|
|
|
@ -1,6 +1,7 @@
@@ -1,6 +1,7 @@
|
|
|
|
|
/*
|
|
|
|
|
AP_RC_Channel.cpp - Radio library for Arduino Legacy Hardware |
|
|
|
|
Code by Jason Short. DIYDrones.com |
|
|
|
|
Improvements to implement channel curves by Ron Curry, 2012 |
|
|
|
|
|
|
|
|
|
This library is free software; you can redistribute it and / or |
|
|
|
|
modify it under the terms of the GNU Lesser General Public |
|
|
|
@ -64,11 +65,102 @@ AP_RC_Channel::trim()
@@ -64,11 +65,102 @@ AP_RC_Channel::trim()
|
|
|
|
|
radio_trim = radio_in; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
//-------------------------------------------------------------------------------
|
|
|
|
|
// Support for PWM translation (i.e. curves or "expo")
|
|
|
|
|
//
|
|
|
|
|
// Translation of the input PWM is done via a pointer "channel_curve" to an array that defines the PWM output value
|
|
|
|
|
// for any given input value. The array is structured with element 0 equal to the number of elements
|
|
|
|
|
// in the curve. If the length is zero then the array defines no curve. If the "channel_curve" pointer
|
|
|
|
|
// is NULL that is interpretted as no curve defined and is the default state.
|
|
|
|
|
//
|
|
|
|
|
// Elements 1 to n of the array contain the values for the curve. These are defined in terms of the actual
|
|
|
|
|
// PWM output pulsewidth desired for a given point on the curve with curve element 1 containing the value
|
|
|
|
|
// for the lowest input value from the RC RX and element "n" containing the value for the highest input value
|
|
|
|
|
// from the RX.
|
|
|
|
|
//
|
|
|
|
|
// Input PWM values are expected to be in the range of the radio calibration values "radio_min" to "radio_max". The
|
|
|
|
|
// user must have already completed the radio calibration otherwise output will be inaccurage. Input PWM values
|
|
|
|
|
// generate an index that falls between curve elements will cause the output to be interpolated in a linear fashion
|
|
|
|
|
// between the curve elements. For example: A curve defined as element 0 = 2 (length), element 1 = 900, and
|
|
|
|
|
// element 2 = 2100 would define a linear straight line output between 900 and 2100 for valid input values.
|
|
|
|
|
// Additional elements could be inserted between element 1 and element 2 to define more complex
|
|
|
|
|
// curves. - R. Curry 06-14-12
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Sets curve for channel output to user defined curve
|
|
|
|
|
// Input: curve - A pointer to a user defined output curve for this channel
|
|
|
|
|
void |
|
|
|
|
AP_RC_Channel::set_channel_curve(int *curve) |
|
|
|
|
{ |
|
|
|
|
_channel_curve = curve; // Channel_curve points to array containing curve info
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Unsets the curve for this channel - i.e. no curve translation
|
|
|
|
|
void |
|
|
|
|
AP_RC_Channel::unset_channel_curve() |
|
|
|
|
{ |
|
|
|
|
_channel_curve = NULL; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Apply the current curve to a PWM value
|
|
|
|
|
// Input: PWM value in range of radio_min to radio_max
|
|
|
|
|
// Output: Translated PWM value
|
|
|
|
|
int |
|
|
|
|
AP_RC_Channel::apply_curve(int pwm)
|
|
|
|
|
{ |
|
|
|
|
float scale; |
|
|
|
|
int index1, index2; |
|
|
|
|
|
|
|
|
|
if (_channel_curve != NULL) |
|
|
|
|
{ |
|
|
|
|
if (_channel_curve[0] > 0) // If the length of the curve isn't zero then use it
|
|
|
|
|
{
|
|
|
|
|
// Calculate the index into the channel curve table
|
|
|
|
|
scale = ((float)(pwm - radio_min) /
|
|
|
|
|
(float)(radio_max - radio_min)) *
|
|
|
|
|
((float)_channel_curve[0]-1);
|
|
|
|
|
index1 = (int)scale; // get the index
|
|
|
|
|
scale -= (float)index1; // scale now has the remainder for later
|
|
|
|
|
|
|
|
|
|
if (index1 < 0) { // If the PWM value below our range then clamp to lowest table entry
|
|
|
|
|
index1 = 0; |
|
|
|
|
scale = 0.0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
index2 = index1 + 1; // Point to the next entry beyond our current for interpolation
|
|
|
|
|
if (index2 >= _channel_curve[0]) { // If we are beyond the end then clamp to highest entry
|
|
|
|
|
index2 = _channel_curve[0] - 1; |
|
|
|
|
if (index1 >= _channel_curve[0]) { // Also check index 1 and clamp if necessary
|
|
|
|
|
index1 = _channel_curve[0] -1; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Do the lookup and interpolation
|
|
|
|
|
index1++; // curve values start at entry 1
|
|
|
|
|
index2++; |
|
|
|
|
pwm = ((_channel_curve[index1] *
|
|
|
|
|
(1 - scale)) + (_channel_curve[index2] *
|
|
|
|
|
scale)); // Get the pwm value from the curve and interpolate - done
|
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
return pwm; //
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//-------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// read input from APM_RC - create a control_in value
|
|
|
|
|
void |
|
|
|
|
AP_RC_Channel::set_pwm(int pwm) |
|
|
|
|
{ |
|
|
|
|
//Serial.print(pwm,DEC);
|
|
|
|
|
// Serial.print(pwm,DEC);
|
|
|
|
|
|
|
|
|
|
// Apply the curve - if any
|
|
|
|
|
pwm = apply_curve(pwm); |
|
|
|
|
|
|
|
|
|
if(_filter){ |
|
|
|
|
if(radio_in == 0) |
|
|
|
@ -88,17 +180,10 @@ AP_RC_Channel::set_pwm(int pwm)
@@ -88,17 +180,10 @@ AP_RC_Channel::set_pwm(int pwm)
|
|
|
|
|
control_in = pwm_to_angle(); |
|
|
|
|
control_in = (abs(control_in) < dead_zone) ? 0 : control_in; |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
// coming soon ??
|
|
|
|
|
if(expo) { |
|
|
|
|
long temp = control_in; |
|
|
|
|
temp = (temp * temp) / (long)_high; |
|
|
|
|
control_in = (int)((control_in >= 0) ? temp : -temp); |
|
|
|
|
} |
|
|
|
|
*/ |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int |
|
|
|
|
AP_RC_Channel::control_mix(float value) |
|
|
|
|
{ |
|
|
|
@ -124,7 +209,7 @@ AP_RC_Channel::calc_pwm(void)
@@ -124,7 +209,7 @@ AP_RC_Channel::calc_pwm(void)
|
|
|
|
|
pwm_out = angle_to_pwm(); |
|
|
|
|
radio_out = pwm_out + radio_trim; |
|
|
|
|
} |
|
|
|
|
radio_out = constrain(radio_out, radio_min, radio_max); |
|
|
|
|
// radio_out = constrain(radio_out, radio_min, radio_max);
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// ------------------------------------------
|
|
|
|
|