#include "AP_Proximity_Backend.h" #include "AP_Proximity_Boundary_3D.h" /* Constructor. This incorporates initialisation as well. */ AP_Proximity_Boundary_3D::AP_Proximity_Boundary_3D() { // initialise sector edge vector used for building the boundary fence init(); } // initialise the boundary and sector_edge_vector array used for object avoidance // should be called if the sector_middle_deg or _sector_width_deg arrays are changed void AP_Proximity_Boundary_3D::init() { for (uint8_t layer=0; layer < PROXIMITY_NUM_LAYERS; layer++) { for (uint8_t sector=0; sector < PROXIMITY_NUM_SECTORS; sector++) { float angle_rad = ((float)_sector_middle_deg[sector]+(PROXIMITY_SECTOR_WIDTH_DEG/2.0f)); float pitch = ((float)_pitch_middle_deg[layer]); _sector_edge_vector[layer][sector].offset_bearing(angle_rad, pitch, 100.0f); _boundary_points[layer][sector] = _sector_edge_vector[layer][sector] * PROXIMITY_BOUNDARY_DIST_DEFAULT; } } } // returns face corresponding to the provided yaw and (optionally) pitch // pitch is the vertical body-frame angle (in degrees) to the obstacle (0=directly ahead, 90 is above the vehicle?) // yaw is the horizontal body-frame angle (in degrees) to the obstacle (0=directly ahead of the vehicle, 90 is to the right of the vehicle) AP_Proximity_Boundary_3D::Face AP_Proximity_Boundary_3D::get_face(float pitch, float yaw) const { const uint8_t sector = wrap_360(yaw + (PROXIMITY_SECTOR_WIDTH_DEG * 0.5f)) / 45.0f; const float pitch_limited = constrain_float(pitch, -75.0f, 74.9f); const uint8_t layer = (pitch_limited + 75.0f)/PROXIMITY_PITCH_WIDTH_DEG; return Face(layer, sector); } // Set the actual body-frame angle(yaw), pitch, and distance of the detected object. // This method will also mark the sector and layer to be "valid", so this distance can be used for Obstacle Avoidance void AP_Proximity_Boundary_3D::set_face_attributes(Face face, float angle, float pitch, float distance) { if (!face.valid()) { return; } _angle[face.layer][face.sector] = angle; _pitch[face.layer][face.sector] = pitch; _distance[face.layer][face.sector] = distance; _distance_valid[face.layer][face.sector] = true; // update boundary used for simple avoidance update_boundary(face); } // add a distance to the boundary if it is shorter than any other provided distance since the last time the boundary was reset // pitch and yaw are in degrees, distance is in meters void AP_Proximity_Boundary_3D::add_distance(float pitch, float yaw, float distance) { Face face = get_face(pitch, yaw); if (!_distance_valid[face.layer][face.sector] || (distance < _distance[face.layer][face.sector])) { _distance[face.layer][face.sector] = distance; _distance_valid[face.layer][face.sector] = true; } } // update boundary points used for object avoidance based on a single sector and pitch distance changing // the boundary points lie on the line between sectors meaning two boundary points may be updated based on a single sector's distance changing // the boundary point is set to the shortest distance found in the two adjacent sectors, this is a conservative boundary around the vehicle void AP_Proximity_Boundary_3D::update_boundary(const Face face) { // sanity check if (!face.valid()) { return; } const uint8_t layer = face.layer; const uint8_t sector = face.sector; // find adjacent sector (clockwise) uint8_t next_sector = sector + 1; if (next_sector >= PROXIMITY_NUM_SECTORS) { next_sector = 0; } // boundary point lies on the line between the two sectors at the shorter distance found in the two sectors float shortest_distance = PROXIMITY_BOUNDARY_DIST_DEFAULT; if (_distance_valid[layer][sector] && _distance_valid[layer][next_sector]) { shortest_distance = MIN(_distance[layer][sector], _distance[layer][next_sector]); } else if (_distance_valid[layer][sector]) { shortest_distance = _distance[layer][sector]; } else if (_distance_valid[layer][next_sector]) { shortest_distance = _distance[layer][next_sector]; } if (shortest_distance < PROXIMITY_BOUNDARY_DIST_MIN) { shortest_distance = PROXIMITY_BOUNDARY_DIST_MIN; } _boundary_points[layer][sector] = _sector_edge_vector[layer][sector] * shortest_distance; // if the next sector (clockwise) has an invalid distance, set boundary to create a cup like boundary if (!_distance_valid[layer][next_sector]) { _boundary_points[layer][next_sector] = _sector_edge_vector[layer][next_sector] * shortest_distance; } // repeat for edge between sector and previous sector uint8_t prev_sector = (sector == 0) ? PROXIMITY_NUM_SECTORS-1 : sector-1; shortest_distance = PROXIMITY_BOUNDARY_DIST_DEFAULT; if (_distance_valid[layer][prev_sector] && _distance_valid[layer][sector]) { shortest_distance = MIN(_distance[layer][prev_sector], _distance[layer][sector]); } else if (_distance_valid[layer][prev_sector]) { shortest_distance = _distance[layer][prev_sector]; } else if (_distance_valid[layer][sector]) { shortest_distance = _distance[layer][sector]; } _boundary_points[layer][prev_sector] = _sector_edge_vector[layer][prev_sector] * shortest_distance; // if the sector counter-clockwise from the previous sector has an invalid distance, set boundary to create a cup like boundary uint8_t prev_sector_ccw = (prev_sector == 0) ? PROXIMITY_NUM_SECTORS - 1 : prev_sector - 1; if (!_distance_valid[layer][prev_sector_ccw]) { _boundary_points[layer][prev_sector_ccw] = _sector_edge_vector[layer][prev_sector_ccw] * shortest_distance; } } // update middle layer boundary points void AP_Proximity_Boundary_3D::update_middle_boundary() { for (uint8_t sector=0; sector < PROXIMITY_NUM_SECTORS; sector++) { update_boundary(Face(PROXIMITY_MIDDLE_LAYER, sector)); } } // reset boundary. marks all distances as invalid void AP_Proximity_Boundary_3D::reset() { for (uint8_t layer=0; layer < PROXIMITY_NUM_LAYERS; layer++) { for (uint8_t sector=0; sector < PROXIMITY_NUM_SECTORS; sector++) { _distance_valid[layer][sector] = false; } } } // Reset this location, specified by Face object, back to default // i.e Distance is marked as not-valid, and set to a large number. void AP_Proximity_Boundary_3D::reset_face(Face face) { if (!face.valid()) { return; } _distance_valid[face.layer][face.sector] = false; // update simple avoidance boundary update_boundary(face); } // get distance for a face. returns true on success and fills in distance argument with distance in meters bool AP_Proximity_Boundary_3D::get_distance(Face face, float &distance) const { if (!face.valid()) { return false; } if (_distance_valid[face.layer][face.sector]) { distance = _distance[face.layer][face.sector]; return true; } return false; } // get the total number of obstacles // this method iterates through the entire 3-D boundary and checks which layer has at least one valid distance uint8_t AP_Proximity_Boundary_3D::get_obstacle_count() { uint8_t obstacle_count = 0; // reset entire array to false memset(_active_layer, 0, sizeof(_active_layer)); // check if this layer has atleast one valid sector for (uint8_t layer=0; layer= PROXIMITY_NUM_SECTORS) { sector_start = 0; } const Vector3f start = _boundary_points[face.layer][sector_start]; const Vector3f end = _boundary_points[face.layer][sector_end]; vec_to_obstacle = Vector3f::closest_point_between_line_and_point(start, end, Vector3f{0.0f, 0.0f, 0.0f}); } // WARNING: This requires get_obstacle_count() to be called before calling this method // Appropriate layer and sector are found from the passed obstacle_num // This function then draws a line between this sector, and sector + 1 at the given layer // Then returns the closest point on this line from the segment that was passed, in body-frame. // Used by GPS based Simple Avoidance - for "brake mode" float AP_Proximity_Boundary_3D::distance_to_obstacle(uint8_t obstacle_num, const Vector3f& seg_start, const Vector3f& seg_end, Vector3f& closest_point) const { const AP_Proximity_Boundary_3D::Face face = convert_obstacle_num_to_face(obstacle_num); const uint8_t sector_end = face.sector; uint8_t sector_start = face.sector + 1; if (sector_start >= PROXIMITY_NUM_SECTORS) { sector_start = 0; } const Vector3f start = _boundary_points[face.layer][sector_start]; const Vector3f end = _boundary_points[face.layer][sector_end]; return Vector3f::segment_to_segment_dist(seg_start, seg_end, start, end, closest_point); } // get distance and angle to closest object (used for pre-arm check) // returns true on success, false if no valid readings bool AP_Proximity_Boundary_3D::get_closest_object(float& angle_deg, float &distance) const { bool closest_found = false; uint8_t closest_sector = 0; uint8_t closest_layer = 0; // check boundary for shortest distance // only check for middle layers and higher // lower layers might contain ground, which will give false pre-arm failure for (uint8_t layer=PROXIMITY_MIDDLE_LAYER; layer