|
|
|
@ -1,263 +1,230 @@
@@ -1,263 +1,230 @@
|
|
|
|
|
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
|
/*
|
|
|
|
|
* matrix3.cpp |
|
|
|
|
* Copyright (C) Siddharth Bharat Purohit, 3DRobotics Inc. 2015 |
|
|
|
|
* |
|
|
|
|
* This file is free software: you can redistribute it and/or modify it |
|
|
|
|
* under the terms of the GNU General Public License as published by the |
|
|
|
|
* Free Software Foundation, either version 3 of the License, or |
|
|
|
|
* (at your option) any later version. |
|
|
|
|
* |
|
|
|
|
* This file is distributed in the hope that it will be useful, but |
|
|
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of |
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
|
|
|
|
* See the GNU General Public License for more details. |
|
|
|
|
* |
|
|
|
|
* You should have received a copy of the GNU General Public License along |
|
|
|
|
* with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
|
*/ |
|
|
|
|
#pragma GCC optimize("O3") |
|
|
|
|
|
|
|
|
|
#include <AP_Math/AP_Math.h> |
|
|
|
|
#include <AP_HAL/AP_HAL.h> |
|
|
|
|
|
|
|
|
|
#include <stdio.h> |
|
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* generic matrix inverse code |
|
|
|
|
* Does matrix multiplication of two regular/square matrices |
|
|
|
|
* |
|
|
|
|
* @param x, input nxn matrix |
|
|
|
|
* @param n, dimension of square matrix |
|
|
|
|
* @returns determinant of square matrix |
|
|
|
|
* Known Issues/ Possible Enhancements: |
|
|
|
|
* -more efficient method should be available, following is code generated from matlab |
|
|
|
|
* @param A, Matrix A |
|
|
|
|
* @param B, Matrix B |
|
|
|
|
* @param n, dimemsion of square matrices |
|
|
|
|
* @returns multiplied matrix i.e. A*B |
|
|
|
|
*/ |
|
|
|
|
float detnxn(const float C[],const uint8_t n) |
|
|
|
|
|
|
|
|
|
float* mat_mul(float *A, float *B, uint8_t n) |
|
|
|
|
{ |
|
|
|
|
float f; |
|
|
|
|
float *A = new float[n*n]; |
|
|
|
|
if( A == NULL) { |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
int8_t *ipiv = new int8_t[n]; |
|
|
|
|
if(ipiv == NULL) { |
|
|
|
|
delete[] A; |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
int32_t i0; |
|
|
|
|
int32_t j; |
|
|
|
|
int32_t c; |
|
|
|
|
int32_t iy; |
|
|
|
|
int32_t ix; |
|
|
|
|
float smax; |
|
|
|
|
int32_t jy; |
|
|
|
|
float s; |
|
|
|
|
int32_t b_j; |
|
|
|
|
int32_t ijA; |
|
|
|
|
bool isodd; |
|
|
|
|
|
|
|
|
|
memcpy(&A[0], &C[0], n*n * sizeof(float)); |
|
|
|
|
for (i0 = 0; i0 < n; i0++) { |
|
|
|
|
ipiv[i0] = (int8_t)(1 + i0); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for (j = 0; j < n-1; j++) { |
|
|
|
|
c = j * (n+1); |
|
|
|
|
iy = 0; |
|
|
|
|
ix = c; |
|
|
|
|
smax = fabs(A[c]); |
|
|
|
|
for (jy = 2; jy <= n - 1 - j; jy++) { |
|
|
|
|
ix++; |
|
|
|
|
s = fabs(A[ix]); |
|
|
|
|
if (s > smax) { |
|
|
|
|
iy = jy - 1; |
|
|
|
|
smax = s; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
float* ret = new float[n*n]; |
|
|
|
|
memset(ret,0.0f,n*n*sizeof(float)); |
|
|
|
|
|
|
|
|
|
if (!is_zero(A[c + iy])) { |
|
|
|
|
if (iy != 0) { |
|
|
|
|
ipiv[j] = (int8_t)((j + iy) + 1); |
|
|
|
|
ix = j; |
|
|
|
|
iy += j; |
|
|
|
|
for (jy = 0; jy < n; jy++) { |
|
|
|
|
smax = A[ix]; |
|
|
|
|
A[ix] = A[iy]; |
|
|
|
|
A[iy] = smax; |
|
|
|
|
ix += n; |
|
|
|
|
iy += n; |
|
|
|
|
for(uint8_t i = 0; i < n; i++) { |
|
|
|
|
for(uint8_t j = 0; j < n; j++) { |
|
|
|
|
for(uint8_t k = 0;k < n; k++) { |
|
|
|
|
ret[i*n + j] += A[i*n + k] * B[k*n + j]; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
i0 = (c - j) + n; |
|
|
|
|
for (iy = c + 1; iy + 1 <= i0; iy++) { |
|
|
|
|
A[iy] /= A[c]; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
return ret; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
iy = c; |
|
|
|
|
jy = c + n; |
|
|
|
|
for (b_j = 1; b_j <= n - 1 - j; b_j++) { |
|
|
|
|
smax = A[jy]; |
|
|
|
|
if (!is_zero(A[jy])) { |
|
|
|
|
ix = c + 1; |
|
|
|
|
i0 = (iy - j) + (2*n); |
|
|
|
|
for (ijA = n + 1 + iy; ijA + 1 <= i0; ijA++) { |
|
|
|
|
A[ijA] += A[ix] * -smax; |
|
|
|
|
ix++; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
jy += n; |
|
|
|
|
iy += n; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
f = A[0]; |
|
|
|
|
isodd = false; |
|
|
|
|
for (jy = 0; jy < (n-1); jy++) { |
|
|
|
|
f *= A[(jy + n * (1 + jy)) + 1]; |
|
|
|
|
if (ipiv[jy] > 1 + jy) { |
|
|
|
|
isodd = !isodd; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (isodd) { |
|
|
|
|
f = -f; |
|
|
|
|
} |
|
|
|
|
delete[] A; |
|
|
|
|
delete[] ipiv; |
|
|
|
|
return f; |
|
|
|
|
inline void swap(float &a, float &b) |
|
|
|
|
{ |
|
|
|
|
float c; |
|
|
|
|
c = a; |
|
|
|
|
a = b; |
|
|
|
|
b = c; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* generic matrix inverse code |
|
|
|
|
* calculates pivot matrix such that all the larger elements in the row are on diagonal |
|
|
|
|
* |
|
|
|
|
* @param x, input nxn matrix |
|
|
|
|
* @param y, Output inverted nxn matrix |
|
|
|
|
* @param n, dimension of square matrix |
|
|
|
|
* @returns false = matrix is Singular, true = matrix inversion successful |
|
|
|
|
* Known Issues/ Possible Enhancements: |
|
|
|
|
* -more efficient method should be available, following is code generated from matlab |
|
|
|
|
* @param A, input matrix matrix |
|
|
|
|
* @param pivot |
|
|
|
|
* @param n, dimenstion of square matrix |
|
|
|
|
* @returns false = matrix is Singular or non positive definite, true = matrix inversion successful |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
bool inversenxn(const float x[], float y[], const uint8_t n) |
|
|
|
|
void mat_pivot(float* A, float* pivot, uint8_t n) |
|
|
|
|
{ |
|
|
|
|
if (is_zero(detnxn(x,n))) { |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
float *A = new float[n*n]; |
|
|
|
|
if( A == NULL ){ |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
int32_t i0; |
|
|
|
|
int32_t *ipiv = new int32_t[n]; |
|
|
|
|
if(ipiv == NULL) { |
|
|
|
|
delete[] A; |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
int32_t j; |
|
|
|
|
int32_t c; |
|
|
|
|
int32_t pipk; |
|
|
|
|
int32_t ix; |
|
|
|
|
float smax; |
|
|
|
|
int32_t k; |
|
|
|
|
float s; |
|
|
|
|
int32_t jy; |
|
|
|
|
int32_t ijA; |
|
|
|
|
int32_t *p = new int32_t[n]; |
|
|
|
|
if(p == NULL) { |
|
|
|
|
delete[] A; |
|
|
|
|
delete[] ipiv; |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for (i0 = 0; i0 < n*n; i0++) { |
|
|
|
|
A[i0] = x[i0]; |
|
|
|
|
y[i0] = 0.0f; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for (i0 = 0; i0 < n; i0++) { |
|
|
|
|
ipiv[i0] = (int32_t)(1 + i0); |
|
|
|
|
for(uint8_t i = 0;i<n;i++){ |
|
|
|
|
for(uint8_t j=0;j<n;j++) { |
|
|
|
|
pivot[i*n+j] = (i==j); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for (j = 0; j < (n-1); j++) { |
|
|
|
|
c = j * (n+1); |
|
|
|
|
pipk = 0; |
|
|
|
|
ix = c; |
|
|
|
|
smax = fabsf(A[c]); |
|
|
|
|
for (k = 2; k <= (n-1) - j; k++) { |
|
|
|
|
ix++; |
|
|
|
|
s = fabsf(A[ix]); |
|
|
|
|
if (s > smax) { |
|
|
|
|
pipk = k - 1; |
|
|
|
|
smax = s; |
|
|
|
|
for(uint8_t i = 0;i < n; i++) { |
|
|
|
|
uint8_t max_j = i; |
|
|
|
|
for(uint8_t j=i;j<n;j++){ |
|
|
|
|
if(fabsf(A[j*n + i]) > fabsf(A[max_j*n + i])) { |
|
|
|
|
max_j = j; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (!is_zero(A[c + pipk])) { |
|
|
|
|
if (pipk != 0) { |
|
|
|
|
ipiv[j] = (int32_t)((j + pipk) + 1); |
|
|
|
|
ix = j; |
|
|
|
|
pipk += j; |
|
|
|
|
for (k = 0; k < n; k++) { |
|
|
|
|
smax = A[ix]; |
|
|
|
|
A[ix] = A[pipk]; |
|
|
|
|
A[pipk] = smax; |
|
|
|
|
ix += n; |
|
|
|
|
pipk += n; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
i0 = (c - j) + n; |
|
|
|
|
for (jy = c + 1; jy + 1 <= i0; jy++) { |
|
|
|
|
A[jy] /= A[c]; |
|
|
|
|
if(max_j != i) { |
|
|
|
|
for(uint8_t k = 0; k < n; k++) { |
|
|
|
|
swap(pivot[i*n + k], pivot[max_j*n + k]); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
pipk = c; |
|
|
|
|
jy = c + n; |
|
|
|
|
for (k = 1; k <= (n-1) - j; k++) { |
|
|
|
|
smax = A[jy]; |
|
|
|
|
if (!is_zero(A[jy])) { |
|
|
|
|
ix = c + 1; |
|
|
|
|
i0 = (pipk - j) + (2*n); |
|
|
|
|
for (ijA = (n+1) + pipk; ijA + 1 <= i0; ijA++) { |
|
|
|
|
A[ijA] += A[ix] * -smax; |
|
|
|
|
ix++; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
/*
|
|
|
|
|
* calculates matrix inverse of Lower trangular matrix using forward substitution |
|
|
|
|
* |
|
|
|
|
* @param L, lower triangular matrix |
|
|
|
|
* @param out, Output inverted lower triangular matrix |
|
|
|
|
* @param n, dimension of matrix |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
jy += n; |
|
|
|
|
pipk += n; |
|
|
|
|
void mat_forward_sub(float *L, float *out, uint8_t n) |
|
|
|
|
{ |
|
|
|
|
// Forward substitution solve LY = I
|
|
|
|
|
for(int i = 0; i < n; i++) { |
|
|
|
|
out[i*n + i] = 1/L[i*n + i]; |
|
|
|
|
for (int j = i+1; j < n; j++) { |
|
|
|
|
for (int k = i; k < j; k++) { |
|
|
|
|
out[j*n + i] -= L[j*n + k] * out[k*n + i]; |
|
|
|
|
} |
|
|
|
|
out[j*n + i] /= L[j*n + j]; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for (i0 = 0; i0 < n; i0++) { |
|
|
|
|
p[i0] = (int32_t)(1 + i0); |
|
|
|
|
} |
|
|
|
|
/*
|
|
|
|
|
* calculates matrix inverse of Upper trangular matrix using backward substitution |
|
|
|
|
* |
|
|
|
|
* @param U, upper triangular matrix |
|
|
|
|
* @param out, Output inverted upper triangular matrix |
|
|
|
|
* @param n, dimension of matrix |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
for (k = 0; k < (n-1); k++) { |
|
|
|
|
if (ipiv[k] > 1 + k) { |
|
|
|
|
pipk = p[ipiv[k] - 1]; |
|
|
|
|
p[ipiv[k] - 1] = p[k]; |
|
|
|
|
p[k] = (int32_t)pipk; |
|
|
|
|
void mat_back_sub(float *U, float *out, uint8_t n) |
|
|
|
|
{ |
|
|
|
|
// Backward Substitution solve UY = I
|
|
|
|
|
for(int i = n-1; i >= 0; i--) { |
|
|
|
|
out[i*n + i] = 1/U[i*n + i]; |
|
|
|
|
for (int j = i - 1; j >= 0; j--) { |
|
|
|
|
for (int k = i; k > j; k--) { |
|
|
|
|
out[j*n + i] -= U[j*n + k] * out[k*n + i]; |
|
|
|
|
} |
|
|
|
|
out[j*n + i] /= U[j*n + j]; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Decomposes square matrix into Lower and Upper triangular matrices such that |
|
|
|
|
* A*P = L*U, where P is the pivot matrix |
|
|
|
|
* ref: http://rosettacode.org/wiki/LU_decomposition
|
|
|
|
|
* @param U, upper triangular matrix |
|
|
|
|
* @param out, Output inverted upper triangular matrix |
|
|
|
|
* @param n, dimension of matrix |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
for (k = 0; k < n; k++) { |
|
|
|
|
y[k + n * (p[k] - 1)] = 1.0; |
|
|
|
|
for (j = k; j + 1 < (n+1); j++) { |
|
|
|
|
if (!is_zero(y[j + n * (p[k] - 1)])) { |
|
|
|
|
for (jy = j + 1; jy + 1 < (n+1); jy++) { |
|
|
|
|
y[jy + n * (p[k] - 1)] -= y[j + n * (p[k] - 1)] * A[jy + n * j]; |
|
|
|
|
void mat_LU_decompose(float* A, float* L, float* U, float *P, uint8_t n) |
|
|
|
|
{ |
|
|
|
|
memset(L,0,n*n*sizeof(float)); |
|
|
|
|
memset(U,0,n*n*sizeof(float)); |
|
|
|
|
memset(P,0,n*n*sizeof(float)); |
|
|
|
|
mat_pivot(A,P,n); |
|
|
|
|
|
|
|
|
|
float *APrime = mat_mul(P,A,n); |
|
|
|
|
for(uint8_t i = 0; i < n; i++) { |
|
|
|
|
L[i*n + i] = 1; |
|
|
|
|
} |
|
|
|
|
for(uint8_t i = 0; i < n; i++) { |
|
|
|
|
for(uint8_t j = 0; j < n; j++) { |
|
|
|
|
if(j <= i) {
|
|
|
|
|
U[j*n + i] = APrime[j*n + i]; |
|
|
|
|
for(uint8_t k = 0; k < j; k++) { |
|
|
|
|
U[j*n + i] -= L[j*n + k] * U[k*n + i];
|
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
if(j >= i) { |
|
|
|
|
L[j*n + i] = APrime[j*n + i]; |
|
|
|
|
for(uint8_t k = 0; k < i; k++) { |
|
|
|
|
L[j*n + i] -= L[j*n + k] * U[k*n + i];
|
|
|
|
|
} |
|
|
|
|
L[j*n + i] /= U[i*n + i]; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
free(APrime); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for (j = 0; j < n; j++) { |
|
|
|
|
c = n * j; |
|
|
|
|
for (k = (n-1); k > -1; k += -1) { |
|
|
|
|
pipk = n * k; |
|
|
|
|
if (!is_zero(y[k + c])) { |
|
|
|
|
y[k + c] /= A[k + pipk]; |
|
|
|
|
for (jy = 0; jy + 1 <= k; jy++) { |
|
|
|
|
y[jy + c] -= y[k + c] * A[jy + pipk]; |
|
|
|
|
} |
|
|
|
|
/*
|
|
|
|
|
* matrix inverse code for any square matrix using LU decomposition |
|
|
|
|
* inv = inv(U)*inv(L)*P, where L and U are triagular matrices and P the pivot matrix |
|
|
|
|
* ref: http://www.cl.cam.ac.uk/teaching/1314/NumMethods/supporting/mcmaster-kiruba-ludecomp.pdf
|
|
|
|
|
* @param m, input 4x4 matrix |
|
|
|
|
* @param inv, Output inverted 4x4 matrix |
|
|
|
|
* @param n, dimension of square matrix |
|
|
|
|
* @returns false = matrix is Singular, true = matrix inversion successful |
|
|
|
|
*/ |
|
|
|
|
bool mat_inverse(float* A, float* inv, uint8_t n) |
|
|
|
|
{ |
|
|
|
|
float *L, *U, *P; |
|
|
|
|
bool ret = true; |
|
|
|
|
L = new float[n*n]; |
|
|
|
|
U = new float[n*n]; |
|
|
|
|
P = new float[n*n]; |
|
|
|
|
mat_LU_decompose(A,L,U,P,n); |
|
|
|
|
|
|
|
|
|
float *L_inv = new float[n*n]; |
|
|
|
|
float *U_inv = new float[n*n]; |
|
|
|
|
|
|
|
|
|
memset(L_inv,0,n*n*sizeof(float)); |
|
|
|
|
mat_forward_sub(L,L_inv,n); |
|
|
|
|
|
|
|
|
|
memset(U_inv,0,n*n*sizeof(float)); |
|
|
|
|
mat_back_sub(U,U_inv,n); |
|
|
|
|
|
|
|
|
|
// decomposed matrices no loger required
|
|
|
|
|
free(L); |
|
|
|
|
free(U); |
|
|
|
|
|
|
|
|
|
float *inv_unpivoted = mat_mul(U_inv,L_inv,n); |
|
|
|
|
float *inv_pivoted = mat_mul(inv_unpivoted, P, n); |
|
|
|
|
|
|
|
|
|
//check sanity of results
|
|
|
|
|
for(uint8_t i = 0; i < n; i++) { |
|
|
|
|
for(uint8_t j = 0; j < n; j++) { |
|
|
|
|
if(isnan(inv_pivoted[i*n+j]) || isinf(inv_pivoted[i*n+j])){ |
|
|
|
|
ret = false; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
delete[] A; |
|
|
|
|
delete[] ipiv; |
|
|
|
|
delete[] p; |
|
|
|
|
return true; |
|
|
|
|
memcpy(inv,inv_pivoted,n*n*sizeof(float)); |
|
|
|
|
|
|
|
|
|
//free memory
|
|
|
|
|
free(inv_pivoted); |
|
|
|
|
free(inv_unpivoted); |
|
|
|
|
free(P); |
|
|
|
|
return ret; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* matrix inverse code only for 3x3 square matrix |
|
|
|
|
* fast matrix inverse code only for 3x3 square matrix |
|
|
|
|
* |
|
|
|
|
* @param m, input 4x4 matrix |
|
|
|
|
* @param invOut, Output inverted 4x4 matrix |
|
|
|
@ -280,7 +247,7 @@ bool inverse3x3(float m[], float invOut[])
@@ -280,7 +247,7 @@ bool inverse3x3(float m[], float invOut[])
|
|
|
|
|
inv[0] = (m[4] * m[8] - m[7] * m[5]) * invdet; |
|
|
|
|
inv[1] = (m[2] * m[7] - m[1] * m[8]) * invdet; |
|
|
|
|
inv[2] = (m[1] * m[5] - m[2] * m[4]) * invdet; |
|
|
|
|
inv[3] = (m[5] * m[6] - m[5] * m[8]) * invdet; |
|
|
|
|
inv[3] = (m[5] * m[6] - m[3] * m[8]) * invdet; |
|
|
|
|
inv[4] = (m[0] * m[8] - m[2] * m[6]) * invdet; |
|
|
|
|
inv[5] = (m[3] * m[2] - m[0] * m[5]) * invdet; |
|
|
|
|
inv[6] = (m[3] * m[7] - m[6] * m[4]) * invdet; |
|
|
|
@ -295,9 +262,8 @@ bool inverse3x3(float m[], float invOut[])
@@ -295,9 +262,8 @@ bool inverse3x3(float m[], float invOut[])
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* matrix inverse code only for 4x4 square matrix copied from |
|
|
|
|
* gluInvertMatrix implementation in |
|
|
|
|
* opengl for 4x4 matrices. |
|
|
|
|
* fast matrix inverse code only for 4x4 square matrix copied from |
|
|
|
|
* gluInvertMatrix implementation in opengl for 4x4 matrices. |
|
|
|
|
* |
|
|
|
|
* @param m, input 4x4 matrix |
|
|
|
|
* @param invOut, Output inverted 4x4 matrix |
|
|
|
@ -447,6 +413,6 @@ bool inverse(float x[], float y[], uint16_t dim)
@@ -447,6 +413,6 @@ bool inverse(float x[], float y[], uint16_t dim)
|
|
|
|
|
switch(dim){ |
|
|
|
|
case 3: return inverse3x3(x,y); |
|
|
|
|
case 4: return inverse4x4(x,y); |
|
|
|
|
default: return inversenxn(x,y,dim); |
|
|
|
|
default: return mat_inverse(x,y,dim); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|