Browse Source

AP_Compass: use AP_Math inverse library

master
Siddharth Bharat Purohit 10 years ago committed by Andrew Tridgell
parent
commit
f5fbc2fac1
  1. 597
      libraries/AP_Compass/CompassCalibrator.cpp
  2. 7
      libraries/AP_Compass/CompassCalibrator.h

597
libraries/AP_Compass/CompassCalibrator.cpp

@ -406,11 +406,11 @@ void CompassCalibrator::run_sphere_fit() @@ -406,11 +406,11 @@ void CompassCalibrator::run_sphere_fit()
JTJ2[i*COMPASS_CAL_NUM_SPHERE_PARAMS+i] += _sphere_lambda/lma_damping;
}
if(!inverse4x4(JTJ, JTJ)) {
if(!inverse(JTJ, JTJ, 4)) {
return;
}
if(!inverse4x4(JTJ2, JTJ2)) {
if(!inverse(JTJ2, JTJ2, 4)) {
return;
}
@ -521,11 +521,11 @@ void CompassCalibrator::run_ellipsoid_fit() @@ -521,11 +521,11 @@ void CompassCalibrator::run_ellipsoid_fit()
JTJ2[i*COMPASS_CAL_NUM_ELLIPSOID_PARAMS+i] += _ellipsoid_lambda/lma_damping;
}
if(!inverse9x9(JTJ, JTJ)) {
if(!inverse(JTJ, JTJ, 9)) {
return;
}
if(!inverse9x9(JTJ2, JTJ2)) {
if(!inverse(JTJ2, JTJ2, 9)) {
return;
}
@ -556,595 +556,6 @@ void CompassCalibrator::run_ellipsoid_fit() @@ -556,595 +556,6 @@ void CompassCalibrator::run_ellipsoid_fit()
}
}
//////////////////////////////////////////////////////////
////////////////////// MATH HELPERS //////////////////////
//////////////////////////////////////////////////////////
bool CompassCalibrator::inverse9x9(const float x[81], float y[81])
{
if(fabsf(det9x9(x)) < 1.0e-20f) {
return false;
}
float A[81];
int32_t i0;
int8_t ipiv[9];
int32_t j;
int32_t c;
int32_t pipk;
int32_t ix;
float smax;
int32_t k;
float s;
int32_t jy;
int32_t ijA;
int8_t p[9];
for (i0 = 0; i0 < 81; i0++) {
A[i0] = x[i0];
y[i0] = 0.0;
}
for (i0 = 0; i0 < 9; i0++) {
ipiv[i0] = (int8_t)(1 + i0);
}
for (j = 0; j < 8; j++) {
c = j * 10;
pipk = 0;
ix = c;
smax = fabs(A[c]);
for (k = 2; k <= 9 - j; k++) {
ix++;
s = fabs(A[ix]);
if (s > smax) {
pipk = k - 1;
smax = s;
}
}
if (A[c + pipk] != 0.0) {
if (pipk != 0) {
ipiv[j] = (int8_t)((j + pipk) + 1);
ix = j;
pipk += j;
for (k = 0; k < 9; k++) {
smax = A[ix];
A[ix] = A[pipk];
A[pipk] = smax;
ix += 9;
pipk += 9;
}
}
i0 = (c - j) + 9;
for (jy = c + 1; jy + 1 <= i0; jy++) {
A[jy] /= A[c];
}
}
pipk = c;
jy = c + 9;
for (k = 1; k <= 8 - j; k++) {
smax = A[jy];
if (A[jy] != 0.0) {
ix = c + 1;
i0 = (pipk - j) + 18;
for (ijA = 10 + pipk; ijA + 1 <= i0; ijA++) {
A[ijA] += A[ix] * -smax;
ix++;
}
}
jy += 9;
pipk += 9;
}
}
for (i0 = 0; i0 < 9; i0++) {
p[i0] = (int8_t)(1 + i0);
}
for (k = 0; k < 8; k++) {
if (ipiv[k] > 1 + k) {
pipk = p[ipiv[k] - 1];
p[ipiv[k] - 1] = p[k];
p[k] = (int8_t)pipk;
}
}
for (k = 0; k < 9; k++) {
y[k + 9 * (p[k] - 1)] = 1.0;
for (j = k; j + 1 < 10; j++) {
if (y[j + 9 * (p[k] - 1)] != 0.0) {
for (jy = j + 1; jy + 1 < 10; jy++) {
y[jy + 9 * (p[k] - 1)] -= y[j + 9 * (p[k] - 1)] * A[jy + 9 * j];
}
}
}
}
for (j = 0; j < 9; j++) {
c = 9 * j;
for (k = 8; k > -1; k += -1) {
pipk = 9 * k;
if (y[k + c] != 0.0) {
y[k + c] /= A[k + pipk];
for (jy = 0; jy + 1 <= k; jy++) {
y[jy + c] -= y[k + c] * A[jy + pipk];
}
}
}
}
return true;
}
bool CompassCalibrator::inverse6x6(const float x[], float y[])
{
if(fabsf(det6x6(x)) < 1.0e-20f) {
return false;
}
float A[36];
int32_t i0;
int32_t ipiv[6];
int32_t j;
int32_t c;
int32_t pipk;
int32_t ix;
float smax;
int32_t k;
float s;
int32_t jy;
int32_t ijA;
int32_t p[6];
for (i0 = 0; i0 < 36; i0++) {
A[i0] = x[i0];
y[i0] = 0.0f;
}
for (i0 = 0; i0 < 6; i0++) {
ipiv[i0] = (int32_t)(1 + i0);
}
for (j = 0; j < 5; j++) {
c = j * 7;
pipk = 0;
ix = c;
smax = fabsf(A[c]);
for (k = 2; k <= 6 - j; k++) {
ix++;
s = fabsf(A[ix]);
if (s > smax) {
pipk = k - 1;
smax = s;
}
}
if (A[c + pipk] != 0.0f) {
if (pipk != 0) {
ipiv[j] = (int32_t)((j + pipk) + 1);
ix = j;
pipk += j;
for (k = 0; k < 6; k++) {
smax = A[ix];
A[ix] = A[pipk];
A[pipk] = smax;
ix += 6;
pipk += 6;
}
}
i0 = (c - j) + 6;
for (jy = c + 1; jy + 1 <= i0; jy++) {
A[jy] /= A[c];
}
}
pipk = c;
jy = c + 6;
for (k = 1; k <= 5 - j; k++) {
smax = A[jy];
if (A[jy] != 0.0f) {
ix = c + 1;
i0 = (pipk - j) + 12;
for (ijA = 7 + pipk; ijA + 1 <= i0; ijA++) {
A[ijA] += A[ix] * -smax;
ix++;
}
}
jy += 6;
pipk += 6;
}
}
for (i0 = 0; i0 < 6; i0++) {
p[i0] = (int32_t)(1 + i0);
}
for (k = 0; k < 5; k++) {
if (ipiv[k] > 1 + k) {
pipk = p[ipiv[k] - 1];
p[ipiv[k] - 1] = p[k];
p[k] = (int32_t)pipk;
}
}
for (k = 0; k < 6; k++) {
y[k + 6 * (p[k] - 1)] = 1.0;
for (j = k; j + 1 < 7; j++) {
if (y[j + 6 * (p[k] - 1)] != 0.0f) {
for (jy = j + 1; jy + 1 < 7; jy++) {
y[jy + 6 * (p[k] - 1)] -= y[j + 6 * (p[k] - 1)] * A[jy + 6 * j];
}
}
}
}
for (j = 0; j < 6; j++) {
c = 6 * j;
for (k = 5; k > -1; k += -1) {
pipk = 6 * k;
if (y[k + c] != 0.0f) {
y[k + c] /= A[k + pipk];
for (jy = 0; jy + 1 <= k; jy++) {
y[jy + c] -= y[k + c] * A[jy + pipk];
}
}
}
}
return true;
}
bool CompassCalibrator::inverse3x3(float m[], float invOut[])
{
float inv[9];
// computes the inverse of a matrix m
float det = m[0] * (m[4] * m[8] - m[7] * m[5]) -
m[1] * (m[3] * m[8] - m[5] * m[6]) +
m[2] * (m[3] * m[7] - m[4] * m[6]);
if(fabsf(det) < 1.0e-20f){
return false;
}
float invdet = 1 / det;
inv[0] = (m[4] * m[8] - m[7] * m[5]) * invdet;
inv[1] = (m[2] * m[7] - m[1] * m[8]) * invdet;
inv[2] = (m[1] * m[5] - m[2] * m[4]) * invdet;
inv[3] = (m[5] * m[6] - m[5] * m[8]) * invdet;
inv[4] = (m[0] * m[8] - m[2] * m[6]) * invdet;
inv[5] = (m[3] * m[2] - m[0] * m[5]) * invdet;
inv[6] = (m[3] * m[7] - m[6] * m[4]) * invdet;
inv[7] = (m[6] * m[1] - m[0] * m[7]) * invdet;
inv[8] = (m[0] * m[4] - m[3] * m[1]) * invdet;
for(uint8_t i = 0; i < 9; i++){
invOut[i] = inv[i];
}
return true;
}
/*
* matrix inverse code only for 4x4 square matrix copied from
* gluInvertMatrix implementation in
* opengl for 4x4 matrices.
*
* @param m, input 4x4 matrix
* @param invOut, Output inverted 4x4 matrix
* @returns false = matrix is Singular, true = matrix inversion successful
* Known Issues/ Possible Enhancements:
* -Will need a different implementation for more number
* of parameters like in the case of addition of soft
* iron calibration
*/
bool CompassCalibrator::inverse4x4(float m[],float invOut[])
{
float inv[16], det;
uint8_t i;
inv[0] = m[5] * m[10] * m[15] -
m[5] * m[11] * m[14] -
m[9] * m[6] * m[15] +
m[9] * m[7] * m[14] +
m[13] * m[6] * m[11] -
m[13] * m[7] * m[10];
inv[4] = -m[4] * m[10] * m[15] +
m[4] * m[11] * m[14] +
m[8] * m[6] * m[15] -
m[8] * m[7] * m[14] -
m[12] * m[6] * m[11] +
m[12] * m[7] * m[10];
inv[8] = m[4] * m[9] * m[15] -
m[4] * m[11] * m[13] -
m[8] * m[5] * m[15] +
m[8] * m[7] * m[13] +
m[12] * m[5] * m[11] -
m[12] * m[7] * m[9];
inv[12] = -m[4] * m[9] * m[14] +
m[4] * m[10] * m[13] +
m[8] * m[5] * m[14] -
m[8] * m[6] * m[13] -
m[12] * m[5] * m[10] +
m[12] * m[6] * m[9];
inv[1] = -m[1] * m[10] * m[15] +
m[1] * m[11] * m[14] +
m[9] * m[2] * m[15] -
m[9] * m[3] * m[14] -
m[13] * m[2] * m[11] +
m[13] * m[3] * m[10];
inv[5] = m[0] * m[10] * m[15] -
m[0] * m[11] * m[14] -
m[8] * m[2] * m[15] +
m[8] * m[3] * m[14] +
m[12] * m[2] * m[11] -
m[12] * m[3] * m[10];
inv[9] = -m[0] * m[9] * m[15] +
m[0] * m[11] * m[13] +
m[8] * m[1] * m[15] -
m[8] * m[3] * m[13] -
m[12] * m[1] * m[11] +
m[12] * m[3] * m[9];
inv[13] = m[0] * m[9] * m[14] -
m[0] * m[10] * m[13] -
m[8] * m[1] * m[14] +
m[8] * m[2] * m[13] +
m[12] * m[1] * m[10] -
m[12] * m[2] * m[9];
inv[2] = m[1] * m[6] * m[15] -
m[1] * m[7] * m[14] -
m[5] * m[2] * m[15] +
m[5] * m[3] * m[14] +
m[13] * m[2] * m[7] -
m[13] * m[3] * m[6];
inv[6] = -m[0] * m[6] * m[15] +
m[0] * m[7] * m[14] +
m[4] * m[2] * m[15] -
m[4] * m[3] * m[14] -
m[12] * m[2] * m[7] +
m[12] * m[3] * m[6];
inv[10] = m[0] * m[5] * m[15] -
m[0] * m[7] * m[13] -
m[4] * m[1] * m[15] +
m[4] * m[3] * m[13] +
m[12] * m[1] * m[7] -
m[12] * m[3] * m[5];
inv[14] = -m[0] * m[5] * m[14] +
m[0] * m[6] * m[13] +
m[4] * m[1] * m[14] -
m[4] * m[2] * m[13] -
m[12] * m[1] * m[6] +
m[12] * m[2] * m[5];
inv[3] = -m[1] * m[6] * m[11] +
m[1] * m[7] * m[10] +
m[5] * m[2] * m[11] -
m[5] * m[3] * m[10] -
m[9] * m[2] * m[7] +
m[9] * m[3] * m[6];
inv[7] = m[0] * m[6] * m[11] -
m[0] * m[7] * m[10] -
m[4] * m[2] * m[11] +
m[4] * m[3] * m[10] +
m[8] * m[2] * m[7] -
m[8] * m[3] * m[6];
inv[11] = -m[0] * m[5] * m[11] +
m[0] * m[7] * m[9] +
m[4] * m[1] * m[11] -
m[4] * m[3] * m[9] -
m[8] * m[1] * m[7] +
m[8] * m[3] * m[5];
inv[15] = m[0] * m[5] * m[10] -
m[0] * m[6] * m[9] -
m[4] * m[1] * m[10] +
m[4] * m[2] * m[9] +
m[8] * m[1] * m[6] -
m[8] * m[2] * m[5];
det = m[0] * inv[0] + m[1] * inv[4] + m[2] * inv[8] + m[3] * inv[12];
if(fabsf(det) < 1.0e-20f){
return false;
}
det = 1.0f / det;
for (i = 0; i < 16; i++)
invOut[i] = inv[i] * det;
return true;
}
float CompassCalibrator::det6x6(const float C[36])
{
float f;
float A[36];
int8_t ipiv[6];
int32_t i0;
int32_t j;
int32_t c;
int32_t iy;
int32_t ix;
float smax;
int32_t jy;
float s;
int32_t b_j;
int32_t ijA;
bool isodd;
memcpy(&A[0], &C[0], 36U * sizeof(float));
for (i0 = 0; i0 < 6; i0++) {
ipiv[i0] = (int8_t)(1 + i0);
}
for (j = 0; j < 5; j++) {
c = j * 7;
iy = 0;
ix = c;
smax = fabsf(A[c]);
for (jy = 2; jy <= 6 - j; jy++) {
ix++;
s = fabsf(A[ix]);
if (s > smax) {
iy = jy - 1;
smax = s;
}
}
if (A[c + iy] != 0.0f) {
if (iy != 0) {
ipiv[j] = (int8_t)((j + iy) + 1);
ix = j;
iy += j;
for (jy = 0; jy < 6; jy++) {
smax = A[ix];
A[ix] = A[iy];
A[iy] = smax;
ix += 6;
iy += 6;
}
}
i0 = (c - j) + 6;
for (iy = c + 1; iy + 1 <= i0; iy++) {
A[iy] /= A[c];
}
}
iy = c;
jy = c + 6;
for (b_j = 1; b_j <= 5 - j; b_j++) {
smax = A[jy];
if (A[jy] != 0.0f) {
ix = c + 1;
i0 = (iy - j) + 12;
for (ijA = 7 + iy; ijA + 1 <= i0; ijA++) {
A[ijA] += A[ix] * -smax;
ix++;
}
}
jy += 6;
iy += 6;
}
}
f = A[0];
isodd = false;
for (jy = 0; jy < 5; jy++) {
f *= A[(jy + 6 * (1 + jy)) + 1];
if (ipiv[jy] > 1 + jy) {
isodd = !isodd;
}
}
if (isodd) {
f = -f;
}
return f;
}
float CompassCalibrator::det9x9(const float C[81])
{
float f;
float A[81];
int8_t ipiv[9];
int32_t i0;
int32_t j;
int32_t c;
int32_t iy;
int32_t ix;
float smax;
int32_t jy;
float s;
int32_t b_j;
int32_t ijA;
bool isodd;
memcpy(&A[0], &C[0], 81U * sizeof(float));
for (i0 = 0; i0 < 9; i0++) {
ipiv[i0] = (int8_t)(1 + i0);
}
for (j = 0; j < 8; j++) {
c = j * 10;
iy = 0;
ix = c;
smax = fabs(A[c]);
for (jy = 2; jy <= 9 - j; jy++) {
ix++;
s = fabs(A[ix]);
if (s > smax) {
iy = jy - 1;
smax = s;
}
}
if (A[c + iy] != 0.0) {
if (iy != 0) {
ipiv[j] = (int8_t)((j + iy) + 1);
ix = j;
iy += j;
for (jy = 0; jy < 9; jy++) {
smax = A[ix];
A[ix] = A[iy];
A[iy] = smax;
ix += 9;
iy += 9;
}
}
i0 = (c - j) + 9;
for (iy = c + 1; iy + 1 <= i0; iy++) {
A[iy] /= A[c];
}
}
iy = c;
jy = c + 9;
for (b_j = 1; b_j <= 8 - j; b_j++) {
smax = A[jy];
if (A[jy] != 0.0) {
ix = c + 1;
i0 = (iy - j) + 18;
for (ijA = 10 + iy; ijA + 1 <= i0; ijA++) {
A[ijA] += A[ix] * -smax;
ix++;
}
}
jy += 9;
iy += 9;
}
}
f = A[0];
isodd = false;
for (jy = 0; jy < 8; jy++) {
f *= A[(jy + 9 * (1 + jy)) + 1];
if (ipiv[jy] > 1 + jy) {
isodd = !isodd;
}
}
if (isodd) {
f = -f;
}
return f;
}
uint16_t CompassCalibrator::get_random(void)
{

7
libraries/AP_Compass/CompassCalibrator.h

@ -120,12 +120,5 @@ private: @@ -120,12 +120,5 @@ private:
void calc_ellipsoid_jacob(const Vector3f& sample, const param_t& params, float* ret) const;
void run_ellipsoid_fit();
// math helpers
bool inverse9x9(const float m[],float invOut[]);
float det9x9(const float m[]);
bool inverse6x6(const float m[],float invOut[]);
float det6x6(const float m[]);
bool inverse4x4(float m[],float invOut[]);
bool inverse3x3(float m[], float invOut[]);
uint16_t get_random();
};

Loading…
Cancel
Save