", test_xbee}, |
|
|
|
|
{"battery", test_battery}, |
|
|
|
|
{"compass", test_compass}, |
|
|
|
|
{"eedump", test_eedump}, |
|
|
|
|
{"gps", test_gps}, |
|
|
|
|
{"ins", test_ins}, |
|
|
|
|
{"logging", test_logging}, |
|
|
|
|
{"nav", test_wp_nav}, |
|
|
|
|
{"motors", test_motors}, |
|
|
|
|
{"nav", test_nav}, |
|
|
|
|
{"optflow", test_optflow}, |
|
|
|
|
{"pwm", test_radio_pwm}, |
|
|
|
|
{"radio", test_radio}, |
|
|
|
|
{"relay", test_relay}, |
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 |
|
|
|
|
{"shell", test_shell}, |
|
|
|
|
#endif |
|
|
|
|
{"motors", test_motors}, |
|
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE && HIL_MODE != HIL_MODE_SENSORS |
|
|
|
|
{"sonar", test_sonar}, |
|
|
|
|
#endif |
|
|
|
|
// {"toy", test_toy}, |
|
|
|
|
{"tune", test_tuning}, |
|
|
|
|
{"wp", test_wp}, |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
// A Macro to create the Menu |
|
|
|
@ -91,181 +81,182 @@ MENU(test_menu, "test", test_menu_commands);
@@ -91,181 +81,182 @@ MENU(test_menu, "test", test_menu_commands);
|
|
|
|
|
static int8_t |
|
|
|
|
test_mode(uint8_t argc, const Menu::arg *argv) |
|
|
|
|
{ |
|
|
|
|
//cliSerial->printf_P(PSTR("Test Mode\n\n")); |
|
|
|
|
test_menu.run(); |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE && HIL_MODE != HIL_MODE_SENSORS |
|
|
|
|
static int8_t |
|
|
|
|
test_eedump(uint8_t argc, const Menu::arg *argv) |
|
|
|
|
{ |
|
|
|
|
|
|
|
|
|
// hexdump the EEPROM |
|
|
|
|
for (uint16_t i = 0; i < EEPROM_MAX_ADDR; i += 16) { |
|
|
|
|
cliSerial->printf_P(PSTR("%04x:"), i); |
|
|
|
|
for (uint16_t j = 0; j < 16; j++) { |
|
|
|
|
int b = hal.storage->read_byte(i+j); |
|
|
|
|
cliSerial->printf_P(PSTR(" %02x"), b); |
|
|
|
|
} |
|
|
|
|
cliSerial->println(); |
|
|
|
|
} |
|
|
|
|
return(0); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static int8_t |
|
|
|
|
test_radio_pwm(uint8_t argc, const Menu::arg *argv) |
|
|
|
|
test_baro(uint8_t argc, const Menu::arg *argv) |
|
|
|
|
{ |
|
|
|
|
int32_t alt; |
|
|
|
|
print_hit_enter(); |
|
|
|
|
delay(1000); |
|
|
|
|
init_barometer(); |
|
|
|
|
|
|
|
|
|
while(1) { |
|
|
|
|
delay(20); |
|
|
|
|
|
|
|
|
|
// Filters radio input - adjust filters in the radio.pde file |
|
|
|
|
// ---------------------------------------------------------- |
|
|
|
|
read_radio(); |
|
|
|
|
|
|
|
|
|
// servo Yaw |
|
|
|
|
//APM_RC.OutputCh(CH_7, g.rc_4.radio_out); |
|
|
|
|
|
|
|
|
|
cliSerial->printf_P(PSTR("IN: 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\t8: %d\n"), |
|
|
|
|
g.rc_1.radio_in, |
|
|
|
|
g.rc_2.radio_in, |
|
|
|
|
g.rc_3.radio_in, |
|
|
|
|
g.rc_4.radio_in, |
|
|
|
|
g.rc_5.radio_in, |
|
|
|
|
g.rc_6.radio_in, |
|
|
|
|
g.rc_7.radio_in, |
|
|
|
|
g.rc_8.radio_in); |
|
|
|
|
delay(100); |
|
|
|
|
alt = read_barometer(); |
|
|
|
|
|
|
|
|
|
if (!barometer.healthy) { |
|
|
|
|
cliSerial->println_P(PSTR("not healthy")); |
|
|
|
|
} else { |
|
|
|
|
cliSerial->printf_P(PSTR("Alt: %0.2fm, Raw: %f Temperature: %.1f\n"), |
|
|
|
|
alt / 100.0, |
|
|
|
|
barometer.get_pressure(), 0.1*barometer.get_temperature()); |
|
|
|
|
} |
|
|
|
|
if(cliSerial->available() > 0) { |
|
|
|
|
return (0); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* |
|
|
|
|
//static int8_t |
|
|
|
|
//test_toy(uint8_t argc, const Menu::arg *argv) |
|
|
|
|
{ |
|
|
|
|
|
|
|
|
|
for(altitude_error = 2000; altitude_error > -100; altitude_error--){ |
|
|
|
|
int16_t temp = get_desired_climb_rate(); |
|
|
|
|
cliSerial->printf("%ld, %d\n", altitude_error, temp); |
|
|
|
|
} |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
{ wp_distance = 0; |
|
|
|
|
int16_t max_speed = 0; |
|
|
|
|
|
|
|
|
|
for(int16_t i = 0; i < 200; i++){ |
|
|
|
|
int32_t temp = 2 * 100 * (wp_distance - wp_nav.get_waypoint_radius()); |
|
|
|
|
max_speed = sqrtf((float)temp); |
|
|
|
|
max_speed = min(max_speed, wp_nav.get_horizontal_speed()); |
|
|
|
|
cliSerial->printf("Zspeed: %ld, %d, %ld\n", temp, max_speed, wp_distance); |
|
|
|
|
wp_distance += 100; |
|
|
|
|
} |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
//*/ |
|
|
|
|
|
|
|
|
|
/*static int8_t |
|
|
|
|
* //test_toy(uint8_t argc, const Menu::arg *argv) |
|
|
|
|
* { |
|
|
|
|
* int16_t yaw_rate; |
|
|
|
|
* int16_t roll_rate; |
|
|
|
|
* g.rc_1.control_in = -2500; |
|
|
|
|
* g.rc_2.control_in = 2500; |
|
|
|
|
* |
|
|
|
|
* g.toy_yaw_rate = 3; |
|
|
|
|
* yaw_rate = g.rc_1.control_in / g.toy_yaw_rate; |
|
|
|
|
* roll_rate = ((int32_t)g.rc_2.control_in * (yaw_rate/100)) /40; |
|
|
|
|
* cliSerial->printf("yaw_rate, %d, roll_rate, %d\n", yaw_rate, roll_rate); |
|
|
|
|
* |
|
|
|
|
* g.toy_yaw_rate = 2; |
|
|
|
|
* yaw_rate = g.rc_1.control_in / g.toy_yaw_rate; |
|
|
|
|
* roll_rate = ((int32_t)g.rc_2.control_in * (yaw_rate/100)) /40; |
|
|
|
|
* cliSerial->printf("yaw_rate, %d, roll_rate, %d\n", yaw_rate, roll_rate); |
|
|
|
|
* |
|
|
|
|
* g.toy_yaw_rate = 1; |
|
|
|
|
* yaw_rate = g.rc_1.control_in / g.toy_yaw_rate; |
|
|
|
|
* roll_rate = ((int32_t)g.rc_2.control_in * (yaw_rate/100)) /40; |
|
|
|
|
* cliSerial->printf("yaw_rate, %d, roll_rate, %d\n", yaw_rate, roll_rate); |
|
|
|
|
* }*/ |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
static int8_t |
|
|
|
|
test_radio(uint8_t argc, const Menu::arg *argv) |
|
|
|
|
test_battery(uint8_t argc, const Menu::arg *argv) |
|
|
|
|
{ |
|
|
|
|
// check if radio is calibration |
|
|
|
|
pre_arm_rc_checks(); |
|
|
|
|
if(!ap.pre_arm_rc_check) { |
|
|
|
|
cliSerial->print_P(PSTR("radio not calibrated, exiting")); |
|
|
|
|
return(0); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
cliSerial->printf_P(PSTR("\nCareful! Motors will spin! Press Enter to start.\n")); |
|
|
|
|
while (cliSerial->read() != -1); /* flush */ |
|
|
|
|
while(!cliSerial->available()) { /* wait for input */ |
|
|
|
|
delay(100); |
|
|
|
|
} |
|
|
|
|
while (cliSerial->read() != -1); /* flush */ |
|
|
|
|
print_hit_enter(); |
|
|
|
|
delay(1000); |
|
|
|
|
|
|
|
|
|
// allow motors to spin |
|
|
|
|
output_min(); |
|
|
|
|
motors.armed(true); |
|
|
|
|
|
|
|
|
|
while(1) { |
|
|
|
|
delay(20); |
|
|
|
|
delay(100); |
|
|
|
|
read_radio(); |
|
|
|
|
read_battery(); |
|
|
|
|
if (g.battery_monitoring == BATT_MONITOR_VOLTAGE_ONLY) { |
|
|
|
|
cliSerial->printf_P(PSTR("V: %4.4f\n"), |
|
|
|
|
battery_voltage1, |
|
|
|
|
current_amps1, |
|
|
|
|
current_total1); |
|
|
|
|
} else { |
|
|
|
|
cliSerial->printf_P(PSTR("V: %4.4f, A: %4.4f, Ah: %4.4f\n"), |
|
|
|
|
battery_voltage1, |
|
|
|
|
current_amps1, |
|
|
|
|
current_total1); |
|
|
|
|
} |
|
|
|
|
motors.throttle_pass_through(); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cliSerial->printf_P(PSTR("IN 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\n"), |
|
|
|
|
g.rc_1.control_in, |
|
|
|
|
g.rc_2.control_in, |
|
|
|
|
g.rc_3.control_in, |
|
|
|
|
g.rc_4.control_in, |
|
|
|
|
g.rc_5.control_in, |
|
|
|
|
g.rc_6.control_in, |
|
|
|
|
g.rc_7.control_in); |
|
|
|
|
|
|
|
|
|
//cliSerial->printf_P(PSTR("OUT 1: %d\t2: %d\t3: %d\t4: %d\n"), (g.rc_1.servo_out / 100), (g.rc_2.servo_out / 100), g.rc_3.servo_out, (g.rc_4.servo_out / 100)); |
|
|
|
|
|
|
|
|
|
/*cliSerial->printf_P(PSTR( "min: %d" |
|
|
|
|
* "\t in: %d" |
|
|
|
|
* "\t pwm_in: %d" |
|
|
|
|
* "\t sout: %d" |
|
|
|
|
* "\t pwm_out %d\n"), |
|
|
|
|
* g.rc_3.radio_min, |
|
|
|
|
* g.rc_3.control_in, |
|
|
|
|
* g.rc_3.radio_in, |
|
|
|
|
* g.rc_3.servo_out, |
|
|
|
|
* g.rc_3.pwm_out |
|
|
|
|
* ); |
|
|
|
|
*/ |
|
|
|
|
if(cliSerial->available() > 0) { |
|
|
|
|
motors.armed(false); |
|
|
|
|
return (0); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
motors.armed(false); |
|
|
|
|
return (0); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static int8_t |
|
|
|
|
test_ins(uint8_t argc, const Menu::arg *argv) |
|
|
|
|
test_compass(uint8_t argc, const Menu::arg *argv) |
|
|
|
|
{ |
|
|
|
|
Vector3f gyro, accel; |
|
|
|
|
print_hit_enter(); |
|
|
|
|
cliSerial->printf_P(PSTR("INS\n")); |
|
|
|
|
delay(1000); |
|
|
|
|
uint8_t delta_ms_fast_loop; |
|
|
|
|
|
|
|
|
|
if (!g.compass_enabled) { |
|
|
|
|
cliSerial->printf_P(PSTR("Compass: ")); |
|
|
|
|
print_enabled(false); |
|
|
|
|
return (0); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (!compass.init()) { |
|
|
|
|
cliSerial->println_P(PSTR("Compass initialisation failed!")); |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
ahrs.init(); |
|
|
|
|
ahrs.set_fly_forward(true); |
|
|
|
|
ahrs.set_compass(&compass); |
|
|
|
|
report_compass(); |
|
|
|
|
|
|
|
|
|
// we need the AHRS initialised for this test |
|
|
|
|
ins.init(AP_InertialSensor::COLD_START, |
|
|
|
|
ins_sample_rate, |
|
|
|
|
flash_leds); |
|
|
|
|
ahrs.reset(); |
|
|
|
|
int16_t counter = 0; |
|
|
|
|
float heading = 0; |
|
|
|
|
|
|
|
|
|
delay(50); |
|
|
|
|
print_hit_enter(); |
|
|
|
|
|
|
|
|
|
while(1) { |
|
|
|
|
ins.update(); |
|
|
|
|
gyro = ins.get_gyro(); |
|
|
|
|
accel = ins.get_accel(); |
|
|
|
|
|
|
|
|
|
float test = accel.length() / GRAVITY_MSS; |
|
|
|
|
delay(20); |
|
|
|
|
if (millis() - fast_loopTimer > 19) { |
|
|
|
|
delta_ms_fast_loop = millis() - fast_loopTimer; |
|
|
|
|
G_Dt = (float)delta_ms_fast_loop / 1000.f; // used by DCM integrator |
|
|
|
|
fast_loopTimer = millis(); |
|
|
|
|
|
|
|
|
|
cliSerial->printf_P(PSTR("a %7.4f %7.4f %7.4f g %7.4f %7.4f %7.4f t %74f | %7.4f\n"), |
|
|
|
|
accel.x, accel.y, accel.z, |
|
|
|
|
gyro.x, gyro.y, gyro.z, |
|
|
|
|
test); |
|
|
|
|
// INS |
|
|
|
|
// --- |
|
|
|
|
ahrs.update(); |
|
|
|
|
|
|
|
|
|
delay(40); |
|
|
|
|
if(cliSerial->available() > 0) { |
|
|
|
|
return (0); |
|
|
|
|
medium_loopCounter++; |
|
|
|
|
if(medium_loopCounter == 5) { |
|
|
|
|
if (compass.read()) { |
|
|
|
|
// Calculate heading |
|
|
|
|
const Matrix3f &m = ahrs.get_dcm_matrix(); |
|
|
|
|
heading = compass.calculate_heading(m); |
|
|
|
|
compass.null_offsets(); |
|
|
|
|
} |
|
|
|
|
medium_loopCounter = 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
counter++; |
|
|
|
|
if (counter>20) { |
|
|
|
|
if (compass.healthy) { |
|
|
|
|
Vector3f maggy = compass.get_offsets(); |
|
|
|
|
cliSerial->printf_P(PSTR("Heading: %ld, XYZ: %d, %d, %d,\tXYZoff: %6.2f, %6.2f, %6.2f\n"), |
|
|
|
|
(wrap_360_cd(ToDeg(heading) * 100)) /100, |
|
|
|
|
(int)compass.mag_x, |
|
|
|
|
(int)compass.mag_y, |
|
|
|
|
(int)compass.mag_z, |
|
|
|
|
maggy.x, |
|
|
|
|
maggy.y, |
|
|
|
|
maggy.z); |
|
|
|
|
} else { |
|
|
|
|
cliSerial->println_P(PSTR("compass not healthy")); |
|
|
|
|
} |
|
|
|
|
counter=0; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
if (cliSerial->available() > 0) { |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// save offsets. This allows you to get sane offset values using |
|
|
|
|
// the CLI before you go flying. |
|
|
|
|
cliSerial->println_P(PSTR("saving offsets")); |
|
|
|
|
compass.save_offsets(); |
|
|
|
|
return (0); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static int8_t |
|
|
|
|
test_eedump(uint8_t argc, const Menu::arg *argv) |
|
|
|
|
{ |
|
|
|
|
|
|
|
|
|
// hexdump the EEPROM |
|
|
|
|
for (uint16_t i = 0; i < EEPROM_MAX_ADDR; i += 16) { |
|
|
|
|
cliSerial->printf_P(PSTR("%04x:"), i); |
|
|
|
|
for (uint16_t j = 0; j < 16; j++) { |
|
|
|
|
int b = hal.storage->read_byte(i+j); |
|
|
|
|
cliSerial->printf_P(PSTR(" %02x"), b); |
|
|
|
|
} |
|
|
|
|
cliSerial->println(); |
|
|
|
|
} |
|
|
|
|
return(0); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static int8_t |
|
|
|
@ -303,224 +294,234 @@ test_gps(uint8_t argc, const Menu::arg *argv)
@@ -303,224 +294,234 @@ test_gps(uint8_t argc, const Menu::arg *argv)
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static int8_t |
|
|
|
|
test_tuning(uint8_t argc, const Menu::arg *argv) |
|
|
|
|
test_ins(uint8_t argc, const Menu::arg *argv) |
|
|
|
|
{ |
|
|
|
|
Vector3f gyro, accel; |
|
|
|
|
print_hit_enter(); |
|
|
|
|
cliSerial->printf_P(PSTR("INS\n")); |
|
|
|
|
delay(1000); |
|
|
|
|
|
|
|
|
|
ahrs.init(); |
|
|
|
|
ins.init(AP_InertialSensor::COLD_START, |
|
|
|
|
ins_sample_rate, |
|
|
|
|
flash_leds); |
|
|
|
|
|
|
|
|
|
delay(50); |
|
|
|
|
|
|
|
|
|
while(1) { |
|
|
|
|
delay(200); |
|
|
|
|
read_radio(); |
|
|
|
|
tuning(); |
|
|
|
|
cliSerial->printf_P(PSTR("tune: %1.3f\n"), tuning_value); |
|
|
|
|
ins.update(); |
|
|
|
|
gyro = ins.get_gyro(); |
|
|
|
|
accel = ins.get_accel(); |
|
|
|
|
|
|
|
|
|
float test = accel.length() / GRAVITY_MSS; |
|
|
|
|
|
|
|
|
|
cliSerial->printf_P(PSTR("a %7.4f %7.4f %7.4f g %7.4f %7.4f %7.4f t %74f | %7.4f\n"), |
|
|
|
|
accel.x, accel.y, accel.z, |
|
|
|
|
gyro.x, gyro.y, gyro.z, |
|
|
|
|
test); |
|
|
|
|
|
|
|
|
|
delay(40); |
|
|
|
|
if(cliSerial->available() > 0) { |
|
|
|
|
return (0); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* |
|
|
|
|
* test the dataflash is working |
|
|
|
|
*/ |
|
|
|
|
static int8_t |
|
|
|
|
test_battery(uint8_t argc, const Menu::arg *argv) |
|
|
|
|
test_logging(uint8_t argc, const Menu::arg *argv) |
|
|
|
|
{ |
|
|
|
|
// check if radio is calibration |
|
|
|
|
pre_arm_rc_checks(); |
|
|
|
|
if(!ap.pre_arm_rc_check) { |
|
|
|
|
cliSerial->print_P(PSTR("radio not calibrated, exiting")); |
|
|
|
|
return(0); |
|
|
|
|
} |
|
|
|
|
cliSerial->println_P(PSTR("Testing dataflash logging")); |
|
|
|
|
DataFlash.ShowDeviceInfo(cliSerial); |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
cliSerial->printf_P(PSTR("\nCareful! Motors will spin! Press Enter to start.\n")); |
|
|
|
|
while (cliSerial->read() != -1); /* flush */ |
|
|
|
|
while(!cliSerial->available()) { /* wait for input */ |
|
|
|
|
delay(100); |
|
|
|
|
} |
|
|
|
|
while (cliSerial->read() != -1); /* flush */ |
|
|
|
|
print_hit_enter(); |
|
|
|
|
static int8_t |
|
|
|
|
test_motors(uint8_t argc, const Menu::arg *argv) |
|
|
|
|
{ |
|
|
|
|
cliSerial->printf_P(PSTR( |
|
|
|
|
"Connect battery for this test.\n" |
|
|
|
|
"Motors will not spin in channel order (1,2,3,4) but by frame position order.\n" |
|
|
|
|
"Front (& right of centerline) motor first, then in clockwise order around frame.\n" |
|
|
|
|
"http://code.google.com/p/arducopter/wiki/AC2_Props_2 for demo video.\n" |
|
|
|
|
"Remember to disconnect battery after this test.\n" |
|
|
|
|
"Any key to exit.\n")); |
|
|
|
|
|
|
|
|
|
// allow motors to spin |
|
|
|
|
output_min(); |
|
|
|
|
motors.armed(true); |
|
|
|
|
// ensure all values have been sent to motors |
|
|
|
|
motors.set_update_rate(g.rc_speed); |
|
|
|
|
motors.set_frame_orientation(g.frame_orientation); |
|
|
|
|
motors.set_min_throttle(g.throttle_min); |
|
|
|
|
motors.set_mid_throttle(g.throttle_mid); |
|
|
|
|
motors.set_max_throttle(g.throttle_max); |
|
|
|
|
|
|
|
|
|
// enable motors |
|
|
|
|
init_rc_out(); |
|
|
|
|
|
|
|
|
|
while(1) { |
|
|
|
|
delay(100); |
|
|
|
|
delay(20); |
|
|
|
|
read_radio(); |
|
|
|
|
read_battery(); |
|
|
|
|
if (g.battery_monitoring == BATT_MONITOR_VOLTAGE_ONLY) { |
|
|
|
|
cliSerial->printf_P(PSTR("V: %4.4f\n"), |
|
|
|
|
battery_voltage1, |
|
|
|
|
current_amps1, |
|
|
|
|
current_total1); |
|
|
|
|
} else { |
|
|
|
|
cliSerial->printf_P(PSTR("V: %4.4f, A: %4.4f, Ah: %4.4f\n"), |
|
|
|
|
battery_voltage1, |
|
|
|
|
current_amps1, |
|
|
|
|
current_total1); |
|
|
|
|
} |
|
|
|
|
motors.throttle_pass_through(); |
|
|
|
|
|
|
|
|
|
motors.output_test(); |
|
|
|
|
if(cliSerial->available() > 0) { |
|
|
|
|
motors.armed(false); |
|
|
|
|
return (0); |
|
|
|
|
g.esc_calibrate.set_and_save(0); |
|
|
|
|
return(0); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
motors.armed(false); |
|
|
|
|
return (0); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static int8_t test_relay(uint8_t argc, const Menu::arg *argv) |
|
|
|
|
static int8_t |
|
|
|
|
test_nav(uint8_t argc, const Menu::arg *argv) |
|
|
|
|
{ |
|
|
|
|
print_hit_enter(); |
|
|
|
|
delay(1000); |
|
|
|
|
current_loc.lat = 389539260; |
|
|
|
|
current_loc.lng = -1199540200; |
|
|
|
|
|
|
|
|
|
while(1) { |
|
|
|
|
cliSerial->printf_P(PSTR("Relay on\n")); |
|
|
|
|
relay.on(); |
|
|
|
|
delay(3000); |
|
|
|
|
if(cliSerial->available() > 0) { |
|
|
|
|
return (0); |
|
|
|
|
} |
|
|
|
|
wp_nav.set_destination(pv_latlon_to_vector(389538528,-1199541248,0)); |
|
|
|
|
|
|
|
|
|
cliSerial->printf_P(PSTR("Relay off\n")); |
|
|
|
|
relay.off(); |
|
|
|
|
delay(3000); |
|
|
|
|
if(cliSerial->available() > 0) { |
|
|
|
|
return (0); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
// got 23506;, should be 22800 |
|
|
|
|
update_navigation(); |
|
|
|
|
cliSerial->printf_P(PSTR("bear: %ld\n"), wp_bearing); |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static int8_t |
|
|
|
|
test_wp(uint8_t argc, const Menu::arg *argv) |
|
|
|
|
test_optflow(uint8_t argc, const Menu::arg *argv) |
|
|
|
|
{ |
|
|
|
|
delay(1000); |
|
|
|
|
|
|
|
|
|
// save the alitude above home option |
|
|
|
|
cliSerial->printf_P(PSTR("Hold alt ")); |
|
|
|
|
if(g.rtl_altitude < 0) { |
|
|
|
|
cliSerial->printf_P(PSTR("\n")); |
|
|
|
|
}else{ |
|
|
|
|
cliSerial->printf_P(PSTR("of %dm\n"), (int)g.rtl_altitude / 100); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
cliSerial->printf_P(PSTR("%d wp\n"), (int)g.command_total); |
|
|
|
|
cliSerial->printf_P(PSTR("Hit rad: %dm\n"), (int)wp_nav.get_waypoint_radius()); |
|
|
|
|
#if OPTFLOW == ENABLED |
|
|
|
|
if(g.optflow_enabled) { |
|
|
|
|
cliSerial->printf_P(PSTR("man id: %d\t"),optflow.read_register(ADNS3080_PRODUCT_ID)); |
|
|
|
|
print_hit_enter(); |
|
|
|
|
|
|
|
|
|
report_wp(); |
|
|
|
|
while(1) { |
|
|
|
|
delay(200); |
|
|
|
|
optflow.update(millis()); |
|
|
|
|
Log_Write_Optflow(); |
|
|
|
|
cliSerial->printf_P(PSTR("x/dx: %d/%d\t y/dy %d/%d\t squal:%d\n"), |
|
|
|
|
optflow.x, |
|
|
|
|
optflow.dx, |
|
|
|
|
optflow.y, |
|
|
|
|
optflow.dy, |
|
|
|
|
optflow.surface_quality); |
|
|
|
|
|
|
|
|
|
if(cliSerial->available() > 0) { |
|
|
|
|
return (0); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} else { |
|
|
|
|
cliSerial->printf_P(PSTR("OptFlow: ")); |
|
|
|
|
print_enabled(false); |
|
|
|
|
} |
|
|
|
|
return (0); |
|
|
|
|
#else |
|
|
|
|
return (0); |
|
|
|
|
#endif // OPTFLOW == ENABLED |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE && HIL_MODE != HIL_MODE_SENSORS |
|
|
|
|
static int8_t |
|
|
|
|
test_baro(uint8_t argc, const Menu::arg *argv) |
|
|
|
|
test_radio_pwm(uint8_t argc, const Menu::arg *argv) |
|
|
|
|
{ |
|
|
|
|
int32_t alt; |
|
|
|
|
print_hit_enter(); |
|
|
|
|
init_barometer(); |
|
|
|
|
delay(1000); |
|
|
|
|
|
|
|
|
|
while(1) { |
|
|
|
|
delay(100); |
|
|
|
|
alt = read_barometer(); |
|
|
|
|
delay(20); |
|
|
|
|
|
|
|
|
|
// Filters radio input - adjust filters in the radio.pde file |
|
|
|
|
// ---------------------------------------------------------- |
|
|
|
|
read_radio(); |
|
|
|
|
|
|
|
|
|
// servo Yaw |
|
|
|
|
//APM_RC.OutputCh(CH_7, g.rc_4.radio_out); |
|
|
|
|
|
|
|
|
|
cliSerial->printf_P(PSTR("IN: 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\t8: %d\n"), |
|
|
|
|
g.rc_1.radio_in, |
|
|
|
|
g.rc_2.radio_in, |
|
|
|
|
g.rc_3.radio_in, |
|
|
|
|
g.rc_4.radio_in, |
|
|
|
|
g.rc_5.radio_in, |
|
|
|
|
g.rc_6.radio_in, |
|
|
|
|
g.rc_7.radio_in, |
|
|
|
|
g.rc_8.radio_in); |
|
|
|
|
|
|
|
|
|
if (!barometer.healthy) { |
|
|
|
|
cliSerial->println_P(PSTR("not healthy")); |
|
|
|
|
} else { |
|
|
|
|
cliSerial->printf_P(PSTR("Alt: %0.2fm, Raw: %f Temperature: %.1f\n"), |
|
|
|
|
alt / 100.0, |
|
|
|
|
barometer.get_pressure(), 0.1*barometer.get_temperature()); |
|
|
|
|
} |
|
|
|
|
if(cliSerial->available() > 0) { |
|
|
|
|
return (0); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static int8_t |
|
|
|
|
test_mag(uint8_t argc, const Menu::arg *argv) |
|
|
|
|
test_radio(uint8_t argc, const Menu::arg *argv) |
|
|
|
|
{ |
|
|
|
|
uint8_t delta_ms_fast_loop; |
|
|
|
|
print_hit_enter(); |
|
|
|
|
delay(1000); |
|
|
|
|
|
|
|
|
|
if (!g.compass_enabled) { |
|
|
|
|
cliSerial->printf_P(PSTR("Compass: ")); |
|
|
|
|
print_enabled(false); |
|
|
|
|
return (0); |
|
|
|
|
} |
|
|
|
|
while(1) { |
|
|
|
|
delay(20); |
|
|
|
|
read_radio(); |
|
|
|
|
|
|
|
|
|
if (!compass.init()) { |
|
|
|
|
cliSerial->println_P(PSTR("Compass initialisation failed!")); |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
ahrs.init(); |
|
|
|
|
ahrs.set_fly_forward(true); |
|
|
|
|
ahrs.set_compass(&compass); |
|
|
|
|
report_compass(); |
|
|
|
|
cliSerial->printf_P(PSTR("IN 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\n"), |
|
|
|
|
g.rc_1.control_in, |
|
|
|
|
g.rc_2.control_in, |
|
|
|
|
g.rc_3.control_in, |
|
|
|
|
g.rc_4.control_in, |
|
|
|
|
g.rc_5.control_in, |
|
|
|
|
g.rc_6.control_in, |
|
|
|
|
g.rc_7.control_in); |
|
|
|
|
|
|
|
|
|
// we need the AHRS initialised for this test |
|
|
|
|
ins.init(AP_InertialSensor::COLD_START, |
|
|
|
|
ins_sample_rate, |
|
|
|
|
flash_leds); |
|
|
|
|
ahrs.reset(); |
|
|
|
|
int16_t counter = 0; |
|
|
|
|
float heading = 0; |
|
|
|
|
//cliSerial->printf_P(PSTR("OUT 1: %d\t2: %d\t3: %d\t4: %d\n"), (g.rc_1.servo_out / 100), (g.rc_2.servo_out / 100), g.rc_3.servo_out, (g.rc_4.servo_out / 100)); |
|
|
|
|
|
|
|
|
|
/*cliSerial->printf_P(PSTR( "min: %d" |
|
|
|
|
* "\t in: %d" |
|
|
|
|
* "\t pwm_in: %d" |
|
|
|
|
* "\t sout: %d" |
|
|
|
|
* "\t pwm_out %d\n"), |
|
|
|
|
* g.rc_3.radio_min, |
|
|
|
|
* g.rc_3.control_in, |
|
|
|
|
* g.rc_3.radio_in, |
|
|
|
|
* g.rc_3.servo_out, |
|
|
|
|
* g.rc_3.pwm_out |
|
|
|
|
* ); |
|
|
|
|
*/ |
|
|
|
|
if(cliSerial->available() > 0) { |
|
|
|
|
return (0); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static int8_t test_relay(uint8_t argc, const Menu::arg *argv) |
|
|
|
|
{ |
|
|
|
|
print_hit_enter(); |
|
|
|
|
delay(1000); |
|
|
|
|
|
|
|
|
|
while(1) { |
|
|
|
|
delay(20); |
|
|
|
|
if (millis() - fast_loopTimer > 19) { |
|
|
|
|
delta_ms_fast_loop = millis() - fast_loopTimer; |
|
|
|
|
G_Dt = (float)delta_ms_fast_loop / 1000.f; // used by DCM integrator |
|
|
|
|
fast_loopTimer = millis(); |
|
|
|
|
|
|
|
|
|
// INS |
|
|
|
|
// --- |
|
|
|
|
ahrs.update(); |
|
|
|
|
|
|
|
|
|
medium_loopCounter++; |
|
|
|
|
if(medium_loopCounter == 5) { |
|
|
|
|
if (compass.read()) { |
|
|
|
|
// Calculate heading |
|
|
|
|
const Matrix3f &m = ahrs.get_dcm_matrix(); |
|
|
|
|
heading = compass.calculate_heading(m); |
|
|
|
|
compass.null_offsets(); |
|
|
|
|
} |
|
|
|
|
medium_loopCounter = 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
counter++; |
|
|
|
|
if (counter>20) { |
|
|
|
|
if (compass.healthy) { |
|
|
|
|
Vector3f maggy = compass.get_offsets(); |
|
|
|
|
cliSerial->printf_P(PSTR("Heading: %ld, XYZ: %d, %d, %d,\tXYZoff: %6.2f, %6.2f, %6.2f\n"), |
|
|
|
|
(wrap_360_cd(ToDeg(heading) * 100)) /100, |
|
|
|
|
(int)compass.mag_x, |
|
|
|
|
(int)compass.mag_y, |
|
|
|
|
(int)compass.mag_z, |
|
|
|
|
maggy.x, |
|
|
|
|
maggy.y, |
|
|
|
|
maggy.z); |
|
|
|
|
} else { |
|
|
|
|
cliSerial->println_P(PSTR("compass not healthy")); |
|
|
|
|
} |
|
|
|
|
counter=0; |
|
|
|
|
} |
|
|
|
|
cliSerial->printf_P(PSTR("Relay on\n")); |
|
|
|
|
relay.on(); |
|
|
|
|
delay(3000); |
|
|
|
|
if(cliSerial->available() > 0) { |
|
|
|
|
return (0); |
|
|
|
|
} |
|
|
|
|
if (cliSerial->available() > 0) { |
|
|
|
|
break; |
|
|
|
|
|
|
|
|
|
cliSerial->printf_P(PSTR("Relay off\n")); |
|
|
|
|
relay.off(); |
|
|
|
|
delay(3000); |
|
|
|
|
if(cliSerial->available() > 0) { |
|
|
|
|
return (0); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// save offsets. This allows you to get sane offset values using |
|
|
|
|
// the CLI before you go flying. |
|
|
|
|
cliSerial->println_P(PSTR("saving offsets")); |
|
|
|
|
compass.save_offsets(); |
|
|
|
|
return (0); |
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 |
|
|
|
|
/* |
|
|
|
|
* run a debug shell |
|
|
|
|
*/ |
|
|
|
|
static int8_t |
|
|
|
|
test_shell(uint8_t argc, const Menu::arg *argv) |
|
|
|
|
{ |
|
|
|
|
hal.util->run_debug_shell(cliSerial); |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE && HIL_MODE != HIL_MODE_SENSORS |
|
|
|
|
/* |
|
|
|
@ -553,109 +554,91 @@ test_sonar(uint8_t argc, const Menu::arg *argv)
@@ -553,109 +554,91 @@ test_sonar(uint8_t argc, const Menu::arg *argv)
|
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static int8_t |
|
|
|
|
test_optflow(uint8_t argc, const Menu::arg *argv) |
|
|
|
|
/* |
|
|
|
|
//static int8_t |
|
|
|
|
//test_toy(uint8_t argc, const Menu::arg *argv) |
|
|
|
|
{ |
|
|
|
|
#if OPTFLOW == ENABLED |
|
|
|
|
if(g.optflow_enabled) { |
|
|
|
|
cliSerial->printf_P(PSTR("man id: %d\t"),optflow.read_register(ADNS3080_PRODUCT_ID)); |
|
|
|
|
print_hit_enter(); |
|
|
|
|
|
|
|
|
|
while(1) { |
|
|
|
|
delay(200); |
|
|
|
|
optflow.update(millis()); |
|
|
|
|
Log_Write_Optflow(); |
|
|
|
|
cliSerial->printf_P(PSTR("x/dx: %d/%d\t y/dy %d/%d\t squal:%d\n"), |
|
|
|
|
optflow.x, |
|
|
|
|
optflow.dx, |
|
|
|
|
optflow.y, |
|
|
|
|
optflow.dy, |
|
|
|
|
optflow.surface_quality); |
|
|
|
|
|
|
|
|
|
if(cliSerial->available() > 0) { |
|
|
|
|
return (0); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} else { |
|
|
|
|
cliSerial->printf_P(PSTR("OptFlow: ")); |
|
|
|
|
print_enabled(false); |
|
|
|
|
} |
|
|
|
|
return (0); |
|
|
|
|
#else |
|
|
|
|
return (0); |
|
|
|
|
#endif // OPTFLOW == ENABLED |
|
|
|
|
for(altitude_error = 2000; altitude_error > -100; altitude_error--){ |
|
|
|
|
int16_t temp = get_desired_climb_rate(); |
|
|
|
|
cliSerial->printf("%ld, %d\n", altitude_error, temp); |
|
|
|
|
} |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
{ wp_distance = 0; |
|
|
|
|
int16_t max_speed = 0; |
|
|
|
|
|
|
|
|
|
for(int16_t i = 0; i < 200; i++){ |
|
|
|
|
int32_t temp = 2 * 100 * (wp_distance - wp_nav.get_waypoint_radius()); |
|
|
|
|
max_speed = sqrtf((float)temp); |
|
|
|
|
max_speed = min(max_speed, wp_nav.get_horizontal_speed()); |
|
|
|
|
cliSerial->printf("Zspeed: %ld, %d, %ld\n", temp, max_speed, wp_distance); |
|
|
|
|
wp_distance += 100; |
|
|
|
|
} |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
//*/ |
|
|
|
|
|
|
|
|
|
/*static int8_t |
|
|
|
|
* //test_toy(uint8_t argc, const Menu::arg *argv) |
|
|
|
|
* { |
|
|
|
|
* int16_t yaw_rate; |
|
|
|
|
* int16_t roll_rate; |
|
|
|
|
* g.rc_1.control_in = -2500; |
|
|
|
|
* g.rc_2.control_in = 2500; |
|
|
|
|
* |
|
|
|
|
* g.toy_yaw_rate = 3; |
|
|
|
|
* yaw_rate = g.rc_1.control_in / g.toy_yaw_rate; |
|
|
|
|
* roll_rate = ((int32_t)g.rc_2.control_in * (yaw_rate/100)) /40; |
|
|
|
|
* cliSerial->printf("yaw_rate, %d, roll_rate, %d\n", yaw_rate, roll_rate); |
|
|
|
|
* |
|
|
|
|
* g.toy_yaw_rate = 2; |
|
|
|
|
* yaw_rate = g.rc_1.control_in / g.toy_yaw_rate; |
|
|
|
|
* roll_rate = ((int32_t)g.rc_2.control_in * (yaw_rate/100)) /40; |
|
|
|
|
* cliSerial->printf("yaw_rate, %d, roll_rate, %d\n", yaw_rate, roll_rate); |
|
|
|
|
* |
|
|
|
|
* g.toy_yaw_rate = 1; |
|
|
|
|
* yaw_rate = g.rc_1.control_in / g.toy_yaw_rate; |
|
|
|
|
* roll_rate = ((int32_t)g.rc_2.control_in * (yaw_rate/100)) /40; |
|
|
|
|
* cliSerial->printf("yaw_rate, %d, roll_rate, %d\n", yaw_rate, roll_rate); |
|
|
|
|
* }*/ |
|
|
|
|
|
|
|
|
|
static int8_t |
|
|
|
|
test_wp_nav(uint8_t argc, const Menu::arg *argv) |
|
|
|
|
test_tuning(uint8_t argc, const Menu::arg *argv) |
|
|
|
|
{ |
|
|
|
|
current_loc.lat = 389539260; |
|
|
|
|
current_loc.lng = -1199540200; |
|
|
|
|
|
|
|
|
|
wp_nav.set_destination(pv_latlon_to_vector(389538528,-1199541248,0)); |
|
|
|
|
|
|
|
|
|
// got 23506;, should be 22800 |
|
|
|
|
update_navigation(); |
|
|
|
|
cliSerial->printf_P(PSTR("bear: %ld\n"), wp_bearing); |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
print_hit_enter(); |
|
|
|
|
|
|
|
|
|
/* |
|
|
|
|
* test the dataflash is working |
|
|
|
|
*/ |
|
|
|
|
while(1) { |
|
|
|
|
delay(200); |
|
|
|
|
read_radio(); |
|
|
|
|
tuning(); |
|
|
|
|
cliSerial->printf_P(PSTR("tune: %1.3f\n"), tuning_value); |
|
|
|
|
|
|
|
|
|
static int8_t |
|
|
|
|
test_logging(uint8_t argc, const Menu::arg *argv) |
|
|
|
|
{ |
|
|
|
|
cliSerial->println_P(PSTR("Testing dataflash logging")); |
|
|
|
|
DataFlash.ShowDeviceInfo(cliSerial); |
|
|
|
|
return 0; |
|
|
|
|
if(cliSerial->available() > 0) { |
|
|
|
|
return (0); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 |
|
|
|
|
/* |
|
|
|
|
* run a debug shell |
|
|
|
|
*/ |
|
|
|
|
static int8_t |
|
|
|
|
test_shell(uint8_t argc, const Menu::arg *argv) |
|
|
|
|
test_wp(uint8_t argc, const Menu::arg *argv) |
|
|
|
|
{ |
|
|
|
|
hal.util->run_debug_shell(cliSerial); |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
|
delay(1000); |
|
|
|
|
|
|
|
|
|
static int8_t |
|
|
|
|
test_motors(uint8_t argc, const Menu::arg *argv) |
|
|
|
|
{ |
|
|
|
|
cliSerial->printf_P(PSTR( |
|
|
|
|
"Connect battery for this test.\n" |
|
|
|
|
"Motors will not spin in channel order (1,2,3,4) but by frame position order.\n" |
|
|
|
|
"Front (& right of centerline) motor first, then in clockwise order around frame.\n" |
|
|
|
|
"http://code.google.com/p/arducopter/wiki/AC2_Props_2 for demo video.\n" |
|
|
|
|
"Remember to disconnect battery after this test.\n" |
|
|
|
|
"Any key to exit.\n")); |
|
|
|
|
// save the alitude above home option |
|
|
|
|
cliSerial->printf_P(PSTR("Hold alt ")); |
|
|
|
|
if(g.rtl_altitude < 0) { |
|
|
|
|
cliSerial->printf_P(PSTR("\n")); |
|
|
|
|
}else{ |
|
|
|
|
cliSerial->printf_P(PSTR("of %dm\n"), (int)g.rtl_altitude / 100); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// ensure all values have been sent to motors |
|
|
|
|
motors.set_update_rate(g.rc_speed); |
|
|
|
|
motors.set_frame_orientation(g.frame_orientation); |
|
|
|
|
motors.set_min_throttle(g.throttle_min); |
|
|
|
|
motors.set_mid_throttle(g.throttle_mid); |
|
|
|
|
motors.set_max_throttle(g.throttle_max); |
|
|
|
|
cliSerial->printf_P(PSTR("%d wp\n"), (int)g.command_total); |
|
|
|
|
cliSerial->printf_P(PSTR("Hit rad: %dm\n"), (int)wp_nav.get_waypoint_radius()); |
|
|
|
|
|
|
|
|
|
// enable motors |
|
|
|
|
init_rc_out(); |
|
|
|
|
report_wp(); |
|
|
|
|
|
|
|
|
|
while(1) { |
|
|
|
|
delay(20); |
|
|
|
|
read_radio(); |
|
|
|
|
motors.output_test(); |
|
|
|
|
if(cliSerial->available() > 0) { |
|
|
|
|
g.esc_calibrate.set_and_save(0); |
|
|
|
|
return(0); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
return (0); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static void print_hit_enter() |
|
|
|
|