|
|
|
@ -9,7 +9,7 @@
@@ -9,7 +9,7 @@
|
|
|
|
|
// ofloiter_init - initialise ofloiter controller |
|
|
|
|
static bool ofloiter_init(bool ignore_checks) |
|
|
|
|
{ |
|
|
|
|
if (g.optflow_enabled || ignore_checks) { |
|
|
|
|
if (optflow.enabled() || ignore_checks) { |
|
|
|
|
|
|
|
|
|
// initialize vertical speed and acceleration |
|
|
|
|
pos_control.set_speed_z(-g.pilot_velocity_z_max, g.pilot_velocity_z_max); |
|
|
|
@ -18,6 +18,11 @@ static bool ofloiter_init(bool ignore_checks)
@@ -18,6 +18,11 @@ static bool ofloiter_init(bool ignore_checks)
|
|
|
|
|
// initialise altitude target to stopping point |
|
|
|
|
pos_control.set_target_to_stopping_point_z(); |
|
|
|
|
|
|
|
|
|
// initialise of_roll, pitch to current attitude |
|
|
|
|
of_roll = ahrs.roll_sensor; |
|
|
|
|
of_pitch = ahrs.pitch_sensor; |
|
|
|
|
reset_optflow_I(); |
|
|
|
|
|
|
|
|
|
return true; |
|
|
|
|
}else{ |
|
|
|
|
return false; |
|
|
|
@ -29,6 +34,7 @@ static bool ofloiter_init(bool ignore_checks)
@@ -29,6 +34,7 @@ static bool ofloiter_init(bool ignore_checks)
|
|
|
|
|
static void ofloiter_run() |
|
|
|
|
{ |
|
|
|
|
int16_t target_roll, target_pitch; |
|
|
|
|
float final_roll, final_pitch; |
|
|
|
|
float target_yaw_rate = 0; |
|
|
|
|
float target_climb_rate = 0; |
|
|
|
|
|
|
|
|
@ -38,6 +44,8 @@ static void ofloiter_run()
@@ -38,6 +44,8 @@ static void ofloiter_run()
|
|
|
|
|
attitude_control.set_yaw_target_to_current_heading(); |
|
|
|
|
attitude_control.set_throttle_out(0, false); |
|
|
|
|
pos_control.set_alt_target_to_current_alt(); |
|
|
|
|
of_roll = ahrs.roll_sensor; |
|
|
|
|
of_pitch = ahrs.pitch_sensor; |
|
|
|
|
reset_optflow_I(); |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
@ -72,14 +80,15 @@ static void ofloiter_run()
@@ -72,14 +80,15 @@ static void ofloiter_run()
|
|
|
|
|
// move throttle to between minimum and non-takeoff-throttle to keep us on the ground |
|
|
|
|
attitude_control.set_throttle_out(get_throttle_pre_takeoff(g.rc_3.control_in), false); |
|
|
|
|
pos_control.set_alt_target_to_current_alt(); |
|
|
|
|
of_roll = ahrs.roll_sensor; |
|
|
|
|
of_pitch = ahrs.pitch_sensor; |
|
|
|
|
reset_optflow_I(); |
|
|
|
|
}else{ |
|
|
|
|
// mix in user control with optical flow |
|
|
|
|
target_roll = get_of_roll(target_roll); |
|
|
|
|
target_pitch = get_of_pitch(target_pitch); |
|
|
|
|
get_of_roll_pitch(target_roll, target_pitch, final_roll, final_pitch); |
|
|
|
|
|
|
|
|
|
// call attitude controller |
|
|
|
|
attitude_control.angle_ef_roll_pitch_rate_ef_yaw_smooth(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain()); |
|
|
|
|
attitude_control.angle_ef_roll_pitch_rate_ef_yaw_smooth(final_roll, final_pitch, target_yaw_rate, get_smoothing_gain()); |
|
|
|
|
|
|
|
|
|
// run altitude controller |
|
|
|
|
if (sonar_alt_health >= SONAR_ALT_HEALTH_MAX) { |
|
|
|
@ -93,81 +102,50 @@ static void ofloiter_run()
@@ -93,81 +102,50 @@ static void ofloiter_run()
|
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// calculate modified roll/pitch depending upon optical flow calculated position |
|
|
|
|
static int32_t get_of_roll(int32_t input_roll) |
|
|
|
|
static void get_of_roll_pitch(int16_t input_roll, int16_t input_pitch, float &roll_out, float &pitch_out) |
|
|
|
|
{ |
|
|
|
|
static float tot_x_cm = 0; // total distance from target |
|
|
|
|
static uint32_t last_of_roll_update = 0; |
|
|
|
|
int32_t new_roll = 0; |
|
|
|
|
int32_t p,i,d; |
|
|
|
|
|
|
|
|
|
// check if new optflow data available |
|
|
|
|
if( optflow.last_update != last_of_roll_update) { |
|
|
|
|
last_of_roll_update = optflow.last_update; |
|
|
|
|
|
|
|
|
|
// add new distance moved |
|
|
|
|
tot_x_cm += optflow.x_cm; |
|
|
|
|
|
|
|
|
|
// only stop roll if caller isn't modifying roll |
|
|
|
|
if( input_roll == 0 && current_loc.alt < 1500) { |
|
|
|
|
p = g.pid_optflow_roll.get_p(-tot_x_cm); |
|
|
|
|
i = g.pid_optflow_roll.get_i(-tot_x_cm,1.0f); // we could use the last update time to calculate the time change |
|
|
|
|
d = g.pid_optflow_roll.get_d(-tot_x_cm,1.0f); |
|
|
|
|
new_roll = p+i+d; |
|
|
|
|
}else{ |
|
|
|
|
g.pid_optflow_roll.reset_I(); |
|
|
|
|
tot_x_cm = 0; |
|
|
|
|
p = 0; // for logging |
|
|
|
|
i = 0; |
|
|
|
|
d = 0; |
|
|
|
|
} |
|
|
|
|
// limit amount of change and maximum angle |
|
|
|
|
of_roll = constrain_int32(new_roll, (of_roll-20), (of_roll+20)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// limit max angle |
|
|
|
|
of_roll = constrain_int32(of_roll, -1000, 1000); |
|
|
|
|
static uint32_t last_of_update = 0; |
|
|
|
|
float dt; |
|
|
|
|
|
|
|
|
|
return input_roll+of_roll; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static int32_t get_of_pitch(int32_t input_pitch) |
|
|
|
|
{ |
|
|
|
|
static float tot_y_cm = 0; // total distance from target |
|
|
|
|
static uint32_t last_of_pitch_update = 0; |
|
|
|
|
int32_t new_pitch = 0; |
|
|
|
|
int32_t p,i,d; |
|
|
|
|
// To-Do: pass input_roll, input_pitch through to roll_out, pitch_out if input is non-zero or previous iteration was non-zero |
|
|
|
|
|
|
|
|
|
// check if new optflow data available |
|
|
|
|
if( optflow.last_update != last_of_pitch_update ) { |
|
|
|
|
last_of_pitch_update = optflow.last_update; |
|
|
|
|
|
|
|
|
|
// add new distance moved |
|
|
|
|
tot_y_cm += optflow.y_cm; |
|
|
|
|
|
|
|
|
|
// only stop roll if caller isn't modifying pitch |
|
|
|
|
if( input_pitch == 0 && current_loc.alt < 1500 ) { |
|
|
|
|
p = g.pid_optflow_pitch.get_p(tot_y_cm); |
|
|
|
|
i = g.pid_optflow_pitch.get_i(tot_y_cm, 1.0f); // we could use the last update time to calculate the time change |
|
|
|
|
d = g.pid_optflow_pitch.get_d(tot_y_cm, 1.0f); |
|
|
|
|
new_pitch = p + i + d; |
|
|
|
|
}else{ |
|
|
|
|
tot_y_cm = 0; |
|
|
|
|
if (optflow.last_update() != last_of_update) { |
|
|
|
|
|
|
|
|
|
// calculate dt and sanity check |
|
|
|
|
dt = (optflow.last_update() - last_of_update) / 1000.0f; |
|
|
|
|
if (dt > 0.2) { |
|
|
|
|
dt = 0; |
|
|
|
|
g.pid_optflow_roll.reset_I(); |
|
|
|
|
g.pid_optflow_pitch.reset_I(); |
|
|
|
|
p = 0; // for logging |
|
|
|
|
i = 0; |
|
|
|
|
d = 0; |
|
|
|
|
} |
|
|
|
|
last_of_update = optflow.last_update(); |
|
|
|
|
|
|
|
|
|
// get latest velocity from sensor |
|
|
|
|
const Vector2f &vel = optflow.velocity(); |
|
|
|
|
|
|
|
|
|
// allow pilot override of roll |
|
|
|
|
if (input_roll == 0 && current_loc.alt < 1500) { |
|
|
|
|
roll_out = g.pid_optflow_roll.get_pid(-vel.x, dt); |
|
|
|
|
// limit amount of change and maximum angle |
|
|
|
|
roll_out = constrain_float(roll_out, (of_roll-20), (of_roll+20)); |
|
|
|
|
} else { |
|
|
|
|
roll_out = input_roll; |
|
|
|
|
} |
|
|
|
|
of_roll = roll_out; |
|
|
|
|
|
|
|
|
|
// limit amount of change |
|
|
|
|
of_pitch = constrain_int32(new_pitch, (of_pitch-20), (of_pitch+20)); |
|
|
|
|
if (input_pitch == 0 && current_loc.alt < 1500) { |
|
|
|
|
pitch_out = g.pid_optflow_pitch.get_pid(vel.y, dt); |
|
|
|
|
pitch_out = constrain_float(pitch_out, (of_pitch-20), (of_pitch+20)); |
|
|
|
|
} else { |
|
|
|
|
pitch_out = input_pitch; |
|
|
|
|
} |
|
|
|
|
of_pitch = pitch_out; |
|
|
|
|
} else { |
|
|
|
|
roll_out = of_roll; |
|
|
|
|
pitch_out = of_pitch; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// limit max angle |
|
|
|
|
of_pitch = constrain_int32(of_pitch, -1000, 1000); |
|
|
|
|
|
|
|
|
|
return input_pitch+of_pitch; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// reset_optflow_I - reset optflow position hold I terms |
|
|
|
@ -175,8 +153,6 @@ static void reset_optflow_I(void)
@@ -175,8 +153,6 @@ static void reset_optflow_I(void)
|
|
|
|
|
{ |
|
|
|
|
g.pid_optflow_roll.reset_I(); |
|
|
|
|
g.pid_optflow_pitch.reset_I(); |
|
|
|
|
of_roll = 0; |
|
|
|
|
of_pitch = 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#endif // OPTFLOW == ENABLED |
|
|
|
|