#include "Copter.h" /* * mode_chase.cpp - chase another mavlink-enabled vehicle by system id * * TODO: set ROI yaw mode / point camera at target * TODO: stick control to move around on sphere * TODO: stick control to change sphere diameter * TODO: "channel 7 option" to lock onto "pointed at" target * TODO: do better in terms of loitering around the moving point; may need a PID? Maybe use loiter controller somehow? * TODO: extrapolate target vehicle position using its velocity and acceleration * TODO: ensure AC_AVOID_ENABLED is true because we rely on it velocity limiting functions */ #if 0 #define Debug(fmt, args ...) do {::fprintf(stderr, "%s:%d: " fmt "\n", __FUNCTION__, __LINE__, ## args); hal.scheduler->delay(1); } while(0) #else #define Debug(fmt, args ...) #endif // initialise avoid_adsb controller bool Copter::ModeChase::init(const bool ignore_checks) { // re-use guided mode return Copter::ModeGuided::init(ignore_checks); } bool Copter::ModeChase::set_velocity(const Vector3f& velocity_neu) { // check flight mode if (_copter.flightmode != &_copter.mode_chase) { return false; } return true; } void Copter::ModeChase::run() { // if not auto armed or motor interlock not enabled set throttle to zero and exit immediately if (!motors->armed() || !ap.auto_armed || !motors->get_interlock()) { zero_throttle_and_relax_ac(); return; } // re-use guided mode's velocity controller // Note: this is safe from interference from GCSs and companion computer's whose guided mode // position and velocity requests will be ignored while the vehicle is not in guided mode // variables to be sent to velocity controller Vector3f desired_velocity; bool use_yaw = false; float yaw_cd = 0.0f; Vector3f dist_vec; // vector to lead vehicle Vector3f dist_vec_offs; // vector to lead vehicle + offset Vector3f vel_of_target; // velocity of lead vehicle if (g2.follow.get_target_dist_and_vel_ned(dist_vec, dist_vec_offs, vel_of_target)) { // debug Debug("dist to veh: %f %f %f", (double)dist_vec.x, (double)dist_vec.y, (double)dist_vec.z); // convert dist_vec_offs to cm in NEU const Vector3f dist_vec_offs_neu(dist_vec_offs.x * 100.0f, dist_vec_offs.y * 100.0f, -dist_vec_offs.z * 100.0f); // calculate desired velocity vector in cm/s in NEU desired_velocity.x = (vel_of_target.x * 100.0f) + (dist_vec_offs_neu.x * pos_control->get_pos_xy_p().kP()); desired_velocity.y = (vel_of_target.y * 100.0f) + dist_vec_offs_neu.y * pos_control->get_pos_xy_p().kP(); desired_velocity.z = (-vel_of_target.z * 100.0f) + dist_vec_offs_neu.z * pos_control->get_pos_z_p().kP(); // scale desired velocity to stay within horizontal speed limit float desired_speed_xy = safe_sqrt(sq(desired_velocity.x) + sq(desired_velocity.y)); if (!is_zero(desired_speed_xy) && (desired_speed_xy > pos_control->get_speed_xy())) { const float scalar_xy = pos_control->get_speed_xy() / desired_speed_xy; desired_velocity.x *= scalar_xy; desired_velocity.y *= scalar_xy; desired_speed_xy = pos_control->get_speed_xy(); } // limit desired velocity to be between maximum climb and descent rates desired_velocity.z = constrain_float(desired_velocity.z, -fabsf(pos_control->get_speed_down()), pos_control->get_speed_up()); // unit vector towards target position Vector3f dir_to_target_neu = dist_vec_offs_neu; const float dir_to_target_neu_len = dir_to_target_neu.length(); if (!is_zero(dir_to_target_neu_len)) { dir_to_target_neu /= dir_to_target_neu_len; } // create horizontal desired velocity vector (required for slow down calculations) Vector2f desired_velocity_xy(desired_velocity.x, desired_velocity.y); // create horizontal unit vector towards target (required for slow down calculations) Vector2f dir_to_target_xy(desired_velocity_xy.x, desired_velocity_xy.y); if (!dir_to_target_xy.is_zero()) { dir_to_target_xy.normalize(); } // slow down horizontally as we approach target (use 1/2 of maximum deceleration for gentle slow down) const float dist_to_target_xy = Vector2f(dist_vec_offs_neu.x, dist_vec_offs_neu.y).length(); _copter.avoid.limit_velocity(pos_control->get_pos_xy_p().kP().get(), pos_control->get_accel_xy() / 2.0f, desired_velocity_xy, dir_to_target_xy, dist_to_target_xy, _copter.G_Dt); // limit the horizontal velocity to prevent fence violations _copter.avoid.adjust_velocity(pos_control->get_pos_xy_p().kP().get(), pos_control->get_accel_xy(), desired_velocity_xy, G_Dt); // copy horizontal velocity limits back to 3d vector desired_velocity.x = desired_velocity_xy.x; desired_velocity.y = desired_velocity_xy.y; // limit vertical desired_velocity to slow as we approach target (we use 1/2 of maximum deceleration for gentle slow down) const float des_vel_z_max = _copter.avoid.get_max_speed(pos_control->get_pos_z_p().kP().get(), pos_control->get_accel_z() / 2.0f, fabsf(dist_vec_offs_neu.z), _copter.G_Dt); desired_velocity.z = constrain_float(desired_velocity.z, -des_vel_z_max, des_vel_z_max); // get avoidance adjusted climb rate desired_velocity.z = get_avoidance_adjusted_climbrate(desired_velocity.z); // calculate vehicle heading switch (g2.follow.get_yaw_behave()) { case AP_Follow::YAW_BEHAVE_FACE_LEAD_VEHICLE: { Vector3f dist_vec_xy(dist_vec.x, dist_vec.y, 0.0f); if (dist_vec_xy.length() > 1.0f) { yaw_cd = get_bearing_cd(Vector3f(), dist_vec_xy); use_yaw = true; } break; } case AP_Follow::YAW_BEHAVE_SAME_AS_LEAD_VEHICLE: { float target_hdg = 0.0f;; if (g2.follow.get_target_heading(target_hdg)) { yaw_cd = target_hdg * 100.0f; use_yaw = true; } break; } case AP_Follow::YAW_BEHAVE_DIR_OF_FLIGHT: { Vector3f vel_vec(desired_velocity.x, desired_velocity.y, 0.0f); if (vel_vec.length() > 100.0f) { yaw_cd = get_bearing_cd(Vector3f(), vel_vec); use_yaw = true; } break; } case AP_Follow::YAW_BEHAVE_NONE: default: // do nothing break; } } // re-use guided mode's velocity controller (takes NEU) Copter::ModeGuided::set_velocity(desired_velocity, use_yaw, yaw_cd); Copter::ModeGuided::run(); }