|
|
|
@ -20,10 +20,6 @@
@@ -20,10 +20,6 @@
|
|
|
|
|
|
|
|
|
|
#ifndef AP_NavEKF |
|
|
|
|
#define AP_NavEKF |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include <AP_Math.h> |
|
|
|
|
#include <AP_AHRS.h> |
|
|
|
@ -38,194 +34,228 @@ class NavEKF
@@ -38,194 +34,228 @@ class NavEKF
|
|
|
|
|
public: |
|
|
|
|
|
|
|
|
|
// Constructor
|
|
|
|
|
// Don't know how to do this !!
|
|
|
|
|
NavEKF(AP_AHRS* ahrs, AP_Baro* baro, GPS* gps) : |
|
|
|
|
_ahrs(ahrs), |
|
|
|
|
_baro(baro), |
|
|
|
|
_gps(gps) |
|
|
|
|
NavEKF(const AP_AHRS &ahrs, AP_Baro &baro); |
|
|
|
|
|
|
|
|
|
// Initialise the filter states from the AHRS and magnetometer data (if present)
|
|
|
|
|
void InitialiseFilter(); |
|
|
|
|
void InitialiseFilter(void); |
|
|
|
|
|
|
|
|
|
// Update Filter States - this should be called whenever new IMU data is available
|
|
|
|
|
void UpdateFilter(); |
|
|
|
|
// return the Lat (rad), long(rad) and height (m) of the reference point
|
|
|
|
|
void getRefLLH(); |
|
|
|
|
// return the last calculated NED position relative to the reference point (m)
|
|
|
|
|
void getPosNED(); |
|
|
|
|
void UpdateFilter(void); |
|
|
|
|
|
|
|
|
|
// fill in latitude, longitude and height of the reference point
|
|
|
|
|
void getRefLLH(struct Location &loc); |
|
|
|
|
|
|
|
|
|
// return the last calculated NED position relative to the
|
|
|
|
|
// reference point (m). Return false if no position is available
|
|
|
|
|
bool getPosNED(Vector3f &pos); |
|
|
|
|
|
|
|
|
|
// return the last calculated NED velocity (m/s)
|
|
|
|
|
void getVelNED(); |
|
|
|
|
// return the last calculated Lat (rad), long(rad) and height (m)
|
|
|
|
|
void getLLH(); |
|
|
|
|
// return the Euler roll, pitch and yaw angle in radians
|
|
|
|
|
void getEulAng(); |
|
|
|
|
// get the transformation matrix from NED to XYD (body) axes
|
|
|
|
|
void getTnb(); |
|
|
|
|
// get the transformation matrix from XYZ (body) to NED axes
|
|
|
|
|
void getTbn(); |
|
|
|
|
// get the quaternions defining the rotation from NED to XYZ (body) axes
|
|
|
|
|
void getQuat(); |
|
|
|
|
void getVelNED(Vector3f &vel); |
|
|
|
|
|
|
|
|
|
private: |
|
|
|
|
// return the last calculated latitude, longitude and height
|
|
|
|
|
bool getLLH(struct Location &loc); |
|
|
|
|
|
|
|
|
|
void UpdateStrapdownEquationsNED(); |
|
|
|
|
// return the Euler roll, pitch and yaw angle in radians
|
|
|
|
|
void getEulerAngles(Vector3f &eulers); |
|
|
|
|
|
|
|
|
|
void CovariancePrediction(); |
|
|
|
|
// get the transformation matrix from NED to XYD (body) axes
|
|
|
|
|
void getRotationNEDToBody(Matrix3f &mat); |
|
|
|
|
|
|
|
|
|
void FuseVelPosNED(); |
|
|
|
|
// get the transformation matrix from XYZ (body) to NED axes
|
|
|
|
|
void getRotationBodyToNED(Matrix3f &mat); |
|
|
|
|
|
|
|
|
|
void FuseMagnetometer(); |
|
|
|
|
// get the quaternions defining the rotation from NED to XYZ (body) axes
|
|
|
|
|
void getQuaternion(Quaternion &quat); |
|
|
|
|
|
|
|
|
|
void FuseAirspeed(); |
|
|
|
|
private: |
|
|
|
|
const AP_AHRS &_ahrs; |
|
|
|
|
AP_Baro &_baro; |
|
|
|
|
|
|
|
|
|
void zeroRows(float covMat[24][24], uint8_t first, uint8_t last); |
|
|
|
|
void UpdateStrapdownEquationsNED(); |
|
|
|
|
|
|
|
|
|
void zeroCols(float covMat[24][24], uint8_t first, uint8_t last); |
|
|
|
|
void CovariancePrediction(); |
|
|
|
|
|
|
|
|
|
void FuseVelPosNED(); |
|
|
|
|
|
|
|
|
|
void FuseMagnetometer(); |
|
|
|
|
|
|
|
|
|
void FuseAirspeed(); |
|
|
|
|
|
|
|
|
|
void quatNorm(float quatOut[4], float quatIn[4]); |
|
|
|
|
void zeroRows(float covMat[24][24], uint8_t first, uint8_t last); |
|
|
|
|
|
|
|
|
|
// store states along with system time stamp in msces
|
|
|
|
|
void StoreStates(uint32_t msec); |
|
|
|
|
void zeroCols(float covMat[24][24], uint8_t first, uint8_t last); |
|
|
|
|
|
|
|
|
|
// recall state vector stored at closest time to the one specified by msec
|
|
|
|
|
void RecallStates(float statesForFusion[24], uint32_t msec); |
|
|
|
|
void quatNorm(float quatOut[4], float quatIn[4]); |
|
|
|
|
|
|
|
|
|
void quat2Tnb(Matrix3f &Tnb, float quat[4]); |
|
|
|
|
// store states along with system time stamp in msces
|
|
|
|
|
void StoreStates(void); |
|
|
|
|
|
|
|
|
|
void quat2Tbn(Matrix3f &Tbn, float quat[4]); |
|
|
|
|
// recall state vector stored at closest time to the one specified by msec
|
|
|
|
|
void RecallStates(float statesForFusion[24], uint32_t msec); |
|
|
|
|
|
|
|
|
|
void calcEarthRateNED(Vector3f &omega, float latitude); |
|
|
|
|
void quat2Tnb(Matrix3f &Tnb, float quat[4]); |
|
|
|
|
|
|
|
|
|
void eul2quat(float quat[4], float eul[3]); |
|
|
|
|
void quat2Tbn(Matrix3f &Tbn, float quat[4]); |
|
|
|
|
|
|
|
|
|
void quat2eul(float eul[3],float quat[4]); |
|
|
|
|
void calcEarthRateNED(Vector3f &omega, float latitude); |
|
|
|
|
|
|
|
|
|
void calcvelNED(float velNED[3], float gpsCourse, float gpsGndSpd, float gpsVelD); |
|
|
|
|
void eul2quat(float quat[4], float eul[3]); |
|
|
|
|
|
|
|
|
|
void calcposNE(float posNE[2], float lat, float lon, float latRef, float lonRef); |
|
|
|
|
void quat2eul(float eul[3],float quat[4]); |
|
|
|
|
|
|
|
|
|
void calcllh(float posNED[3], float lat, float lon, float hgt, float latRef, float lonRef, float hgtRef); |
|
|
|
|
void calcvelNED(float velNED[3], float gpsCourse, float gpsGndSpd, float gpsVelD); |
|
|
|
|
|
|
|
|
|
void OnGroundCheck(); |
|
|
|
|
void calcposNE(float lat, float lon); |
|
|
|
|
|
|
|
|
|
void CovarianceInit(); |
|
|
|
|
void calcllh(float &lat, float &lon, float &hgt); |
|
|
|
|
|
|
|
|
|
void readIMUData(); |
|
|
|
|
void OnGroundCheck(); |
|
|
|
|
|
|
|
|
|
void readGpsData(); |
|
|
|
|
void CovarianceInit(); |
|
|
|
|
|
|
|
|
|
void readHgtData(); |
|
|
|
|
void readIMUData(); |
|
|
|
|
|
|
|
|
|
void readMagData(); |
|
|
|
|
void readGpsData(); |
|
|
|
|
|
|
|
|
|
void readAirSpdData(); |
|
|
|
|
void readHgtData(); |
|
|
|
|
|
|
|
|
|
void SelectVelPosFusion(); |
|
|
|
|
|
|
|
|
|
void SelectHgtFusion(); |
|
|
|
|
void readMagData(); |
|
|
|
|
|
|
|
|
|
void SelectTasFusion(); |
|
|
|
|
void readAirSpdData(); |
|
|
|
|
|
|
|
|
|
void SelectMagFusion(); |
|
|
|
|
void SelectVelPosFusion(); |
|
|
|
|
|
|
|
|
|
#define deg2rad 0.017453292 |
|
|
|
|
#define rad2deg 57.295780 |
|
|
|
|
#define pi 3.141592657 |
|
|
|
|
#define earthRate 0.000072921 |
|
|
|
|
#define earthRadius 6378145.0 |
|
|
|
|
static float KH[24][24]; // intermediate result used for covariance updates
|
|
|
|
|
static float KHP[24][24]; // intermediate result used for covariance updates
|
|
|
|
|
static float P[24][24]; // covariance matrix
|
|
|
|
|
static float Kfusion[24]; // Kalman gains
|
|
|
|
|
static float states[24]; // state matrix
|
|
|
|
|
static float storedStates[24][50]; // state vectors stored for the last 50 time steps
|
|
|
|
|
static uint32_t statetimeStamp[50]; // time stamp for each state vector stored
|
|
|
|
|
static Vector3f correctedDelAng; // delta angles about the xyz body axes corrected for errors (rad)
|
|
|
|
|
static Vector3f correctedDelVel; // delta velocities along the XYZ body axes corrected for errors (m/s)
|
|
|
|
|
static Vector3f summedDelAng; // summed delta angles about the xyz body axes corrected for errors (rad)
|
|
|
|
|
static Vector3f summedDelVel; // summed delta velocities along the XYZ body axes corrected for errors (m/s)
|
|
|
|
|
static float accNavMag; // magnitude of navigation accel (- used to adjust GPS obs variance (m/s^2)
|
|
|
|
|
static Vector3f earthRateNED; // earths angular rate vector in NED (rad/s)
|
|
|
|
|
static Vector3f dVelIMU; // delta velocity vector in XYZ body axes measured by the IMU (m/s)
|
|
|
|
|
static Vector3f dAngIMU; // delta angle vector in XYZ body axes measured by the IMU (rad)
|
|
|
|
|
static float dtIMU; // time lapsed since the last IMU measurement or covariance update (sec)
|
|
|
|
|
static float dt; // time lapsed since last covariance prediction
|
|
|
|
|
static bool onGround; // boolean true when the flight vehicle is on the ground (not flying)
|
|
|
|
|
const bool useAirspeed = true; // boolean true if airspeed data is being used
|
|
|
|
|
const bool useCompass = true; // boolean true if magnetometer data is being used
|
|
|
|
|
const uint8_t fusionModeGPS = 0; // 0 = GPS outputs 3D velocity, 1 = GPS outputs 2D velocity, 2 = GPS outputs no velocity
|
|
|
|
|
static float innovVelPos[6]; // innovation output
|
|
|
|
|
static float varInnovVelPos[6]; // innovation variance output
|
|
|
|
|
static bool fuseVelData; // this boolean causes the posNE and velNED obs to be fused
|
|
|
|
|
static bool fusePosData; // this boolean causes the posNE and velNED obs to be fused
|
|
|
|
|
static bool fuseHgtData; // this boolean causes the hgtMea obs to be fused
|
|
|
|
|
static float velNED[3]; // North, East, Down velocity obs (m/s)
|
|
|
|
|
static float posNE[2]; // North, East position obs (m)
|
|
|
|
|
static float hgtMea; // measured height (m)
|
|
|
|
|
static float posNED[3]; // North, East Down position (m)
|
|
|
|
|
static float statesAtVelTime[24]; // States at the effective measurement time for posNE and velNED measurements
|
|
|
|
|
static float statesAtPosTime[24]; // States at the effective measurement time for posNE and velNED measurements
|
|
|
|
|
static float statesAtHgtTime[24]; // States at the effective measurement time for the hgtMea measurement
|
|
|
|
|
static float innovMag[3]; // innovation output
|
|
|
|
|
static float varInnovMag[3]; // innovation variance output
|
|
|
|
|
static bool fuseMagData; // boolean true when magnetometer data is to be fused
|
|
|
|
|
static Vector3f magData; // magnetometer flux radings in X,Y,Z body axes
|
|
|
|
|
static float statesAtMagMeasTime[24]; // filter satates at the effective measurement time
|
|
|
|
|
static float innovVtas; // innovation output
|
|
|
|
|
static float varInnovVtas; // innovation variance output
|
|
|
|
|
static bool fuseVtasData; // boolean true when airspeed data is to be fused
|
|
|
|
|
static float VtasMeas; // true airspeed measurement (m/s)
|
|
|
|
|
static float statesAtVtasMeasTime[24]; // filter states at the effective measurement time
|
|
|
|
|
static float latRef; // WGS-84 latitude of reference point (rad)
|
|
|
|
|
static float lonRef; // WGS-84 longitude of reference point (rad)
|
|
|
|
|
static float hgtRef; // WGS-84 height of reference point (m)
|
|
|
|
|
static Vector3f magBias; // states representing magnetometer bias vector in XYZ body axes
|
|
|
|
|
static float eulerEst[3]; // Euler angles calculated from filter states
|
|
|
|
|
static float eulerDif[3]; // difference between Euler angle estimated by EKF and the AHRS solution
|
|
|
|
|
const float covTimeStepMax = 0.07; // maximum time allowed between covariance predictions
|
|
|
|
|
const float covDelAngMax = 0.05; // maximum delta angle between covariance predictions
|
|
|
|
|
static bool covPredStep; // boolean set to true when a covariance prediction step has been performed
|
|
|
|
|
static bool magFuseStep; // boolean set to true when magnetometer fusion steps are being performed
|
|
|
|
|
static bool posVelFuseStep; // boolean set to true when position and velocity fusion is being performed
|
|
|
|
|
static bool tasFuseStep; // boolean set to true when airspeed fusion is being performed
|
|
|
|
|
static uint32_t TASmsecPrev; // time stamp of last TAS fusion step
|
|
|
|
|
const uint32_t TASmsecTgt = 250; // target interval between TAS fusion steps
|
|
|
|
|
static uint32_t MAGmsecPrev; // time stamp of last compass fusion step
|
|
|
|
|
const uint32_t MAGmsecTgt = 200; // target interval between compass fusion steps
|
|
|
|
|
static uint32_t HGTmsecPrev; // time stamp of last height measurement fusion step
|
|
|
|
|
const uint32_t HGTmsecTgt = 200; // target interval between height measurement fusion steps
|
|
|
|
|
|
|
|
|
|
// Estimated time delays (msec)
|
|
|
|
|
const uint32_t msecVelDelay = 200; |
|
|
|
|
const uint32_t msecPosDelay = 200; |
|
|
|
|
const uint32_t msecHgtDelay = 350; |
|
|
|
|
const uint32_t msecMagDelay = 30; |
|
|
|
|
const uint32_t msecTasDelay = 200; |
|
|
|
|
|
|
|
|
|
// IMU input data variables
|
|
|
|
|
static float imuIn; |
|
|
|
|
static float tempImu[8]; |
|
|
|
|
static uint32_t IMUmsec; |
|
|
|
|
|
|
|
|
|
// GPS input data variables
|
|
|
|
|
static float gpsCourse; |
|
|
|
|
static float gpsGndSpd; |
|
|
|
|
static float gpsVelD; |
|
|
|
|
static float gpsLat; |
|
|
|
|
static float gpsLon; |
|
|
|
|
static float gpsHgt; |
|
|
|
|
static bool newDataGps; |
|
|
|
|
static uint8_t GPSstatus; |
|
|
|
|
|
|
|
|
|
// Magnetometer input data variables
|
|
|
|
|
static float magIn; |
|
|
|
|
static float tempMag[8]; |
|
|
|
|
static float tempMagPrev[8]; |
|
|
|
|
static uint32_t MAGframe; |
|
|
|
|
static uint32_t MAGtime; |
|
|
|
|
static uint32_t lastMAGtime; |
|
|
|
|
static bool newDataMag; |
|
|
|
|
|
|
|
|
|
// AHRS input data variables
|
|
|
|
|
static float ahrsEul[3]; |
|
|
|
|
void SelectHgtFusion(); |
|
|
|
|
|
|
|
|
|
void SelectTasFusion(); |
|
|
|
|
|
|
|
|
|
void SelectMagFusion(); |
|
|
|
|
|
|
|
|
|
bool statesInitialised; |
|
|
|
|
|
|
|
|
|
float KH[24][24]; // intermediate result used for covariance updates
|
|
|
|
|
float KHP[24][24]; // intermediate result used for covariance updates
|
|
|
|
|
float P[24][24]; // covariance matrix
|
|
|
|
|
float states[24]; // state matrix
|
|
|
|
|
float storedStates[24][50]; // state vectors stored for the last 50 time steps
|
|
|
|
|
uint32_t statetimeStamp[50]; // time stamp for each state vector stored
|
|
|
|
|
Vector3f correctedDelAng; // delta angles about the xyz body axes corrected for errors (rad)
|
|
|
|
|
Vector3f correctedDelVel; // delta velocities along the XYZ body axes corrected for errors (m/s)
|
|
|
|
|
Vector3f summedDelAng; // summed delta angles about the xyz body axes corrected for errors (rad)
|
|
|
|
|
Vector3f summedDelVel; // summed delta velocities along the XYZ body axes corrected for errors (m/s)
|
|
|
|
|
float accNavMag; // magnitude of navigation accel (- used to adjust GPS obs variance (m/s^2)
|
|
|
|
|
Vector3f earthRateNED; // earths angular rate vector in NED (rad/s)
|
|
|
|
|
Vector3f dVelIMU; // delta velocity vector in XYZ body axes measured by the IMU (m/s)
|
|
|
|
|
Vector3f dAngIMU; // delta angle vector in XYZ body axes measured by the IMU (rad)
|
|
|
|
|
float dtIMU; // time lapsed since the last IMU measurement or covariance update (sec)
|
|
|
|
|
float dt; // time lapsed since last covariance prediction
|
|
|
|
|
bool onGround; // boolean true when the flight vehicle is on the ground (not flying)
|
|
|
|
|
const bool useAirspeed; // boolean true if airspeed data is being used
|
|
|
|
|
const bool useCompass; // boolean true if magnetometer data is being used
|
|
|
|
|
const uint8_t fusionModeGPS; // 0 = GPS outputs 3D velocity, 1 = GPS outputs 2D velocity, 2 = GPS outputs no velocity
|
|
|
|
|
float innovVelPos[6]; // innovation output
|
|
|
|
|
float varInnovVelPos[6]; // innovation variance output
|
|
|
|
|
bool fuseVelData; // this boolean causes the posNE and velNED obs to be fused
|
|
|
|
|
bool fusePosData; // this boolean causes the posNE and velNED obs to be fused
|
|
|
|
|
bool fuseHgtData; // this boolean causes the hgtMea obs to be fused
|
|
|
|
|
float velNED[3]; // North, East, Down velocity obs (m/s)
|
|
|
|
|
float posNE[2]; // North, East position obs (m)
|
|
|
|
|
float hgtMea; // measured height (m)
|
|
|
|
|
float posNED[3]; // North, East Down position (m)
|
|
|
|
|
float statesAtVelTime[24]; // States at the effective measurement time for posNE and velNED measurements
|
|
|
|
|
float statesAtPosTime[24]; // States at the effective measurement time for posNE and velNED measurements
|
|
|
|
|
float statesAtHgtTime[24]; // States at the effective measurement time for the hgtMea measurement
|
|
|
|
|
float innovMag[3]; // innovation output
|
|
|
|
|
float varInnovMag[3]; // innovation variance output
|
|
|
|
|
bool fuseMagData; // boolean true when magnetometer data is to be fused
|
|
|
|
|
Vector3f magData; // magnetometer flux radings in X,Y,Z body axes
|
|
|
|
|
float statesAtMagMeasTime[24]; // filter satates at the effective measurement time
|
|
|
|
|
float innovVtas; // innovation output
|
|
|
|
|
float varInnovVtas; // innovation variance output
|
|
|
|
|
bool fuseVtasData; // boolean true when airspeed data is to be fused
|
|
|
|
|
float VtasMeas; // true airspeed measurement (m/s)
|
|
|
|
|
float statesAtVtasMeasTime[24]; // filter states at the effective measurement time
|
|
|
|
|
float latRef; // WGS-84 latitude of reference point (rad)
|
|
|
|
|
float lonRef; // WGS-84 longitude of reference point (rad)
|
|
|
|
|
float hgtRef; // WGS-84 height of reference point (m)
|
|
|
|
|
Vector3f magBias; // states representing magnetometer bias vector in XYZ body axes
|
|
|
|
|
float eulerEst[3]; // Euler angles calculated from filter states
|
|
|
|
|
float eulerDif[3]; // difference between Euler angle estimated by EKF and the AHRS solution
|
|
|
|
|
const float covTimeStepMax; // maximum time allowed between covariance predictions
|
|
|
|
|
const float covDelAngMax; // maximum delta angle between covariance predictions
|
|
|
|
|
bool covPredStep; // boolean set to true when a covariance prediction step has been performed
|
|
|
|
|
bool magFuseStep; // boolean set to true when magnetometer fusion steps are being performed
|
|
|
|
|
bool posVelFuseStep; // boolean set to true when position and velocity fusion is being performed
|
|
|
|
|
bool tasFuseStep; // boolean set to true when airspeed fusion is being performed
|
|
|
|
|
uint32_t TASmsecPrev; // time stamp of last TAS fusion step
|
|
|
|
|
const uint32_t TASmsecTgt; // target interval between TAS fusion steps
|
|
|
|
|
uint32_t MAGmsecPrev; // time stamp of last compass fusion step
|
|
|
|
|
const uint32_t MAGmsecTgt; // target interval between compass fusion steps
|
|
|
|
|
uint32_t HGTmsecPrev; // time stamp of last height measurement fusion step
|
|
|
|
|
const uint32_t HGTmsecTgt; // target interval between height measurement fusion steps
|
|
|
|
|
|
|
|
|
|
// Estimated time delays (msec)
|
|
|
|
|
const uint32_t msecVelDelay; |
|
|
|
|
const uint32_t msecPosDelay; |
|
|
|
|
const uint32_t msecHgtDelay; |
|
|
|
|
const uint32_t msecMagDelay; |
|
|
|
|
const uint32_t msecTasDelay; |
|
|
|
|
|
|
|
|
|
// IMU input data variables
|
|
|
|
|
float imuIn; |
|
|
|
|
float tempImu[8]; |
|
|
|
|
uint32_t IMUmsec; |
|
|
|
|
|
|
|
|
|
// GPS input data variables
|
|
|
|
|
float gpsCourse; |
|
|
|
|
float gpsGndSpd; |
|
|
|
|
float gpsLat; |
|
|
|
|
float gpsLon; |
|
|
|
|
float gpsHgt; |
|
|
|
|
bool newDataGps; |
|
|
|
|
|
|
|
|
|
// Magnetometer input data variables
|
|
|
|
|
float magIn; |
|
|
|
|
float tempMag[8]; |
|
|
|
|
float tempMagPrev[8]; |
|
|
|
|
uint32_t MAGframe; |
|
|
|
|
uint32_t MAGtime; |
|
|
|
|
uint32_t lastMAGtime; |
|
|
|
|
bool newDataMag; |
|
|
|
|
|
|
|
|
|
// AHRS input data variables
|
|
|
|
|
float ahrsEul[3]; |
|
|
|
|
|
|
|
|
|
uint32_t velFailTime; |
|
|
|
|
uint32_t posFailTime; |
|
|
|
|
uint32_t hgtFailTime; |
|
|
|
|
|
|
|
|
|
Vector3f prevDelAng; |
|
|
|
|
Matrix3f prevTnb; |
|
|
|
|
|
|
|
|
|
struct { |
|
|
|
|
float q0; |
|
|
|
|
float q1; |
|
|
|
|
float q2; |
|
|
|
|
float q3; |
|
|
|
|
float magN; |
|
|
|
|
float magE; |
|
|
|
|
float magD; |
|
|
|
|
float magXbias; |
|
|
|
|
float magYbias; |
|
|
|
|
float magZbias; |
|
|
|
|
uint8_t obsIndex; |
|
|
|
|
Matrix3f DCM; |
|
|
|
|
Vector3f MagPred; |
|
|
|
|
float R_MAG; |
|
|
|
|
float SH_MAG[9]; |
|
|
|
|
} mag_state; |
|
|
|
|
|
|
|
|
|
uint8_t storeIndex; |
|
|
|
|
|
|
|
|
|
uint32_t lastIMUusec; |
|
|
|
|
uint32_t lastFixTime; |
|
|
|
|
|
|
|
|
|
}; |
|
|
|
|
#endif // AP_NavEKF
|
|
|
|
|
|
|
|
|
|