You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1087 lines
35 KiB
1087 lines
35 KiB
/* |
|
* The MIT License (MIT) |
|
* |
|
* Copyright (c) 2014 Pavel Kirienko |
|
* |
|
* Permission is hereby granted, free of charge, to any person obtaining a copy of |
|
* this software and associated documentation files (the "Software"), to deal in |
|
* the Software without restriction, including without limitation the rights to |
|
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of |
|
* the Software, and to permit persons to whom the Software is furnished to do so, |
|
* subject to the following conditions: |
|
* |
|
* The above copyright notice and this permission notice shall be included in all |
|
* copies or substantial portions of the Software. |
|
* |
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS |
|
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR |
|
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER |
|
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
|
*/ |
|
|
|
/* |
|
* This file is free software: you can redistribute it and/or modify it |
|
* under the terms of the GNU General Public License as published by the |
|
* Free Software Foundation, either version 3 of the License, or |
|
* (at your option) any later version. |
|
* |
|
* This file is distributed in the hope that it will be useful, but |
|
* WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
|
* See the GNU General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU General Public License along |
|
* with this program. If not, see <http://www.gnu.org/licenses/>. |
|
* |
|
* Code by Siddharth Bharat Purohit |
|
*/ |
|
|
|
#include "AP_HAL_ChibiOS.h" |
|
|
|
#if HAL_WITH_UAVCAN |
|
#include <cassert> |
|
#include <cstring> |
|
#include "CANClock.h" |
|
#include "CANInternal.h" |
|
#include "CANSerialRouter.h" |
|
#include <AP_UAVCAN/AP_UAVCAN_SLCAN.h> |
|
#include <AP_Math/AP_Math.h> |
|
# include <hal.h> |
|
|
|
# if defined(STM32H7XX) |
|
#include "CANFDIface.h" |
|
|
|
#define FDCAN1_IT0_IRQHandler STM32_FDCAN1_IT0_HANDLER |
|
#define FDCAN1_IT1_IRQHandler STM32_FDCAN1_IT1_HANDLER |
|
#define FDCAN2_IT0_IRQHandler STM32_FDCAN2_IT0_HANDLER |
|
#define FDCAN2_IT1_IRQHandler STM32_FDCAN2_IT1_HANDLER |
|
|
|
#define FDCAN_FRAME_BUFFER_SIZE 4 // Buffer size for 8 bytes data field |
|
|
|
//Message RAM Allocations in Word lengths |
|
#define MAX_FILTER_LIST_SIZE 80U //80 element Standard Filter List elements or 40 element Extended Filter List |
|
#define FDCAN_NUM_RXFIFO0_SIZE 104U //26 Frames |
|
#define FDCAN_TX_FIFO_BUFFER_SIZE 128U //32 Frames |
|
|
|
#define MESSAGE_RAM_END_ADDR 0x4000B5FC |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
namespace ChibiOS_CAN |
|
{ |
|
namespace |
|
{ |
|
|
|
CanIface* ifaces[UAVCAN_STM32_NUM_IFACES] = { |
|
UAVCAN_NULLPTR |
|
#if UAVCAN_STM32_NUM_IFACES > 1 |
|
, UAVCAN_NULLPTR |
|
#endif |
|
}; |
|
|
|
inline void handleInterrupt(uavcan::uint8_t iface_index, uavcan::uint8_t line_index) |
|
{ |
|
UAVCAN_ASSERT(iface_index < UAVCAN_STM32_NUM_IFACES); |
|
if (ifaces[iface_index] == UAVCAN_NULLPTR) { |
|
//Just reset all the interrupts and return |
|
fdcan::Can[iface_index]->IR = FDCAN_IR_RF0N; |
|
fdcan::Can[iface_index]->IR = FDCAN_IR_RF1N; |
|
fdcan::Can[iface_index]->IR = FDCAN_IR_TEFN; |
|
UAVCAN_ASSERT(0); |
|
return; |
|
} |
|
if (line_index == 0) { |
|
if ((ifaces[iface_index]->can_reg()->IR & FDCAN_IR_RF0N) || |
|
(ifaces[iface_index]->can_reg()->IR & FDCAN_IR_RF0F)) { |
|
ifaces[iface_index]->can_reg()->IR = FDCAN_IR_RF0N | FDCAN_IR_RF0F; |
|
ifaces[iface_index]->handleRxInterrupt(0); |
|
} |
|
if ((ifaces[iface_index]->can_reg()->IR & FDCAN_IR_RF1N) || |
|
(ifaces[iface_index]->can_reg()->IR & FDCAN_IR_RF1F)) { |
|
ifaces[iface_index]->can_reg()->IR = FDCAN_IR_RF1N | FDCAN_IR_RF1F; |
|
ifaces[iface_index]->handleRxInterrupt(1); |
|
} |
|
} else { |
|
if (ifaces[iface_index]->can_reg()->IR & FDCAN_IR_TC) { |
|
ifaces[iface_index]->can_reg()->IR = FDCAN_IR_TC; |
|
uavcan::uint64_t utc_usec = clock::getUtcUSecFromCanInterrupt(); |
|
if (utc_usec > 0) { |
|
utc_usec--; |
|
} |
|
ifaces[iface_index]->handleTxCompleteInterrupt(utc_usec); |
|
} |
|
} |
|
ifaces[iface_index]->pollErrorFlagsFromISR(); |
|
} |
|
|
|
} // namespace |
|
|
|
uint32_t CanIface::FDCANMessageRAMOffset_ = 0; |
|
#if AP_UAVCAN_SLCAN_ENABLED |
|
SLCANRouter CanIface::_slcan_router; |
|
#endif |
|
|
|
CanIface::CanIface(fdcan::CanType* can, BusEvent& update_event, uavcan::uint8_t self_index, |
|
CanRxItem* rx_queue_buffer, uavcan::uint8_t rx_queue_capacity) |
|
: rx_queue_(rx_queue_buffer, rx_queue_capacity) |
|
, can_(can) |
|
, error_cnt_(0) |
|
, served_aborts_cnt_(0) |
|
, update_event_(update_event) |
|
, peak_tx_mailbox_index_(0) |
|
, self_index_(self_index) |
|
, had_activity_(false) |
|
{ |
|
UAVCAN_ASSERT(self_index_ < UAVCAN_STM32_NUM_IFACES); |
|
} |
|
|
|
/* |
|
* CanIface::RxQueue |
|
*/ |
|
void CanIface::RxQueue::registerOverflow() |
|
{ |
|
if (overflow_cnt_ < 0xFFFFFFFF) { |
|
overflow_cnt_++; |
|
} |
|
} |
|
|
|
void CanIface::RxQueue::push(const uavcan::CanFrame& frame, const uint64_t& utc_usec, uavcan::CanIOFlags flags) |
|
{ |
|
buf_[in_].frame = frame; |
|
buf_[in_].utc_usec = utc_usec; |
|
buf_[in_].flags = flags; |
|
in_++; |
|
if (in_ >= capacity_) { |
|
in_ = 0; |
|
} |
|
len_++; |
|
if (len_ > capacity_) { |
|
len_ = capacity_; |
|
registerOverflow(); |
|
out_++; |
|
if (out_ >= capacity_) { |
|
out_ = 0; |
|
} |
|
} |
|
} |
|
|
|
void CanIface::RxQueue::pop(uavcan::CanFrame& out_frame, uavcan::uint64_t& out_utc_usec, uavcan::CanIOFlags& out_flags) |
|
{ |
|
if (len_ > 0) { |
|
out_frame = buf_[out_].frame; |
|
out_utc_usec = buf_[out_].utc_usec; |
|
out_flags = buf_[out_].flags; |
|
out_++; |
|
if (out_ >= capacity_) { |
|
out_ = 0; |
|
} |
|
len_--; |
|
} else { |
|
UAVCAN_ASSERT(0); |
|
} |
|
} |
|
|
|
void CanIface::RxQueue::reset() |
|
{ |
|
in_ = 0; |
|
out_ = 0; |
|
len_ = 0; |
|
overflow_cnt_ = 0; |
|
} |
|
|
|
int CanIface::computeTimings(const uavcan::uint32_t target_bitrate, Timings& out_timings) |
|
{ |
|
if (target_bitrate < 1) { |
|
return -ErrInvalidBitRate; |
|
} |
|
|
|
/* |
|
* Hardware configuration |
|
*/ |
|
const uavcan::uint32_t pclk = STM32_PLL1_Q_CK; |
|
|
|
static const int MaxBS1 = 16; |
|
static const int MaxBS2 = 8; |
|
|
|
/* |
|
* Ref. "Automatic Baudrate Detection in CANopen Networks", U. Koppe, MicroControl GmbH & Co. KG |
|
* CAN in Automation, 2003 |
|
* |
|
* According to the source, optimal quanta per bit are: |
|
* Bitrate Optimal Maximum |
|
* 1000 kbps 8 10 |
|
* 500 kbps 16 17 |
|
* 250 kbps 16 17 |
|
* 125 kbps 16 17 |
|
*/ |
|
const int max_quanta_per_bit = (target_bitrate >= 1000000) ? 10 : 17; |
|
|
|
UAVCAN_ASSERT(max_quanta_per_bit <= (MaxBS1 + MaxBS2)); |
|
|
|
static const int MaxSamplePointLocation = 900; |
|
|
|
/* |
|
* Computing (prescaler * BS): |
|
* BITRATE = 1 / (PRESCALER * (1 / PCLK) * (1 + BS1 + BS2)) -- See the Reference Manual |
|
* BITRATE = PCLK / (PRESCALER * (1 + BS1 + BS2)) -- Simplified |
|
* let: |
|
* BS = 1 + BS1 + BS2 -- Number of time quanta per bit |
|
* PRESCALER_BS = PRESCALER * BS |
|
* ==> |
|
* PRESCALER_BS = PCLK / BITRATE |
|
*/ |
|
const uavcan::uint32_t prescaler_bs = pclk / target_bitrate; |
|
|
|
/* |
|
* Searching for such prescaler value so that the number of quanta per bit is highest. |
|
*/ |
|
uavcan::uint8_t bs1_bs2_sum = uavcan::uint8_t(max_quanta_per_bit - 1); |
|
|
|
while ((prescaler_bs % (1 + bs1_bs2_sum)) != 0) { |
|
if (bs1_bs2_sum <= 2) { |
|
return -ErrInvalidBitRate; // No solution |
|
} |
|
bs1_bs2_sum--; |
|
} |
|
|
|
const uavcan::uint32_t prescaler = prescaler_bs / (1 + bs1_bs2_sum); |
|
if ((prescaler < 1U) || (prescaler > 1024U)) { |
|
return -ErrInvalidBitRate; // No solution |
|
} |
|
|
|
/* |
|
* Now we have a constraint: (BS1 + BS2) == bs1_bs2_sum. |
|
* We need to find the values so that the sample point is as close as possible to the optimal value. |
|
* |
|
* Solve[(1 + bs1)/(1 + bs1 + bs2) == 7/8, bs2] (* Where 7/8 is 0.875, the recommended sample point location *) |
|
* {{bs2 -> (1 + bs1)/7}} |
|
* |
|
* Hence: |
|
* bs2 = (1 + bs1) / 7 |
|
* bs1 = (7 * bs1_bs2_sum - 1) / 8 |
|
* |
|
* Sample point location can be computed as follows: |
|
* Sample point location = (1 + bs1) / (1 + bs1 + bs2) |
|
* |
|
* Since the optimal solution is so close to the maximum, we prepare two solutions, and then pick the best one: |
|
* - With rounding to nearest |
|
* - With rounding to zero |
|
*/ |
|
struct BsPair { |
|
uavcan::uint8_t bs1; |
|
uavcan::uint8_t bs2; |
|
uavcan::uint16_t sample_point_permill; |
|
|
|
BsPair() : |
|
bs1(0), |
|
bs2(0), |
|
sample_point_permill(0) |
|
{ } |
|
|
|
BsPair(uavcan::uint8_t bs1_bs2_sum, uavcan::uint8_t arg_bs1) : |
|
bs1(arg_bs1), |
|
bs2(uavcan::uint8_t(bs1_bs2_sum - bs1)), |
|
sample_point_permill(uavcan::uint16_t(1000 * (1 + bs1) / (1 + bs1 + bs2))) |
|
{ |
|
UAVCAN_ASSERT(bs1_bs2_sum > arg_bs1); |
|
} |
|
|
|
bool isValid() const |
|
{ |
|
return (bs1 >= 1) && (bs1 <= MaxBS1) && (bs2 >= 1) && (bs2 <= MaxBS2); |
|
} |
|
}; |
|
|
|
// First attempt with rounding to nearest |
|
BsPair solution(bs1_bs2_sum, uavcan::uint8_t(((7 * bs1_bs2_sum - 1) + 4) / 8)); |
|
|
|
if (solution.sample_point_permill > MaxSamplePointLocation) { |
|
// Second attempt with rounding to zero |
|
solution = BsPair(bs1_bs2_sum, uavcan::uint8_t((7 * bs1_bs2_sum - 1) / 8)); |
|
} |
|
|
|
/* |
|
* Final validation |
|
* Helpful Python: |
|
* def sample_point_from_btr(x): |
|
* assert 0b0011110010000000111111000000000 & x == 0 |
|
* ts2,ts1,brp = (x>>20)&7, (x>>16)&15, x&511 |
|
* return (1+ts1+1)/(1+ts1+1+ts2+1) |
|
* |
|
*/ |
|
if ((target_bitrate != (pclk / (prescaler * (1 + solution.bs1 + solution.bs2)))) || !solution.isValid()) { |
|
UAVCAN_ASSERT(0); |
|
return -ErrLogic; |
|
} |
|
|
|
UAVCAN_STM32_LOG("Timings: quanta/bit: %d, sample point location: %.1f%%", |
|
int(1 + solution.bs1 + solution.bs2), float(solution.sample_point_permill) / 10.F); |
|
|
|
out_timings.prescaler = uavcan::uint16_t(prescaler - 1U); |
|
out_timings.sjw = 0; // Which means one |
|
out_timings.bs1 = uavcan::uint8_t(solution.bs1 - 1); |
|
out_timings.bs2 = uavcan::uint8_t(solution.bs2 - 1); |
|
return 0; |
|
} |
|
|
|
uavcan::int16_t CanIface::send(const uavcan::CanFrame& frame, uavcan::MonotonicTime tx_deadline, |
|
uavcan::CanIOFlags flags) |
|
{ |
|
if (frame.isErrorFrame() || frame.dlc > 8) { |
|
return -ErrUnsupportedFrame; |
|
} |
|
|
|
/* |
|
* Normally we should perform the same check as in @ref canAcceptNewTxFrame(), because |
|
* it is possible that the highest-priority frame between select() and send() could have been |
|
* replaced with a lower priority one due to TX timeout. But we don't do this check because: |
|
* |
|
* - It is a highly unlikely scenario. |
|
* |
|
* - Frames do not timeout on a properly functioning bus. Since frames do not timeout, the new |
|
* frame can only have higher priority, which doesn't break the logic. |
|
* |
|
* - If high-priority frames are timing out in the TX queue, there's probably a lot of other |
|
* issues to take care of before this one becomes relevant. |
|
* |
|
* - It takes CPU time. Not just CPU time, but critical section time, which is expensive. |
|
*/ |
|
CriticalSectionLocker lock; |
|
|
|
/* |
|
* Seeking for an empty slot |
|
*/ |
|
uavcan::uint8_t index; |
|
|
|
if ((can_->TXFQS & FDCAN_TXFQS_TFQF) != 0) { |
|
return false; //we don't have free space |
|
} |
|
index = ((can_->TXFQS & FDCAN_TXFQS_TFQPI) >> FDCAN_TXFQS_TFQPI_Pos); |
|
|
|
// Copy Frame to RAM |
|
// Calculate Tx element address |
|
uint32_t* buffer = (uint32_t *)(MessageRam_.TxFIFOQSA + (index * FDCAN_FRAME_BUFFER_SIZE * 4)); |
|
|
|
//Setup Frame ID |
|
if (frame.isExtended()) { |
|
buffer[0] = (fdcan::IDE | frame.id); |
|
} else { |
|
buffer[0] = (frame.id << 18); |
|
} |
|
if (frame.isRemoteTransmissionRequest()) { |
|
buffer[0] |= fdcan::RTR; |
|
} |
|
//Write Data Length Code, and Message Marker |
|
buffer[1] = frame.dlc << 16 | index << 24; |
|
|
|
// Write Frame to the message RAM |
|
buffer[2] = (uavcan::uint32_t(frame.data[3]) << 24) | |
|
(uavcan::uint32_t(frame.data[2]) << 16) | |
|
(uavcan::uint32_t(frame.data[1]) << 8) | |
|
(uavcan::uint32_t(frame.data[0]) << 0); |
|
buffer[3] = (uavcan::uint32_t(frame.data[7]) << 24) | |
|
(uavcan::uint32_t(frame.data[6]) << 16) | |
|
(uavcan::uint32_t(frame.data[5]) << 8) | |
|
(uavcan::uint32_t(frame.data[4]) << 0); |
|
//Set Add Request |
|
can_->TXBAR = (1 << index); |
|
|
|
//Registering the pending transmission so we can track its deadline and loopback it as needed |
|
pending_tx_[index].deadline = tx_deadline; |
|
pending_tx_[index].frame = frame; |
|
pending_tx_[index].loopback = (flags & uavcan::CanIOFlagLoopback) != 0; |
|
pending_tx_[index].abort_on_error = (flags & uavcan::CanIOFlagAbortOnError) != 0; |
|
pending_tx_[index].index = index; |
|
return 1; |
|
} |
|
|
|
uavcan::int16_t CanIface::receive(uavcan::CanFrame& out_frame, uavcan::MonotonicTime& out_ts_monotonic, |
|
uavcan::UtcTime& out_ts_utc, uavcan::CanIOFlags& out_flags) |
|
{ |
|
out_ts_monotonic = clock::getMonotonic(); // High precision is not required for monotonic timestamps |
|
uavcan::uint64_t utc_usec = 0; |
|
{ |
|
CriticalSectionLocker lock; |
|
if (rx_queue_.getLength() == 0) { |
|
return 0; |
|
} |
|
rx_queue_.pop(out_frame, utc_usec, out_flags); |
|
} |
|
out_ts_utc = uavcan::UtcTime::fromUSec(utc_usec); |
|
return 1; |
|
} |
|
|
|
uavcan::int16_t CanIface::configureFilters(const uavcan::CanFilterConfig* filter_configs, |
|
uavcan::uint16_t num_configs) |
|
{ |
|
uint32_t num_extid = 0, num_stdid = 0; |
|
uint32_t total_available_list_size = MAX_FILTER_LIST_SIZE; |
|
uint32_t* filter_ptr; |
|
//count number of frames of each type |
|
for (uint8_t i = 0; i < num_configs; i++) { |
|
const uavcan::CanFilterConfig* const cfg = filter_configs + i; |
|
if ((cfg->id & uavcan::CanFrame::FlagEFF) || !(cfg->mask & uavcan::CanFrame::FlagEFF)) { |
|
num_extid++; |
|
} else { |
|
num_stdid++; |
|
} |
|
} |
|
|
|
CriticalSectionLocker lock; |
|
can_->CCCR |= FDCAN_CCCR_INIT; // Request init |
|
while ((can_->CCCR & FDCAN_CCCR_INIT) == 0) {} |
|
can_->CCCR |= FDCAN_CCCR_CCE; //Enable Config change |
|
|
|
//Allocate Message RAM for Standard ID Filter List |
|
if (num_stdid == 0) { //No Frame with Standard ID is to be accepted |
|
can_->GFC |= 0x2; //Reject All Standard ID Frames |
|
} else if ((num_stdid < total_available_list_size) && (num_stdid <= 128)) { |
|
can_->SIDFC = (FDCANMessageRAMOffset_ << 2) | (num_stdid << 16); |
|
MessageRam_.StandardFilterSA = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U); |
|
FDCANMessageRAMOffset_ += num_stdid; |
|
total_available_list_size -= num_stdid; |
|
can_->GFC |= (0x3U << 4); //Reject non matching Standard frames |
|
} else { //The List is too big, return fail |
|
can_->CCCR &= ~FDCAN_CCCR_INIT; // Leave init mode |
|
return -ErrFilterNumConfigs; |
|
} |
|
|
|
if (num_stdid) { |
|
num_stdid = 0; //reset list count |
|
filter_ptr = (uint32_t*)MessageRam_.StandardFilterSA; |
|
//Run through the filter list and setup standard id filter list |
|
for (uint8_t i = 0; i < num_configs; i++) { |
|
uint32_t id = 0; |
|
uint32_t mask = 0; |
|
const uavcan::CanFilterConfig* const cfg = filter_configs + i; |
|
if (!((cfg->id & uavcan::CanFrame::FlagEFF) || !(cfg->mask & uavcan::CanFrame::FlagEFF))) { |
|
id = (cfg->id & uavcan::CanFrame::MaskStdID); // Regular std frames, nothing fancy. |
|
mask = (cfg->mask & 0x7F); |
|
filter_ptr[num_stdid] = 0x2U << 30 | //Classic CAN Filter |
|
0x1U << 27 | //Store in Rx FIFO0 if filter matches |
|
id << 16 | |
|
mask; |
|
num_stdid++; |
|
} |
|
} |
|
} |
|
|
|
//Allocate Message RAM for Extended ID Filter List |
|
if (num_extid == 0) { //No Frame with Extended ID is to be accepted |
|
can_->GFC |= 0x1; //Reject All Extended ID Frames |
|
} else if ((num_extid < (total_available_list_size/2)) && (num_extid <= 64)) { |
|
can_->XIDFC = (FDCANMessageRAMOffset_ << 2) | (num_extid << 16); |
|
MessageRam_.ExtendedFilterSA = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U); |
|
FDCANMessageRAMOffset_ += num_extid*2; |
|
can_->GFC = (0x3U << 2); // Reject non matching Extended frames |
|
} else { //The List is too big, return fail |
|
can_->CCCR &= ~FDCAN_CCCR_INIT; // Leave init mode |
|
return -ErrFilterNumConfigs; |
|
} |
|
|
|
if (num_extid) { |
|
num_extid = 0; |
|
filter_ptr = (uint32_t*)MessageRam_.ExtendedFilterSA; |
|
//Run through the filter list and setup extended id filter list |
|
for (uint8_t i = 0; i < num_configs; i++) { |
|
uint32_t id = 0; |
|
uint32_t mask = 0; |
|
const uavcan::CanFilterConfig* const cfg = filter_configs + i; |
|
if ((cfg->id & uavcan::CanFrame::FlagEFF) || !(cfg->mask & uavcan::CanFrame::FlagEFF)) { |
|
id = (cfg->id & uavcan::CanFrame::MaskExtID); |
|
mask = (cfg->mask & uavcan::CanFrame::MaskExtID); |
|
filter_ptr[num_extid*2] = 0x1U << 29 | id; // Classic CAN Filter |
|
filter_ptr[num_extid*2 + 1] = 0x2U << 30 | mask; //Store in Rx FIFO0 if filter matches |
|
num_extid++; |
|
} |
|
} |
|
} |
|
|
|
MessageRam_.EndAddress = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U); |
|
if (MessageRam_.EndAddress > MESSAGE_RAM_END_ADDR) { |
|
//We are overflowing the limit of Allocated Message RAM |
|
AP_HAL::panic("CANFDIface: Message RAM Overflow!"); |
|
} |
|
|
|
can_->CCCR &= ~FDCAN_CCCR_INIT; // Leave init mode |
|
return 0; |
|
} |
|
|
|
uavcan::uint16_t CanIface::getNumFilters() const |
|
{ |
|
return MAX_FILTER_LIST_SIZE; |
|
} |
|
|
|
int CanIface::init(const uavcan::uint32_t bitrate, const OperatingMode mode) |
|
{ |
|
// Setup FDCAN for configuration mode and disable all interrupts |
|
{ |
|
CriticalSectionLocker lock; |
|
|
|
can_->CCCR &= ~FDCAN_CCCR_CSR; // Exit sleep mode |
|
while ((can_->CCCR & FDCAN_CCCR_CSA) == FDCAN_CCCR_CSA) {} //Wait for wake up ack |
|
can_->CCCR |= FDCAN_CCCR_INIT; // Request init |
|
while ((can_->CCCR & FDCAN_CCCR_INIT) == 0) {} |
|
can_->CCCR |= FDCAN_CCCR_CCE; //Enable Config change |
|
can_->IE = 0; // Disable interrupts while initialization is in progress |
|
} |
|
|
|
/* |
|
* Object state - interrupts are disabled, so it's safe to modify it now |
|
*/ |
|
rx_queue_.reset(); |
|
error_cnt_ = 0; |
|
served_aborts_cnt_ = 0; |
|
uavcan::fill_n(pending_tx_, NumTxMailboxes, TxItem()); |
|
peak_tx_mailbox_index_ = 0; |
|
had_activity_ = false; |
|
|
|
/* |
|
* CAN timings for this bitrate |
|
*/ |
|
Timings timings; |
|
const int timings_res = computeTimings(bitrate, timings); |
|
if (timings_res < 0) { |
|
can_->CCCR &= ~FDCAN_CCCR_INIT; |
|
return timings_res; |
|
} |
|
UAVCAN_STM32_LOG("Timings: presc=%u sjw=%u bs1=%u bs2=%u", |
|
unsigned(timings.prescaler), unsigned(timings.sjw), unsigned(timings.bs1), unsigned(timings.bs2)); |
|
|
|
//setup timing register |
|
//TODO: Do timing calculations for FDCAN |
|
can_->NBTP = ((timings.sjw << FDCAN_NBTP_NSJW_Pos) | |
|
(timings.bs1 << FDCAN_NBTP_NTSEG1_Pos) | |
|
(timings.bs2 << FDCAN_NBTP_TSEG2_Pos) | |
|
(timings.prescaler << FDCAN_NBTP_NBRP_Pos)); |
|
|
|
//RX Config |
|
can_->RXESC = 0; //Set for 8Byte Frames |
|
|
|
//Setup Message RAM |
|
setupMessageRam(); |
|
//Clear all Interrupts |
|
can_->IR = 0x3FFFFFFF; |
|
//Enable Interrupts |
|
can_->IE = FDCAN_IE_TCE | // Transmit Complete interrupt enable |
|
FDCAN_IE_RF0NE | // RX FIFO 0 new message |
|
FDCAN_IE_RF0FE | // Rx FIFO 1 FIFO Full |
|
FDCAN_IE_RF1NE | // RX FIFO 1 new message |
|
FDCAN_IE_RF1FE; // Rx FIFO 1 FIFO Full |
|
can_->ILS = FDCAN_ILS_TCL; //Set Line 1 for Transmit Complete Event Interrupt |
|
can_->TXBTIE = 0xFFFFFFFF; |
|
can_->ILE = 0x3; |
|
|
|
//Leave Init |
|
can_->CCCR &= ~FDCAN_CCCR_INIT; // Leave init mode |
|
return 0; |
|
} |
|
|
|
void CanIface::setupMessageRam() |
|
{ |
|
uint32_t num_elements = 0; |
|
|
|
// Rx FIFO 0 start address and element count |
|
num_elements = MIN((FDCAN_NUM_RXFIFO0_SIZE/FDCAN_FRAME_BUFFER_SIZE), 64U); |
|
if (num_elements) { |
|
can_->RXF0C = (FDCANMessageRAMOffset_ << 2) | (num_elements << 16); |
|
MessageRam_.RxFIFO0SA = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U); |
|
FDCANMessageRAMOffset_ += num_elements*FDCAN_FRAME_BUFFER_SIZE; |
|
} |
|
|
|
// Tx FIFO/queue start address and element count |
|
num_elements = MIN((FDCAN_TX_FIFO_BUFFER_SIZE/FDCAN_FRAME_BUFFER_SIZE), 32U); |
|
if (num_elements) { |
|
can_->TXBC = (FDCANMessageRAMOffset_ << 2) | (num_elements << 24); |
|
can_->TXBC |= 1U << 30; //Set Queue mode |
|
MessageRam_.TxFIFOQSA = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U); |
|
FDCANMessageRAMOffset_ += num_elements*FDCAN_FRAME_BUFFER_SIZE; |
|
} |
|
MessageRam_.EndAddress = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U); |
|
if (MessageRam_.EndAddress > MESSAGE_RAM_END_ADDR) { |
|
//We are overflowing the limit of Allocated Message RAM |
|
AP_HAL::panic("CANFDIface: Message RAM Overflow!"); |
|
return; |
|
} |
|
} |
|
|
|
void CanIface::handleTxCompleteInterrupt(const uavcan::uint64_t utc_usec) |
|
{ |
|
for (uint8_t i = 0; i < NumTxMailboxes; i++) { |
|
if ((can_->TXBTO & (1UL << i))) { |
|
if (pending_tx_[i].loopback && had_activity_) { |
|
rx_queue_.push(pending_tx_[i].frame, utc_usec, uavcan::CanIOFlagLoopback); |
|
} |
|
} |
|
} |
|
} |
|
|
|
bool CanIface::readRxFIFO(uavcan::uint8_t fifo_index) |
|
{ |
|
UAVCAN_ASSERT(fifo_index < 2); |
|
uint32_t *frame_ptr; |
|
uint32_t index; |
|
uavcan::uint64_t utc_usec = clock::getUtcUSecFromCanInterrupt(); |
|
if (fifo_index == 0) { |
|
//Check if RAM allocated to RX FIFO |
|
if ((can_->RXF0C & FDCAN_RXF0C_F0S) == 0) { |
|
UAVCAN_ASSERT(0); |
|
return false; |
|
} |
|
//Register Message Lost as a hardware error |
|
if ((can_->RXF0S & FDCAN_RXF0S_RF0L) != 0) { |
|
error_cnt_++; |
|
} |
|
|
|
if ((can_->RXF0S & FDCAN_RXF0S_F0FL) == 0) { |
|
return false; //No More messages in FIFO |
|
} else { |
|
index = ((can_->RXF0S & FDCAN_RXF0S_F0GI) >> 8); |
|
frame_ptr = (uint32_t *)(MessageRam_.RxFIFO0SA + (index * FDCAN_FRAME_BUFFER_SIZE * 4)); |
|
} |
|
} else if (fifo_index == 1) { |
|
//Check if RAM allocated to RX FIFO |
|
if ((can_->RXF1C & FDCAN_RXF1C_F1S) == 0) { |
|
UAVCAN_ASSERT(0); |
|
return false; |
|
} |
|
//Register Message Lost as a hardware error |
|
if ((can_->RXF1S & FDCAN_RXF1S_RF1L) != 0) { |
|
error_cnt_++; |
|
} |
|
|
|
if ((can_->RXF1S & FDCAN_RXF1S_F1FL) == 0) { |
|
return false; |
|
} else { |
|
index = ((can_->RXF1S & FDCAN_RXF1S_F1GI) >> 8); |
|
frame_ptr = (uint32_t *)(MessageRam_.RxFIFO1SA + (index * FDCAN_FRAME_BUFFER_SIZE * 4)); |
|
} |
|
} else { |
|
return false; |
|
} |
|
|
|
// Read the frame contents |
|
uavcan::CanFrame frame; |
|
uint32_t id = frame_ptr[0]; |
|
if ((id & fdcan::IDE) == 0) { |
|
//Standard ID |
|
frame.id = ((id & fdcan::STID_MASK) >> 18) & uavcan::CanFrame::MaskStdID; |
|
} else { |
|
//Extended ID |
|
frame.id = (id & fdcan::EXID_MASK) & uavcan::CanFrame::MaskExtID; |
|
frame.id |= uavcan::CanFrame::FlagEFF; |
|
} |
|
|
|
if ((id & fdcan::RTR) != 0) { |
|
frame.id |= uavcan::CanFrame::FlagRTR; |
|
} |
|
frame.dlc = (frame_ptr[1] & fdcan::DLC_MASK) >> 16; |
|
uint8_t *data = (uint8_t*)&frame_ptr[2]; |
|
//We only handle Data Length of 8 Bytes for now |
|
for (uint8_t i = 0; i < 8; i++) { |
|
frame.data[i] = data[i]; |
|
} |
|
|
|
//Acknowledge the FIFO entry we just read |
|
if (fifo_index == 0) { |
|
can_->RXF0A = index; |
|
} else if (fifo_index == 1) { |
|
can_->RXF1A = index; |
|
} |
|
|
|
/* |
|
* Store with timeout into the FIFO buffer and signal update event |
|
*/ |
|
rx_queue_.push(frame, utc_usec, 0); |
|
#if AP_UAVCAN_SLCAN_ENABLED |
|
_slcan_router.route_frame_to_slcan(this, frame, utc_usec); |
|
#endif |
|
return true; |
|
} |
|
|
|
void CanIface::handleRxInterrupt(uavcan::uint8_t fifo_index) |
|
{ |
|
while (readRxFIFO(fifo_index)) { |
|
had_activity_ = true; |
|
} |
|
update_event_.signalFromInterrupt(); |
|
} |
|
|
|
void CanIface::pollErrorFlagsFromISR() |
|
{ |
|
const uavcan::uint8_t cel = can_->ECR >> 16; |
|
|
|
if (cel != 0) { |
|
for (int i = 0; i < NumTxMailboxes; i++) { |
|
if (!pending_tx_[i].abort_on_error) { |
|
continue; |
|
} |
|
if (((1 << pending_tx_[i].index) & can_->TXBRP)) { |
|
can_->TXBCR = 1 << pending_tx_[i].index; // Goodnight sweet transmission |
|
error_cnt_++; |
|
served_aborts_cnt_++; |
|
} |
|
} |
|
} |
|
} |
|
|
|
void CanIface::discardTimedOutTxMailboxes(uavcan::MonotonicTime current_time) |
|
{ |
|
CriticalSectionLocker lock; |
|
for (int i = 0; i < NumTxMailboxes; i++) { |
|
if (((1 << pending_tx_[i].index) & can_->TXBRP) && pending_tx_[i].deadline < current_time) { |
|
can_->TXBCR = 1 << pending_tx_[i].index; // Goodnight sweet transmission |
|
error_cnt_++; |
|
} |
|
} |
|
} |
|
|
|
bool CanIface::canAcceptNewTxFrame(const uavcan::CanFrame& frame) const |
|
{ |
|
//Check if Tx FIFO is allocated |
|
if ((can_->TXBC & FDCAN_TXBC_TFQS) == 0) { |
|
return false; |
|
} |
|
if ((can_->TXFQS & FDCAN_TXFQS_TFQF) != 0) { |
|
return false; //we don't have free space |
|
} |
|
|
|
return true; |
|
} |
|
|
|
bool CanIface::isRxBufferEmpty() const |
|
{ |
|
CriticalSectionLocker lock; |
|
return rx_queue_.getLength() == 0; |
|
} |
|
|
|
uavcan::uint64_t CanIface::getErrorCount() const |
|
{ |
|
CriticalSectionLocker lock; |
|
return error_cnt_ + rx_queue_.getOverflowCount(); |
|
} |
|
|
|
unsigned CanIface::getRxQueueLength() const |
|
{ |
|
CriticalSectionLocker lock; |
|
return rx_queue_.getLength(); |
|
} |
|
|
|
bool CanIface::hadActivity() |
|
{ |
|
CriticalSectionLocker lock; |
|
const bool ret = had_activity_; |
|
had_activity_ = false; |
|
return ret; |
|
} |
|
|
|
/* |
|
* CanDriver |
|
*/ |
|
uavcan::CanSelectMasks CanDriver::makeSelectMasks(const uavcan::CanFrame* (& pending_tx)[uavcan::MaxCanIfaces]) const |
|
{ |
|
uavcan::CanSelectMasks msk; |
|
|
|
for (uavcan::uint8_t i = 0; i < num_ifaces_; i++) { |
|
CanIface* iface = ifaces[if_int_to_gl_index_[i]]; |
|
msk.read |= (iface->isRxBufferEmpty() ? 0 : 1) << i; |
|
|
|
if (pending_tx[i] != UAVCAN_NULLPTR) { |
|
msk.write |= (iface->canAcceptNewTxFrame(*pending_tx[i]) ? 1 : 0) << i; |
|
} |
|
} |
|
|
|
return msk; |
|
} |
|
|
|
bool CanDriver::hasReadableInterfaces() const |
|
{ |
|
for (uavcan::uint8_t i = 0; i < num_ifaces_; i++) { |
|
if (!ifaces[if_int_to_gl_index_[i]]->isRxBufferEmpty()) { |
|
return true; |
|
} |
|
} |
|
|
|
return false; |
|
} |
|
|
|
uavcan::int16_t CanDriver::select(uavcan::CanSelectMasks& inout_masks, |
|
const uavcan::CanFrame* (& pending_tx)[uavcan::MaxCanIfaces], |
|
const uavcan::MonotonicTime blocking_deadline) |
|
{ |
|
const uavcan::CanSelectMasks in_masks = inout_masks; |
|
const uavcan::MonotonicTime time = clock::getMonotonic(); |
|
|
|
for (uavcan::uint8_t i = 0; i < num_ifaces_; i++) { |
|
CanIface* iface = ifaces[if_int_to_gl_index_[i]]; |
|
iface->discardTimedOutTxMailboxes(time); // Check TX timeouts - this may release some TX slots |
|
{ |
|
CriticalSectionLocker cs_locker; |
|
iface->pollErrorFlagsFromISR(); |
|
} |
|
} |
|
|
|
inout_masks = makeSelectMasks(pending_tx); // Check if we already have some of the requested events |
|
if ((inout_masks.read & in_masks.read) != 0 || |
|
(inout_masks.write & in_masks.write) != 0) { |
|
return 1; |
|
} |
|
|
|
(void)update_event_.wait(blocking_deadline - time); // Block until timeout expires or any iface updates |
|
inout_masks = makeSelectMasks(pending_tx); // Return what we got even if none of the requested events are set |
|
return 1; // Return value doesn't matter as long as it is non-negative |
|
} |
|
|
|
void CanDriver::initOnce() |
|
{ |
|
{ |
|
CriticalSectionLocker lock; |
|
RCC->APB1HRSTR |= RCC_APB1HRSTR_FDCANRST; |
|
RCC->APB1HRSTR &= ~RCC_APB1HRSTR_FDCANRST; |
|
RCC->APB1HENR |= RCC_APB1HENR_FDCANEN; |
|
} |
|
|
|
/* |
|
* IRQ |
|
*/ |
|
{ |
|
CriticalSectionLocker lock; |
|
nvicEnableVector(FDCAN1_IT0_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK); |
|
nvicEnableVector(FDCAN1_IT1_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK); |
|
# if UAVCAN_STM32_NUM_IFACES > 1 |
|
nvicEnableVector(FDCAN2_IT0_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK); |
|
nvicEnableVector(FDCAN2_IT1_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK); |
|
# endif |
|
} |
|
} |
|
|
|
int CanDriver::init(const uavcan::uint32_t bitrate, const CanIface::OperatingMode mode) |
|
{ |
|
int res = 0; |
|
|
|
UAVCAN_STM32_LOG("Bitrate %lu mode %d", static_cast<unsigned long>(bitrate), static_cast<int>(mode)); |
|
|
|
static bool initialized_once = false; |
|
if (!initialized_once) { |
|
initialized_once = true; |
|
UAVCAN_STM32_LOG("First initialization"); |
|
initOnce(); |
|
} |
|
|
|
/* |
|
* CAN1 |
|
*/ |
|
UAVCAN_STM32_LOG("Initing iface 0..."); |
|
ifaces[0] = &if0_; // This link must be initialized first, |
|
res = if0_.init(bitrate, mode); // otherwise an IRQ may fire while the interface is not linked yet; |
|
if (res < 0) { // a typical race condition. |
|
UAVCAN_STM32_LOG("Iface 0 init failed %i", res); |
|
ifaces[0] = UAVCAN_NULLPTR; |
|
goto fail; |
|
} |
|
|
|
/* |
|
* CAN2 |
|
*/ |
|
#if UAVCAN_STM32_NUM_IFACES > 1 |
|
UAVCAN_STM32_LOG("Initing iface 1..."); |
|
ifaces[1] = &if1_; // Same thing here. |
|
res = if1_.init(bitrate, mode); |
|
if (res < 0) { |
|
UAVCAN_STM32_LOG("Iface 1 init failed %i", res); |
|
ifaces[1] = UAVCAN_NULLPTR; |
|
goto fail; |
|
} |
|
#endif |
|
|
|
UAVCAN_STM32_LOG("CAN drv init OK"); |
|
UAVCAN_ASSERT(res >= 0); |
|
return res; |
|
|
|
fail: |
|
UAVCAN_STM32_LOG("CAN drv init failed %i", res); |
|
UAVCAN_ASSERT(res < 0); |
|
return res; |
|
} |
|
|
|
bool CanDriver::clock_init_ = false; |
|
void CanDriver::initOnce(uavcan::uint8_t can_number, bool enable_irqs) |
|
{ |
|
//Only do it once |
|
//Doing it second time will reset the previously initialised bus |
|
if (!clock_init_) { |
|
CriticalSectionLocker lock; |
|
RCC->APB1HENR |= RCC_APB1HENR_FDCANEN; |
|
RCC->APB1HRSTR |= RCC_APB1HRSTR_FDCANRST; |
|
RCC->APB1HRSTR &= ~RCC_APB1HRSTR_FDCANRST; |
|
clock_init_ = true; |
|
} |
|
|
|
if (!enable_irqs) { |
|
return; |
|
} |
|
/* |
|
* IRQ |
|
*/ |
|
{ |
|
CriticalSectionLocker lock; |
|
if (can_number == 0) { |
|
nvicEnableVector(FDCAN1_IT0_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK); |
|
nvicEnableVector(FDCAN1_IT1_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK); |
|
} |
|
# if UAVCAN_STM32_NUM_IFACES > 1 |
|
else if (can_number == 1) { |
|
nvicEnableVector(FDCAN2_IT0_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK); |
|
nvicEnableVector(FDCAN2_IT1_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK); |
|
} |
|
# endif |
|
} |
|
} |
|
|
|
int CanDriver::init(const uavcan::uint32_t bitrate, const CanIface::OperatingMode mode, uavcan::uint8_t can_number) |
|
{ |
|
int res = 0; |
|
|
|
UAVCAN_STM32_LOG("Bitrate %lu mode %d", static_cast<unsigned long>(bitrate), static_cast<int>(mode)); |
|
if (can_number > UAVCAN_STM32_NUM_IFACES) { |
|
res = -1; |
|
goto fail; |
|
} |
|
static bool initialized_once[UAVCAN_STM32_NUM_IFACES] = {false}; |
|
|
|
if (!initialized_once[can_number]) { |
|
initialized_once[can_number] = true; |
|
initialized_by_me_[can_number] = true; |
|
|
|
if (can_number == 1 && !initialized_once[0]) { |
|
UAVCAN_STM32_LOG("Iface 0 is not initialized yet but we need it for Iface 1, trying to init it"); |
|
UAVCAN_STM32_LOG("Enabling CAN iface 0"); |
|
initOnce(0, false); |
|
UAVCAN_STM32_LOG("Initing iface 0..."); |
|
res = if0_.init(bitrate, mode); |
|
|
|
if (res < 0) { |
|
UAVCAN_STM32_LOG("Iface 0 init failed %i", res); |
|
goto fail; |
|
} |
|
} |
|
|
|
UAVCAN_STM32_LOG("Enabling CAN iface %d", can_number); |
|
initOnce(can_number, true); |
|
} else if (!initialized_by_me_[can_number]) { |
|
UAVCAN_STM32_LOG("CAN iface %d initialized in another CANDriver!", can_number); |
|
res = -2; |
|
goto fail; |
|
} |
|
|
|
if (can_number == 0) { |
|
/* |
|
* CAN1 |
|
*/ |
|
UAVCAN_STM32_LOG("Initing iface 0..."); |
|
ifaces[0] = &if0_; // This link must be initialized first, |
|
res = if0_.init(bitrate, mode); // otherwise an IRQ may fire while the interface is not linked yet; |
|
if (res < 0) { // a typical race condition. |
|
UAVCAN_STM32_LOG("Iface 0 init failed %i", res); |
|
ifaces[0] = UAVCAN_NULLPTR; |
|
goto fail; |
|
} |
|
} else if (can_number == 1) { |
|
/* |
|
* CAN2 |
|
*/ |
|
#if UAVCAN_STM32_NUM_IFACES > 1 |
|
UAVCAN_STM32_LOG("Initing iface 1..."); |
|
ifaces[1] = &if1_; // Same thing here. |
|
res = if1_.init(bitrate, mode); |
|
if (res < 0) { |
|
UAVCAN_STM32_LOG("Iface 1 init failed %i", res); |
|
ifaces[1] = UAVCAN_NULLPTR; |
|
goto fail; |
|
} |
|
#endif |
|
} |
|
|
|
if_int_to_gl_index_[num_ifaces_++] = can_number; |
|
|
|
UAVCAN_STM32_LOG("CAN drv init OK"); |
|
UAVCAN_ASSERT(res >= 0); |
|
return res; |
|
|
|
fail: |
|
UAVCAN_STM32_LOG("CAN drv init failed %i", res); |
|
UAVCAN_ASSERT(res < 0); |
|
return res; |
|
} |
|
|
|
CanIface* CanDriver::getIface(uavcan::uint8_t iface_index) |
|
{ |
|
if (iface_index < num_ifaces_) { |
|
return ifaces[if_int_to_gl_index_[iface_index]]; |
|
} |
|
return UAVCAN_NULLPTR; |
|
} |
|
|
|
bool CanDriver::hadActivity() |
|
{ |
|
for (uavcan::uint8_t i = 0; i < num_ifaces_; i++) { |
|
if (ifaces[if_int_to_gl_index_[i]]->hadActivity()) { |
|
return true; |
|
} |
|
} |
|
|
|
return false; |
|
} |
|
|
|
} // namespace uavcan_stm32 |
|
|
|
/* |
|
* Interrupt handlers |
|
*/ |
|
extern "C" |
|
{ |
|
|
|
UAVCAN_STM32_IRQ_HANDLER(FDCAN1_IT0_IRQHandler); |
|
UAVCAN_STM32_IRQ_HANDLER(FDCAN1_IT0_IRQHandler) |
|
{ |
|
UAVCAN_STM32_IRQ_PROLOGUE(); |
|
ChibiOS_CAN::handleInterrupt(0, 0); |
|
UAVCAN_STM32_IRQ_EPILOGUE(); |
|
} |
|
|
|
UAVCAN_STM32_IRQ_HANDLER(FDCAN1_IT1_IRQHandler); |
|
UAVCAN_STM32_IRQ_HANDLER(FDCAN1_IT1_IRQHandler) |
|
{ |
|
UAVCAN_STM32_IRQ_PROLOGUE(); |
|
ChibiOS_CAN::handleInterrupt(0, 1); |
|
UAVCAN_STM32_IRQ_EPILOGUE(); |
|
} |
|
|
|
|
|
# if UAVCAN_STM32_NUM_IFACES > 1 |
|
|
|
UAVCAN_STM32_IRQ_HANDLER(FDCAN2_IT0_IRQHandler); |
|
UAVCAN_STM32_IRQ_HANDLER(FDCAN2_IT0_IRQHandler) |
|
{ |
|
UAVCAN_STM32_IRQ_PROLOGUE(); |
|
ChibiOS_CAN::handleInterrupt(1, 0); |
|
UAVCAN_STM32_IRQ_EPILOGUE(); |
|
} |
|
|
|
UAVCAN_STM32_IRQ_HANDLER(FDCAN2_IT1_IRQHandler); |
|
UAVCAN_STM32_IRQ_HANDLER(FDCAN2_IT1_IRQHandler) |
|
{ |
|
UAVCAN_STM32_IRQ_PROLOGUE(); |
|
ChibiOS_CAN::handleInterrupt(1, 1); |
|
UAVCAN_STM32_IRQ_EPILOGUE(); |
|
} |
|
|
|
# endif |
|
|
|
} // extern "C" |
|
|
|
#endif //defined(STM32H7XX) |
|
|
|
#endif //HAL_WITH_UAVCAN
|
|
|