|
|
@ -99,19 +99,19 @@ void Quaternion::from_rotation_matrix(const Matrix3f &m) |
|
|
|
qy = (m02 - m20) / S; |
|
|
|
qy = (m02 - m20) / S; |
|
|
|
qz = (m10 - m01) / S; |
|
|
|
qz = (m10 - m01) / S; |
|
|
|
} else if ((m00 > m11) && (m00 > m22)) { |
|
|
|
} else if ((m00 > m11) && (m00 > m22)) { |
|
|
|
float S = sqrtf(1.0f + m00 - m11 - m22) * 2; |
|
|
|
float S = sqrtf(1.0f + m00 - m11 - m22) * 2.0f; |
|
|
|
qw = (m21 - m12) / S; |
|
|
|
qw = (m21 - m12) / S; |
|
|
|
qx = 0.25f * S; |
|
|
|
qx = 0.25f * S; |
|
|
|
qy = (m01 + m10) / S; |
|
|
|
qy = (m01 + m10) / S; |
|
|
|
qz = (m02 + m20) / S; |
|
|
|
qz = (m02 + m20) / S; |
|
|
|
} else if (m11 > m22) { |
|
|
|
} else if (m11 > m22) { |
|
|
|
float S = sqrtf(1.0f + m11 - m00 - m22) * 2; |
|
|
|
float S = sqrtf(1.0f + m11 - m00 - m22) * 2.0f; |
|
|
|
qw = (m02 - m20) / S; |
|
|
|
qw = (m02 - m20) / S; |
|
|
|
qx = (m01 + m10) / S; |
|
|
|
qx = (m01 + m10) / S; |
|
|
|
qy = 0.25f * S; |
|
|
|
qy = 0.25f * S; |
|
|
|
qz = (m12 + m21) / S; |
|
|
|
qz = (m12 + m21) / S; |
|
|
|
} else { |
|
|
|
} else { |
|
|
|
float S = sqrtf(1.0f + m22 - m00 - m11) * 2; |
|
|
|
float S = sqrtf(1.0f + m22 - m00 - m11) * 2.0f; |
|
|
|
qw = (m10 - m01) / S; |
|
|
|
qw = (m10 - m01) / S; |
|
|
|
qx = (m02 + m20) / S; |
|
|
|
qx = (m02 + m20) / S; |
|
|
|
qy = (m12 + m21) / S; |
|
|
|
qy = (m12 + m21) / S; |
|
|
@ -155,7 +155,7 @@ void Quaternion::from_vector312(float roll ,float pitch, float yaw) |
|
|
|
void Quaternion::from_axis_angle(Vector3f v) |
|
|
|
void Quaternion::from_axis_angle(Vector3f v) |
|
|
|
{ |
|
|
|
{ |
|
|
|
float theta = v.length(); |
|
|
|
float theta = v.length(); |
|
|
|
if (theta < 1.0e-12f) { |
|
|
|
if (is_zero(theta)) { |
|
|
|
q1 = 1.0f; |
|
|
|
q1 = 1.0f; |
|
|
|
q2=q3=q4=0.0f; |
|
|
|
q2=q3=q4=0.0f; |
|
|
|
return; |
|
|
|
return; |
|
|
@ -166,7 +166,8 @@ void Quaternion::from_axis_angle(Vector3f v) |
|
|
|
|
|
|
|
|
|
|
|
void Quaternion::from_axis_angle(const Vector3f &axis, float theta) |
|
|
|
void Quaternion::from_axis_angle(const Vector3f &axis, float theta) |
|
|
|
{ |
|
|
|
{ |
|
|
|
if (theta < 1.0e-12f) { |
|
|
|
// axis must be a unit vector as there is no check for length
|
|
|
|
|
|
|
|
if (is_zero(theta)) { |
|
|
|
q1 = 1.0f; |
|
|
|
q1 = 1.0f; |
|
|
|
q2=q3=q4=0.0f; |
|
|
|
q2=q3=q4=0.0f; |
|
|
|
} |
|
|
|
} |
|
|
@ -189,7 +190,7 @@ void Quaternion::to_axis_angle(Vector3f &v) |
|
|
|
{ |
|
|
|
{ |
|
|
|
float l = sqrt(sq(q2)+sq(q3)+sq(q4)); |
|
|
|
float l = sqrt(sq(q2)+sq(q3)+sq(q4)); |
|
|
|
v = Vector3f(q2,q3,q4); |
|
|
|
v = Vector3f(q2,q3,q4); |
|
|
|
if (l >= 1.0e-12f) { |
|
|
|
if (!is_zero(l)) { |
|
|
|
v /= l; |
|
|
|
v /= l; |
|
|
|
v *= wrap_PI(2.0f * atan2f(l,q1)); |
|
|
|
v *= wrap_PI(2.0f * atan2f(l,q1)); |
|
|
|
} |
|
|
|
} |
|
|
@ -198,7 +199,7 @@ void Quaternion::to_axis_angle(Vector3f &v) |
|
|
|
void Quaternion::from_axis_angle_fast(Vector3f v) |
|
|
|
void Quaternion::from_axis_angle_fast(Vector3f v) |
|
|
|
{ |
|
|
|
{ |
|
|
|
float theta = v.length(); |
|
|
|
float theta = v.length(); |
|
|
|
if (theta < 1.0e-12f) { |
|
|
|
if (is_zero(theta)) { |
|
|
|
q1 = 1.0f; |
|
|
|
q1 = 1.0f; |
|
|
|
q2=q3=q4=0.0f; |
|
|
|
q2=q3=q4=0.0f; |
|
|
|
} |
|
|
|
} |
|
|
@ -221,7 +222,7 @@ void Quaternion::from_axis_angle_fast(const Vector3f &axis, float theta) |
|
|
|
void Quaternion::rotate_fast(const Vector3f &v) |
|
|
|
void Quaternion::rotate_fast(const Vector3f &v) |
|
|
|
{ |
|
|
|
{ |
|
|
|
float theta = v.length(); |
|
|
|
float theta = v.length(); |
|
|
|
if (theta < 1.0e-12f) { |
|
|
|
if (is_zero(theta)) { |
|
|
|
return; |
|
|
|
return; |
|
|
|
} |
|
|
|
} |
|
|
|
float t2 = theta/2.0f; |
|
|
|
float t2 = theta/2.0f; |
|
|
@ -251,7 +252,7 @@ void Quaternion::rotate_fast(const Vector3f &v) |
|
|
|
// get euler roll angle
|
|
|
|
// get euler roll angle
|
|
|
|
float Quaternion::get_euler_roll() const |
|
|
|
float Quaternion::get_euler_roll() const |
|
|
|
{ |
|
|
|
{ |
|
|
|
return (atan2f(2.0f*(q1*q2 + q3*q4), 1 - 2.0f*(q2*q2 + q3*q3))); |
|
|
|
return (atan2f(2.0f*(q1*q2 + q3*q4), 1.0f - 2.0f*(q2*q2 + q3*q3))); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// get euler pitch angle
|
|
|
|
// get euler pitch angle
|
|
|
@ -263,7 +264,7 @@ float Quaternion::get_euler_pitch() const |
|
|
|
// get euler yaw angle
|
|
|
|
// get euler yaw angle
|
|
|
|
float Quaternion::get_euler_yaw() const |
|
|
|
float Quaternion::get_euler_yaw() const |
|
|
|
{ |
|
|
|
{ |
|
|
|
return atan2f(2.0f*(q1*q4 + q2*q3), 1 - 2.0f*(q3*q3 + q4*q4)); |
|
|
|
return atan2f(2.0f*(q1*q4 + q2*q3), 1.0f - 2.0f*(q3*q3 + q4*q4)); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// create eulers from a quaternion
|
|
|
|
// create eulers from a quaternion
|
|
|
@ -295,7 +296,7 @@ Quaternion Quaternion::inverse(void) const |
|
|
|
void Quaternion::normalize(void) |
|
|
|
void Quaternion::normalize(void) |
|
|
|
{ |
|
|
|
{ |
|
|
|
float quatMag = length(); |
|
|
|
float quatMag = length(); |
|
|
|
if (quatMag > 1e-16f) { |
|
|
|
if (!is_zero(quatMag)) { |
|
|
|
float quatMagInv = 1.0f/quatMag; |
|
|
|
float quatMagInv = 1.0f/quatMag; |
|
|
|
q1 *= quatMagInv; |
|
|
|
q1 *= quatMagInv; |
|
|
|
q2 *= quatMagInv; |
|
|
|
q2 *= quatMagInv; |
|
|
|