You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
356 lines
8.7 KiB
356 lines
8.7 KiB
#include <AP_HAL/AP_HAL.h> |
|
|
|
#include "AP_HAL_SITL.h" |
|
#include "Scheduler.h" |
|
#include "UARTDriver.h" |
|
#include <sys/time.h> |
|
#include <fenv.h> |
|
#include <AP_BoardConfig/AP_BoardConfig.h> |
|
#if defined (__clang__) |
|
#include <stdlib.h> |
|
#else |
|
#include <malloc.h> |
|
#endif |
|
#include <AP_RCProtocol/AP_RCProtocol.h> |
|
|
|
using namespace HALSITL; |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
|
|
AP_HAL::Proc Scheduler::_failsafe = nullptr; |
|
|
|
AP_HAL::MemberProc Scheduler::_timer_proc[SITL_SCHEDULER_MAX_TIMER_PROCS] = {nullptr}; |
|
uint8_t Scheduler::_num_timer_procs = 0; |
|
bool Scheduler::_in_timer_proc = false; |
|
|
|
AP_HAL::MemberProc Scheduler::_io_proc[SITL_SCHEDULER_MAX_TIMER_PROCS] = {nullptr}; |
|
uint8_t Scheduler::_num_io_procs = 0; |
|
bool Scheduler::_in_io_proc = false; |
|
bool Scheduler::_should_reboot = false; |
|
bool Scheduler::_should_exit = false; |
|
|
|
bool Scheduler::_in_semaphore_take_wait = false; |
|
|
|
Scheduler::thread_attr *Scheduler::threads; |
|
HAL_Semaphore Scheduler::_thread_sem; |
|
|
|
Scheduler::Scheduler(SITL_State *sitlState) : |
|
_sitlState(sitlState), |
|
_stopped_clock_usec(0) |
|
{ |
|
} |
|
|
|
void Scheduler::init() |
|
{ |
|
_main_ctx = pthread_self(); |
|
} |
|
|
|
bool Scheduler::in_main_thread() const |
|
{ |
|
if (!_in_timer_proc && !_in_io_proc && pthread_self() == _main_ctx) { |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
/* |
|
* semaphore_wait_hack_required - possibly move time input step |
|
* forward even if we are currently pretending to be the IO or timer |
|
* threads. |
|
* |
|
* Without this, if another thread has taken a semaphore (e.g. the |
|
* Object Avoidance thread), and an "IO process" tries to take that |
|
* semaphore with a timeout specified, then we end up not advancing |
|
* time (due to the logic in SITL_State::wait_clock) and thus taking |
|
* the semaphore never times out - meaning we essentially deadlock. |
|
*/ |
|
bool Scheduler::semaphore_wait_hack_required() |
|
{ |
|
if (pthread_self() != _main_ctx) { |
|
// only the main thread ever moves stuff forwards |
|
return false; |
|
} |
|
|
|
return _in_semaphore_take_wait; |
|
} |
|
|
|
void Scheduler::delay_microseconds(uint16_t usec) |
|
{ |
|
uint64_t start = AP_HAL::micros64(); |
|
do { |
|
uint64_t dtime = AP_HAL::micros64() - start; |
|
if (dtime >= usec) { |
|
break; |
|
} |
|
_sitlState->wait_clock(start + usec); |
|
} while (true); |
|
} |
|
|
|
void Scheduler::delay(uint16_t ms) |
|
{ |
|
uint32_t start = AP_HAL::millis(); |
|
uint32_t now = start; |
|
do { |
|
delay_microseconds(1000); |
|
if (_min_delay_cb_ms <= (ms - (now - start))) { |
|
if (in_main_thread()) { |
|
call_delay_cb(); |
|
} |
|
} |
|
now = AP_HAL::millis(); |
|
} while (now - start < ms); |
|
} |
|
|
|
void Scheduler::register_timer_process(AP_HAL::MemberProc proc) |
|
{ |
|
for (uint8_t i = 0; i < _num_timer_procs; i++) { |
|
if (_timer_proc[i] == proc) { |
|
return; |
|
} |
|
} |
|
|
|
if (_num_timer_procs < SITL_SCHEDULER_MAX_TIMER_PROCS) { |
|
_timer_proc[_num_timer_procs] = proc; |
|
_num_timer_procs++; |
|
} |
|
} |
|
|
|
void Scheduler::register_io_process(AP_HAL::MemberProc proc) |
|
{ |
|
for (uint8_t i = 0; i < _num_io_procs; i++) { |
|
if (_io_proc[i] == proc) { |
|
return; |
|
} |
|
} |
|
|
|
if (_num_io_procs < SITL_SCHEDULER_MAX_TIMER_PROCS) { |
|
_io_proc[_num_io_procs] = proc; |
|
_num_io_procs++; |
|
} |
|
} |
|
|
|
void Scheduler::register_timer_failsafe(AP_HAL::Proc failsafe, uint32_t period_us) |
|
{ |
|
_failsafe = failsafe; |
|
} |
|
|
|
void Scheduler::system_initialized() { |
|
if (_initialized) { |
|
AP_HAL::panic( |
|
"PANIC: scheduler system initialized called more than once"); |
|
} |
|
int exceptions = FE_OVERFLOW | FE_DIVBYZERO; |
|
#ifndef __i386__ |
|
// i386 with gcc doesn't work with FE_INVALID |
|
exceptions |= FE_INVALID; |
|
#endif |
|
if (_sitlState->_sitl == nullptr || _sitlState->_sitl->float_exception) { |
|
feenableexcept(exceptions); |
|
} else { |
|
feclearexcept(exceptions); |
|
} |
|
_initialized = true; |
|
} |
|
|
|
void Scheduler::sitl_end_atomic() { |
|
if (_nested_atomic_ctr == 0) { |
|
hal.uartA->printf("NESTED ATOMIC ERROR\n"); |
|
} else { |
|
_nested_atomic_ctr--; |
|
} |
|
} |
|
|
|
void Scheduler::reboot(bool hold_in_bootloader) |
|
{ |
|
if (AP_BoardConfig::in_sensor_config_error()) { |
|
// the _should_reboot flag set below is not checked by the |
|
// sensor-config-error loop, so force the reboot here: |
|
HAL_SITL::actually_reboot(); |
|
abort(); |
|
} |
|
_should_reboot = true; |
|
} |
|
|
|
void Scheduler::_run_timer_procs() |
|
{ |
|
if (_in_timer_proc) { |
|
// the timer calls took longer than the period of the |
|
// timer. This is bad, and may indicate a serious |
|
// driver failure. We can't just call the drivers |
|
// again, as we could run out of stack. So we only |
|
// call the _failsafe call. It's job is to detect if |
|
// the drivers or the main loop are indeed dead and to |
|
// activate whatever failsafe it thinks may help if |
|
// need be. We assume the failsafe code can't |
|
// block. If it does then we will recurse and die when |
|
// we run out of stack |
|
if (_failsafe != nullptr) { |
|
_failsafe(); |
|
} |
|
return; |
|
} |
|
_in_timer_proc = true; |
|
|
|
// now call the timer based drivers |
|
for (int i = 0; i < _num_timer_procs; i++) { |
|
if (_timer_proc[i]) { |
|
_timer_proc[i](); |
|
} |
|
} |
|
|
|
// and the failsafe, if one is setup |
|
if (_failsafe != nullptr) { |
|
_failsafe(); |
|
} |
|
|
|
_in_timer_proc = false; |
|
} |
|
|
|
void Scheduler::_run_io_procs() |
|
{ |
|
if (_in_io_proc) { |
|
return; |
|
} |
|
_in_io_proc = true; |
|
|
|
// now call the IO based drivers |
|
for (int i = 0; i < _num_io_procs; i++) { |
|
if (_io_proc[i]) { |
|
_io_proc[i](); |
|
} |
|
} |
|
|
|
_in_io_proc = false; |
|
|
|
hal.uartA->_timer_tick(); |
|
hal.uartB->_timer_tick(); |
|
hal.uartC->_timer_tick(); |
|
hal.uartD->_timer_tick(); |
|
hal.uartE->_timer_tick(); |
|
hal.uartF->_timer_tick(); |
|
hal.uartG->_timer_tick(); |
|
hal.uartH->_timer_tick(); |
|
hal.storage->_timer_tick(); |
|
|
|
check_thread_stacks(); |
|
|
|
AP::RC().update(); |
|
} |
|
|
|
/* |
|
set simulation timestamp |
|
*/ |
|
void Scheduler::stop_clock(uint64_t time_usec) |
|
{ |
|
_stopped_clock_usec = time_usec; |
|
if (time_usec - _last_io_run > 10000) { |
|
_last_io_run = time_usec; |
|
_run_io_procs(); |
|
} |
|
} |
|
|
|
/* |
|
trampoline for thread create |
|
*/ |
|
void *Scheduler::thread_create_trampoline(void *ctx) |
|
{ |
|
struct thread_attr *a = (struct thread_attr *)ctx; |
|
a->f[0](); |
|
|
|
WITH_SEMAPHORE(_thread_sem); |
|
if (threads == a) { |
|
threads = a->next; |
|
} else { |
|
for (struct thread_attr *p=threads; p->next; p=p->next) { |
|
if (p->next == a) { |
|
p->next = p->next->next; |
|
break; |
|
} |
|
} |
|
} |
|
free(a->stack); |
|
free(a->f); |
|
delete a; |
|
return nullptr; |
|
} |
|
|
|
#ifndef PTHREAD_STACK_MIN |
|
#define PTHREAD_STACK_MIN 16384U |
|
#endif |
|
|
|
/* |
|
create a new thread |
|
*/ |
|
bool Scheduler::thread_create(AP_HAL::MemberProc proc, const char *name, uint32_t stack_size, priority_base base, int8_t priority) |
|
{ |
|
WITH_SEMAPHORE(_thread_sem); |
|
|
|
// even an empty thread takes 2500 bytes on Linux, so always add 2300, giving us 200 bytes |
|
// safety margin |
|
stack_size += 2300; |
|
|
|
pthread_t thread {}; |
|
const uint32_t alloc_stack = MAX(size_t(PTHREAD_STACK_MIN),stack_size); |
|
|
|
struct thread_attr *a = new struct thread_attr; |
|
if (!a) { |
|
return false; |
|
} |
|
// take a copy of the MemberProc, it is freed after thread exits |
|
a->f = (AP_HAL::MemberProc *)malloc(sizeof(proc)); |
|
if (!a->f) { |
|
goto failed; |
|
} |
|
if (posix_memalign(&a->stack, 4096, alloc_stack) != 0) { |
|
goto failed; |
|
} |
|
if (!a->stack) { |
|
goto failed; |
|
} |
|
memset(a->stack, stackfill, alloc_stack); |
|
a->stack_min = (const uint8_t *)((((uint8_t *)a->stack) + alloc_stack) - stack_size); |
|
|
|
a->stack_size = stack_size; |
|
a->f[0] = proc; |
|
a->name = name; |
|
|
|
pthread_attr_init(&a->attr); |
|
#if !defined(__CYGWIN__) && !defined(__CYGWIN64__) |
|
if (pthread_attr_setstack(&a->attr, a->stack, alloc_stack) != 0) { |
|
AP_HAL::panic("Failed to set stack of size %u for thread %s", alloc_stack, name); |
|
} |
|
#endif |
|
if (pthread_create(&thread, &a->attr, thread_create_trampoline, a) != 0) { |
|
goto failed; |
|
} |
|
a->next = threads; |
|
threads = a; |
|
return true; |
|
|
|
failed: |
|
if (a->stack) { |
|
free(a->stack); |
|
} |
|
if (a->f) { |
|
free(a->f); |
|
} |
|
delete a; |
|
return false; |
|
} |
|
|
|
/* |
|
check for stack overflow |
|
*/ |
|
void Scheduler::check_thread_stacks(void) |
|
{ |
|
WITH_SEMAPHORE(_thread_sem); |
|
for (struct thread_attr *p=threads; p; p=p->next) { |
|
const uint8_t ncheck = 8; |
|
for (uint8_t i=0; i<ncheck; i++) { |
|
if (p->stack_min[i] != stackfill) { |
|
AP_HAL::panic("stack overflow in thread %s\n", p->name); |
|
} |
|
} |
|
} |
|
}
|
|
|