You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1034 lines
32 KiB
1034 lines
32 KiB
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
/* |
|
driver for all supported Invensense IMUs, including MPU6000, MPU9250 |
|
ICM-20608 and ICM-20602 |
|
*/ |
|
|
|
#include <assert.h> |
|
#include <utility> |
|
#include <stdio.h> |
|
|
|
#include <AP_HAL/AP_HAL.h> |
|
|
|
#include "AP_InertialSensor_Invensense.h" |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_LINUX |
|
#include <AP_HAL_Linux/GPIO.h> |
|
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_ERLEBOARD || CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_PXF |
|
#define INVENSENSE_DRDY_PIN BBB_P8_14 |
|
#elif CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_DISCO || CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BEBOP |
|
#define INVENSENSE_EXT_SYNC_ENABLE 1 |
|
#endif |
|
#endif |
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS |
|
// hal.console can be accessed from bus threads on ChibiOS |
|
#define debug(fmt, args ...) do {hal.console->printf("MPU: " fmt "\n", ## args); } while(0) |
|
#else |
|
#define debug(fmt, args ...) do {printf("MPU: " fmt "\n", ## args); } while(0) |
|
#endif |
|
|
|
/* |
|
EXT_SYNC allows for frame synchronisation with an external device |
|
such as a camera. When enabled the LSB of AccelZ holds the FSYNC bit |
|
*/ |
|
#ifndef INVENSENSE_EXT_SYNC_ENABLE |
|
#define INVENSENSE_EXT_SYNC_ENABLE 0 |
|
#endif |
|
|
|
#include "AP_InertialSensor_Invensense_registers.h" |
|
|
|
#define MPU_SAMPLE_SIZE 14 |
|
#define MPU_FIFO_BUFFER_LEN 16 |
|
|
|
#define int16_val(v, idx) ((int16_t)(((uint16_t)v[2*idx] << 8) | v[2*idx+1])) |
|
#define uint16_val(v, idx)(((uint16_t)v[2*idx] << 8) | v[2*idx+1]) |
|
|
|
/* |
|
* RM-MPU-6000A-00.pdf, page 31, section 4.23 lists LSB sensitivity of |
|
* accel as 4096 LSB/mg at scale factor of +/- 8g (AFS_SEL==2) |
|
* |
|
* See note below about accel scaling of engineering sample MPU6k |
|
* variants however |
|
*/ |
|
|
|
AP_InertialSensor_Invensense::AP_InertialSensor_Invensense(AP_InertialSensor &imu, |
|
AP_HAL::OwnPtr<AP_HAL::Device> dev, |
|
enum Rotation rotation) |
|
: AP_InertialSensor_Backend(imu) |
|
, _temp_filter(1000, 1) |
|
, _rotation(rotation) |
|
, _dev(std::move(dev)) |
|
{ |
|
} |
|
|
|
AP_InertialSensor_Invensense::~AP_InertialSensor_Invensense() |
|
{ |
|
if (_fifo_buffer != nullptr) { |
|
hal.util->free_type(_fifo_buffer, MPU_FIFO_BUFFER_LEN * MPU_SAMPLE_SIZE, AP_HAL::Util::MEM_DMA_SAFE); |
|
} |
|
delete _auxiliary_bus; |
|
} |
|
|
|
AP_InertialSensor_Backend *AP_InertialSensor_Invensense::probe(AP_InertialSensor &imu, |
|
AP_HAL::OwnPtr<AP_HAL::I2CDevice> dev, |
|
enum Rotation rotation) |
|
{ |
|
if (!dev) { |
|
return nullptr; |
|
} |
|
AP_InertialSensor_Invensense *sensor = |
|
new AP_InertialSensor_Invensense(imu, std::move(dev), rotation); |
|
if (!sensor || !sensor->_init()) { |
|
delete sensor; |
|
return nullptr; |
|
} |
|
if (sensor->_mpu_type == Invensense_MPU9250) { |
|
sensor->_id = HAL_INS_MPU9250_I2C; |
|
} else { |
|
sensor->_id = HAL_INS_MPU60XX_I2C; |
|
} |
|
|
|
return sensor; |
|
} |
|
|
|
|
|
AP_InertialSensor_Backend *AP_InertialSensor_Invensense::probe(AP_InertialSensor &imu, |
|
AP_HAL::OwnPtr<AP_HAL::SPIDevice> dev, |
|
enum Rotation rotation) |
|
{ |
|
if (!dev) { |
|
return nullptr; |
|
} |
|
AP_InertialSensor_Invensense *sensor; |
|
|
|
dev->set_read_flag(0x80); |
|
|
|
sensor = new AP_InertialSensor_Invensense(imu, std::move(dev), rotation); |
|
if (!sensor || !sensor->_init()) { |
|
delete sensor; |
|
return nullptr; |
|
} |
|
if (sensor->_mpu_type == Invensense_MPU9250) { |
|
sensor->_id = HAL_INS_MPU9250_SPI; |
|
} else if (sensor->_mpu_type == Invensense_MPU6500) { |
|
sensor->_id = HAL_INS_MPU6500; |
|
} else { |
|
sensor->_id = HAL_INS_MPU60XX_SPI; |
|
} |
|
|
|
return sensor; |
|
} |
|
|
|
bool AP_InertialSensor_Invensense::_init() |
|
{ |
|
#ifdef INVENSENSE_DRDY_PIN |
|
_drdy_pin = hal.gpio->channel(INVENSENSE_DRDY_PIN); |
|
_drdy_pin->mode(HAL_GPIO_INPUT); |
|
#endif |
|
|
|
bool success = _hardware_init(); |
|
|
|
return success; |
|
} |
|
|
|
void AP_InertialSensor_Invensense::_fifo_reset() |
|
{ |
|
uint8_t user_ctrl = _last_stat_user_ctrl; |
|
user_ctrl &= ~(BIT_USER_CTRL_FIFO_RESET | BIT_USER_CTRL_FIFO_EN); |
|
|
|
_dev->set_speed(AP_HAL::Device::SPEED_LOW); |
|
_register_write(MPUREG_FIFO_EN, 0); |
|
_register_write(MPUREG_USER_CTRL, user_ctrl); |
|
_register_write(MPUREG_USER_CTRL, user_ctrl | BIT_USER_CTRL_FIFO_RESET); |
|
_register_write(MPUREG_USER_CTRL, user_ctrl | BIT_USER_CTRL_FIFO_EN); |
|
_register_write(MPUREG_FIFO_EN, BIT_XG_FIFO_EN | BIT_YG_FIFO_EN | |
|
BIT_ZG_FIFO_EN | BIT_ACCEL_FIFO_EN | BIT_TEMP_FIFO_EN, true); |
|
hal.scheduler->delay_microseconds(1); |
|
_dev->set_speed(AP_HAL::Device::SPEED_HIGH); |
|
_last_stat_user_ctrl = user_ctrl | BIT_USER_CTRL_FIFO_EN; |
|
|
|
notify_accel_fifo_reset(_accel_instance); |
|
notify_gyro_fifo_reset(_gyro_instance); |
|
} |
|
|
|
bool AP_InertialSensor_Invensense::_has_auxiliary_bus() |
|
{ |
|
return _dev->bus_type() != AP_HAL::Device::BUS_TYPE_I2C; |
|
} |
|
|
|
void AP_InertialSensor_Invensense::start() |
|
{ |
|
if (!_dev->get_semaphore()->take(HAL_SEMAPHORE_BLOCK_FOREVER)) { |
|
return; |
|
} |
|
|
|
// initially run the bus at low speed |
|
_dev->set_speed(AP_HAL::Device::SPEED_LOW); |
|
|
|
// only used for wake-up in accelerometer only low power mode |
|
_register_write(MPUREG_PWR_MGMT_2, 0x00); |
|
hal.scheduler->delay(1); |
|
|
|
// always use FIFO |
|
_fifo_reset(); |
|
|
|
// grab the used instances |
|
enum DevTypes gdev, adev; |
|
switch (_mpu_type) { |
|
case Invensense_MPU9250: |
|
gdev = DEVTYPE_GYR_MPU9250; |
|
adev = DEVTYPE_ACC_MPU9250; |
|
break; |
|
case Invensense_ICM20602: |
|
gdev = DEVTYPE_INS_ICM20602; |
|
adev = DEVTYPE_INS_ICM20602; |
|
break; |
|
case Invensense_ICM20601: |
|
gdev = DEVTYPE_INS_ICM20601; |
|
adev = DEVTYPE_INS_ICM20601; |
|
break; |
|
case Invensense_MPU6000: |
|
case Invensense_MPU6500: |
|
case Invensense_ICM20608: |
|
default: |
|
gdev = DEVTYPE_GYR_MPU6000; |
|
adev = DEVTYPE_ACC_MPU6000; |
|
break; |
|
case Invensense_ICM20789: |
|
gdev = DEVTYPE_INS_ICM20789; |
|
adev = DEVTYPE_INS_ICM20789; |
|
break; |
|
case Invensense_ICM20689: |
|
gdev = DEVTYPE_INS_ICM20689; |
|
adev = DEVTYPE_INS_ICM20689; |
|
break; |
|
} |
|
|
|
/* |
|
setup temperature sensitivity and offset. This varies |
|
considerably between parts |
|
*/ |
|
switch (_mpu_type) { |
|
case Invensense_MPU9250: |
|
temp_zero = 21.0f; |
|
temp_sensitivity = 1.0f/340; |
|
break; |
|
|
|
case Invensense_MPU6000: |
|
case Invensense_MPU6500: |
|
temp_zero = 36.53f; |
|
temp_sensitivity = 1.0f/340; |
|
break; |
|
|
|
case Invensense_ICM20608: |
|
case Invensense_ICM20602: |
|
case Invensense_ICM20601: |
|
temp_zero = 25.0f; |
|
temp_sensitivity = 1.0f/326.8f; |
|
break; |
|
|
|
case Invensense_ICM20789: |
|
temp_zero = 25.0f; |
|
temp_sensitivity = 0.003f; |
|
break; |
|
case Invensense_ICM20689: |
|
temp_zero = 25.0f; |
|
temp_sensitivity = 0.003f; |
|
break; |
|
} |
|
|
|
_gyro_instance = _imu.register_gyro(1000, _dev->get_bus_id_devtype(gdev)); |
|
_accel_instance = _imu.register_accel(1000, _dev->get_bus_id_devtype(adev)); |
|
|
|
// setup ODR and on-sensor filtering |
|
_set_filter_register(); |
|
|
|
// update backend sample rate |
|
_set_accel_raw_sample_rate(_accel_instance, _backend_rate_hz); |
|
_set_gyro_raw_sample_rate(_gyro_instance, _backend_rate_hz); |
|
|
|
// indicate what multiplier is appropriate for the sensors' |
|
// readings to fit them into an int16_t: |
|
_set_raw_sample_accel_multiplier(_accel_instance, multiplier_accel); |
|
|
|
if (_fast_sampling) { |
|
hal.console->printf("MPU[%u]: enabled fast sampling rate %uHz/%uHz\n", |
|
_accel_instance, _backend_rate_hz*_fifo_downsample_rate, _backend_rate_hz); |
|
} |
|
|
|
// set sample rate to 1000Hz and apply a software filter |
|
// In this configuration, the gyro sample rate is 8kHz |
|
_register_write(MPUREG_SMPLRT_DIV, 0, true); |
|
hal.scheduler->delay(1); |
|
|
|
// Gyro scale 2000º/s |
|
_register_write(MPUREG_GYRO_CONFIG, BITS_GYRO_FS_2000DPS, true); |
|
hal.scheduler->delay(1); |
|
|
|
// read the product ID rev c has 1/2 the sensitivity of rev d |
|
uint8_t product_id = _register_read(MPUREG_PRODUCT_ID); |
|
|
|
if (_mpu_type == Invensense_MPU6000 && |
|
((product_id == MPU6000ES_REV_C4) || |
|
(product_id == MPU6000ES_REV_C5) || |
|
(product_id == MPU6000_REV_C4) || |
|
(product_id == MPU6000_REV_C5))) { |
|
// Accel scale 8g (4096 LSB/g) |
|
// Rev C has different scaling than rev D |
|
_register_write(MPUREG_ACCEL_CONFIG,1<<3, true); |
|
_accel_scale = GRAVITY_MSS / 4096.f; |
|
_gyro_scale = (radians(1) / 16.4f); |
|
} else if (_mpu_type == Invensense_ICM20601) { |
|
// Accel scale 32g (4096 LSB/g) |
|
_register_write(MPUREG_ACCEL_CONFIG,1<<3, true); |
|
_accel_scale = GRAVITY_MSS / 4096.f; |
|
_gyro_scale = (radians(1) / 8.2f); |
|
_clip_limit = 29.5f * GRAVITY_MSS; |
|
} else { |
|
// Accel scale 16g (2048 LSB/g) |
|
_register_write(MPUREG_ACCEL_CONFIG,3<<3, true); |
|
_accel_scale = GRAVITY_MSS / 2048.f; |
|
_gyro_scale = (radians(1) / 16.4f); |
|
} |
|
hal.scheduler->delay(1); |
|
|
|
if (_mpu_type == Invensense_ICM20608 || |
|
_mpu_type == Invensense_ICM20602 || |
|
_mpu_type == Invensense_ICM20601) { |
|
// this avoids a sensor bug, see description above |
|
_register_write(MPUREG_ICM_UNDOC1, MPUREG_ICM_UNDOC1_VALUE, true); |
|
} |
|
|
|
// configure interrupt to fire when new data arrives |
|
_register_write(MPUREG_INT_ENABLE, BIT_RAW_RDY_EN); |
|
hal.scheduler->delay(1); |
|
|
|
// clear interrupt on any read, and hold the data ready pin high |
|
// until we clear the interrupt. We don't do this for the 20789 as |
|
// that sensor has already setup the appropriate config inside the |
|
// baro driver. |
|
if (_mpu_type != Invensense_ICM20789) { |
|
uint8_t v = _register_read(MPUREG_INT_PIN_CFG) | BIT_INT_RD_CLEAR | BIT_LATCH_INT_EN; |
|
v &= BIT_BYPASS_EN; |
|
_register_write(MPUREG_INT_PIN_CFG, v); |
|
} |
|
|
|
// now that we have initialised, we set the bus speed to high |
|
_dev->set_speed(AP_HAL::Device::SPEED_HIGH); |
|
|
|
_dev->get_semaphore()->give(); |
|
|
|
// setup sensor rotations from probe() |
|
set_gyro_orientation(_gyro_instance, _rotation); |
|
set_accel_orientation(_accel_instance, _rotation); |
|
|
|
// setup scale factors for fifo data after downsampling |
|
_fifo_accel_scale = _accel_scale / (MAX(_fifo_downsample_rate,2)/2); |
|
_fifo_gyro_scale = _gyro_scale / _fifo_downsample_rate; |
|
|
|
// allocate fifo buffer |
|
_fifo_buffer = (uint8_t *)hal.util->malloc_type(MPU_FIFO_BUFFER_LEN * MPU_SAMPLE_SIZE, AP_HAL::Util::MEM_DMA_SAFE); |
|
if (_fifo_buffer == nullptr) { |
|
AP_HAL::panic("Invensense: Unable to allocate FIFO buffer"); |
|
} |
|
|
|
// start the timer process to read samples |
|
_dev->register_periodic_callback(1000000UL / _backend_rate_hz, FUNCTOR_BIND_MEMBER(&AP_InertialSensor_Invensense::_poll_data, void)); |
|
} |
|
|
|
|
|
/* |
|
publish any pending data |
|
*/ |
|
bool AP_InertialSensor_Invensense::update() |
|
{ |
|
update_accel(_accel_instance); |
|
update_gyro(_gyro_instance); |
|
|
|
_publish_temperature(_accel_instance, _temp_filtered); |
|
|
|
return true; |
|
} |
|
|
|
/* |
|
accumulate new samples |
|
*/ |
|
void AP_InertialSensor_Invensense::accumulate() |
|
{ |
|
// nothing to do |
|
} |
|
|
|
AuxiliaryBus *AP_InertialSensor_Invensense::get_auxiliary_bus() |
|
{ |
|
if (_auxiliary_bus) { |
|
return _auxiliary_bus; |
|
} |
|
|
|
if (_has_auxiliary_bus()) { |
|
_auxiliary_bus = new AP_Invensense_AuxiliaryBus(*this, _dev->get_bus_id()); |
|
} |
|
|
|
return _auxiliary_bus; |
|
} |
|
|
|
/* |
|
* Return true if the Invensense has new data available for reading. |
|
* |
|
* We use the data ready pin if it is available. Otherwise, read the |
|
* status register. |
|
*/ |
|
bool AP_InertialSensor_Invensense::_data_ready() |
|
{ |
|
if (_drdy_pin) { |
|
return _drdy_pin->read() != 0; |
|
} |
|
uint8_t status = _register_read(MPUREG_INT_STATUS); |
|
return (status & BIT_RAW_RDY_INT) != 0; |
|
} |
|
|
|
/* |
|
* Timer process to poll for new data from the Invensense. Called from bus thread with semaphore held |
|
*/ |
|
void AP_InertialSensor_Invensense::_poll_data() |
|
{ |
|
_read_fifo(); |
|
} |
|
|
|
bool AP_InertialSensor_Invensense::_accumulate(uint8_t *samples, uint8_t n_samples) |
|
{ |
|
for (uint8_t i = 0; i < n_samples; i++) { |
|
const uint8_t *data = samples + MPU_SAMPLE_SIZE * i; |
|
Vector3f accel, gyro; |
|
bool fsync_set = false; |
|
|
|
#if INVENSENSE_EXT_SYNC_ENABLE |
|
fsync_set = (int16_val(data, 2) & 1U) != 0; |
|
#endif |
|
|
|
accel = Vector3f(int16_val(data, 1), |
|
int16_val(data, 0), |
|
-int16_val(data, 2)); |
|
accel *= _accel_scale; |
|
|
|
int16_t t2 = int16_val(data, 3); |
|
if (!_check_raw_temp(t2)) { |
|
debug("temp reset IMU[%u] %d %d", _accel_instance, _raw_temp, t2); |
|
_fifo_reset(); |
|
return false; |
|
} |
|
float temp = t2 * temp_sensitivity + temp_zero; |
|
|
|
gyro = Vector3f(int16_val(data, 5), |
|
int16_val(data, 4), |
|
-int16_val(data, 6)); |
|
gyro *= _gyro_scale; |
|
|
|
_rotate_and_correct_accel(_accel_instance, accel); |
|
_rotate_and_correct_gyro(_gyro_instance, gyro); |
|
|
|
_notify_new_accel_raw_sample(_accel_instance, accel, 0, fsync_set); |
|
_notify_new_gyro_raw_sample(_gyro_instance, gyro); |
|
|
|
_temp_filtered = _temp_filter.apply(temp); |
|
} |
|
return true; |
|
} |
|
|
|
/* |
|
when doing fast sampling the sensor gives us 8k samples/second. Every 2nd accel sample is a duplicate. |
|
|
|
To filter this we first apply a 1p low pass filter at 188Hz, then we |
|
average over 8 samples to bring the data rate down to 1kHz. This |
|
gives very good aliasing rejection at frequencies well above what |
|
can be handled with 1kHz sample rates. |
|
*/ |
|
bool AP_InertialSensor_Invensense::_accumulate_sensor_rate_sampling(uint8_t *samples, uint8_t n_samples) |
|
{ |
|
int32_t tsum = 0; |
|
const int32_t unscaled_clip_limit = _clip_limit / _accel_scale; |
|
bool clipped = false; |
|
bool ret = true; |
|
|
|
for (uint8_t i = 0; i < n_samples; i++) { |
|
const uint8_t *data = samples + MPU_SAMPLE_SIZE * i; |
|
|
|
// use temperatue to detect FIFO corruption |
|
int16_t t2 = int16_val(data, 3); |
|
if (!_check_raw_temp(t2)) { |
|
debug("temp reset IMU[%u] %d %d", _accel_instance, _raw_temp, t2); |
|
_fifo_reset(); |
|
ret = false; |
|
break; |
|
} |
|
tsum += t2; |
|
|
|
if ((_accum.count & 1) == 0) { |
|
// accel data is at 4kHz |
|
Vector3f a(int16_val(data, 1), |
|
int16_val(data, 0), |
|
-int16_val(data, 2)); |
|
if (fabsf(a.x) > unscaled_clip_limit || |
|
fabsf(a.y) > unscaled_clip_limit || |
|
fabsf(a.z) > unscaled_clip_limit) { |
|
clipped = true; |
|
} |
|
_accum.accel += _accum.accel_filter.apply(a); |
|
Vector3f a2 = a * _accel_scale; |
|
_notify_new_accel_sensor_rate_sample(_accel_instance, a2); |
|
} |
|
|
|
Vector3f g(int16_val(data, 5), |
|
int16_val(data, 4), |
|
-int16_val(data, 6)); |
|
|
|
Vector3f g2 = g * _gyro_scale; |
|
_notify_new_gyro_sensor_rate_sample(_gyro_instance, g2); |
|
|
|
_accum.gyro += _accum.gyro_filter.apply(g); |
|
_accum.count++; |
|
|
|
if (_accum.count == _fifo_downsample_rate) { |
|
|
|
_accum.accel *= _fifo_accel_scale; |
|
_accum.gyro *= _fifo_gyro_scale; |
|
|
|
_rotate_and_correct_accel(_accel_instance, _accum.accel); |
|
_rotate_and_correct_gyro(_gyro_instance, _accum.gyro); |
|
|
|
_notify_new_accel_raw_sample(_accel_instance, _accum.accel, 0, false); |
|
_notify_new_gyro_raw_sample(_gyro_instance, _accum.gyro); |
|
|
|
_accum.accel.zero(); |
|
_accum.gyro.zero(); |
|
_accum.count = 0; |
|
} |
|
} |
|
|
|
if (clipped) { |
|
increment_clip_count(_accel_instance); |
|
} |
|
|
|
if (ret) { |
|
float temp = (static_cast<float>(tsum)/n_samples)*temp_sensitivity + temp_zero; |
|
_temp_filtered = _temp_filter.apply(temp); |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
void AP_InertialSensor_Invensense::_read_fifo() |
|
{ |
|
uint8_t n_samples; |
|
uint16_t bytes_read; |
|
uint8_t *rx = _fifo_buffer; |
|
bool need_reset = false; |
|
|
|
if (!_block_read(MPUREG_FIFO_COUNTH, rx, 2)) { |
|
goto check_registers; |
|
} |
|
|
|
bytes_read = uint16_val(rx, 0); |
|
n_samples = bytes_read / MPU_SAMPLE_SIZE; |
|
|
|
if (n_samples == 0) { |
|
/* Not enough data in FIFO */ |
|
goto check_registers; |
|
} |
|
|
|
/* |
|
testing has shown that if we have more than 32 samples in the |
|
FIFO then some of those samples will be corrupt. It always is |
|
the ones at the end of the FIFO, so clear those with a reset |
|
once we've read the first 24. Reading 24 gives us the normal |
|
number of samples for fast sampling at 400Hz |
|
|
|
On I2C with the much lower clock rates we need a lower threshold |
|
or we may never catch up |
|
*/ |
|
if (_dev->bus_type() == AP_HAL::Device::BUS_TYPE_I2C) { |
|
if (n_samples > 4) { |
|
need_reset = true; |
|
n_samples = 4; |
|
} |
|
} else { |
|
if (n_samples > 32) { |
|
need_reset = true; |
|
n_samples = 24; |
|
} |
|
} |
|
|
|
while (n_samples > 0) { |
|
uint8_t n = MIN(n_samples, MPU_FIFO_BUFFER_LEN); |
|
if (!_dev->set_chip_select(true)) { |
|
if (!_block_read(MPUREG_FIFO_R_W, rx, n * MPU_SAMPLE_SIZE)) { |
|
goto check_registers; |
|
} |
|
} else { |
|
// this ensures we keep things nicely setup for DMA |
|
uint8_t reg = MPUREG_FIFO_R_W | 0x80; |
|
if (!_dev->transfer(®, 1, nullptr, 0)) { |
|
_dev->set_chip_select(false); |
|
goto check_registers; |
|
} |
|
memset(rx, 0, n * MPU_SAMPLE_SIZE); |
|
if (!_dev->transfer(rx, n * MPU_SAMPLE_SIZE, rx, n * MPU_SAMPLE_SIZE)) { |
|
hal.console->printf("MPU60x0: error in fifo read %u bytes\n", n * MPU_SAMPLE_SIZE); |
|
_dev->set_chip_select(false); |
|
goto check_registers; |
|
} |
|
_dev->set_chip_select(false); |
|
} |
|
|
|
if (_fast_sampling) { |
|
if (!_accumulate_sensor_rate_sampling(rx, n)) { |
|
debug("IMU[%u] stop at %u of %u", _accel_instance, n_samples, bytes_read/MPU_SAMPLE_SIZE); |
|
break; |
|
} |
|
} else { |
|
if (!_accumulate(rx, n)) { |
|
break; |
|
} |
|
} |
|
n_samples -= n; |
|
} |
|
|
|
if (need_reset) { |
|
//debug("fifo reset n_samples %u", bytes_read/MPU_SAMPLE_SIZE); |
|
_fifo_reset(); |
|
} |
|
|
|
check_registers: |
|
// check next register value for correctness |
|
_dev->set_speed(AP_HAL::Device::SPEED_LOW); |
|
if (!_dev->check_next_register()) { |
|
_inc_gyro_error_count(_gyro_instance); |
|
_inc_accel_error_count(_accel_instance); |
|
} |
|
_dev->set_speed(AP_HAL::Device::SPEED_HIGH); |
|
} |
|
|
|
/* |
|
fetch temperature in order to detect FIFO sync errors |
|
*/ |
|
bool AP_InertialSensor_Invensense::_check_raw_temp(int16_t t2) |
|
{ |
|
if (abs(t2 - _raw_temp) < 400) { |
|
// cached copy OK |
|
return true; |
|
} |
|
uint8_t trx[2]; |
|
if (_block_read(MPUREG_TEMP_OUT_H, trx, 2)) { |
|
_raw_temp = int16_val(trx, 0); |
|
} |
|
return (abs(t2 - _raw_temp) < 800); |
|
} |
|
|
|
bool AP_InertialSensor_Invensense::_block_read(uint8_t reg, uint8_t *buf, |
|
uint32_t size) |
|
{ |
|
return _dev->read_registers(reg, buf, size); |
|
} |
|
|
|
uint8_t AP_InertialSensor_Invensense::_register_read(uint8_t reg) |
|
{ |
|
uint8_t val = 0; |
|
_dev->read_registers(reg, &val, 1); |
|
return val; |
|
} |
|
|
|
void AP_InertialSensor_Invensense::_register_write(uint8_t reg, uint8_t val, bool checked) |
|
{ |
|
_dev->write_register(reg, val, checked); |
|
} |
|
|
|
/* |
|
set the DLPF filter frequency. Assumes caller has taken semaphore |
|
*/ |
|
void AP_InertialSensor_Invensense::_set_filter_register(void) |
|
{ |
|
uint8_t config; |
|
|
|
#if INVENSENSE_EXT_SYNC_ENABLE |
|
// add in EXT_SYNC bit if enabled |
|
config = (MPUREG_CONFIG_EXT_SYNC_AZ << MPUREG_CONFIG_EXT_SYNC_SHIFT); |
|
#else |
|
config = 0; |
|
#endif |
|
|
|
// assume 1kHz sampling to start |
|
_fifo_downsample_rate = 1; |
|
_backend_rate_hz = 1000; |
|
|
|
if (enable_fast_sampling(_accel_instance)) { |
|
_fast_sampling = (_mpu_type >= Invensense_MPU9250 && _dev->bus_type() == AP_HAL::Device::BUS_TYPE_SPI); |
|
if (_fast_sampling) { |
|
if (get_sample_rate_hz() <= 1000) { |
|
_fifo_downsample_rate = 8; |
|
} else if (get_sample_rate_hz() <= 2000) { |
|
_fifo_downsample_rate = 4; |
|
} else { |
|
_fifo_downsample_rate = 2; |
|
} |
|
// calculate rate we will be giving samples to the backend |
|
_backend_rate_hz *= (8 / _fifo_downsample_rate); |
|
|
|
// for logging purposes set the oversamping rate |
|
_set_accel_oversampling(_accel_instance, _fifo_downsample_rate/2); |
|
_set_gyro_oversampling(_gyro_instance, _fifo_downsample_rate); |
|
|
|
_set_accel_sensor_rate_sampling_enabled(_accel_instance, true); |
|
_set_gyro_sensor_rate_sampling_enabled(_gyro_instance, true); |
|
|
|
/* set divider for internal sample rate to 0x1F when fast |
|
sampling enabled. This reduces the impact of the slave |
|
sensor on the sample rate. It ends up with around 75Hz |
|
slave rate, and reduces the impact on the gyro and accel |
|
sample rate, ending up with around 7760Hz gyro rate and |
|
3880Hz accel rate |
|
*/ |
|
_register_write(MPUREG_I2C_SLV4_CTRL, 0x1F); |
|
} |
|
} |
|
|
|
if (_fast_sampling) { |
|
// this gives us 8kHz sampling on gyros and 4kHz on accels |
|
config |= BITS_DLPF_CFG_256HZ_NOLPF2; |
|
} else { |
|
// limit to 1kHz if not on SPI |
|
config |= BITS_DLPF_CFG_188HZ; |
|
} |
|
|
|
config |= MPUREG_CONFIG_FIFO_MODE_STOP; |
|
_register_write(MPUREG_CONFIG, config, true); |
|
|
|
if (_mpu_type != Invensense_MPU6000) { |
|
if (_fast_sampling) { |
|
// setup for 4kHz accels |
|
_register_write(ICMREG_ACCEL_CONFIG2, ICM_ACC_FCHOICE_B, true); |
|
} else { |
|
uint8_t fifo_size = (_mpu_type == Invensense_ICM20789 || _mpu_type == Invensense_ICM20689) ? 1:0; |
|
_register_write(ICMREG_ACCEL_CONFIG2, ICM_ACC_DLPF_CFG_218HZ | (fifo_size<<6), true); |
|
} |
|
} |
|
} |
|
|
|
/* |
|
check whoami for sensor type |
|
*/ |
|
bool AP_InertialSensor_Invensense::_check_whoami(void) |
|
{ |
|
uint8_t whoami = _register_read(MPUREG_WHOAMI); |
|
switch (whoami) { |
|
case MPU_WHOAMI_6000: |
|
_mpu_type = Invensense_MPU6000; |
|
return true; |
|
case MPU_WHOAMI_6500: |
|
_mpu_type = Invensense_MPU6500; |
|
return true; |
|
case MPU_WHOAMI_MPU9250: |
|
case MPU_WHOAMI_MPU9255: |
|
_mpu_type = Invensense_MPU9250; |
|
return true; |
|
case MPU_WHOAMI_20608: |
|
_mpu_type = Invensense_ICM20608; |
|
return true; |
|
case MPU_WHOAMI_20602: |
|
_mpu_type = Invensense_ICM20602; |
|
return true; |
|
case MPU_WHOAMI_20601: |
|
_mpu_type = Invensense_ICM20601; |
|
return true; |
|
case MPU_WHOAMI_ICM20789: |
|
case MPU_WHOAMI_ICM20789_R1: |
|
_mpu_type = Invensense_ICM20789; |
|
return true; |
|
case MPU_WHOAMI_ICM20689: |
|
_mpu_type = Invensense_ICM20689; |
|
return true; |
|
} |
|
// not a value WHOAMI result |
|
return false; |
|
} |
|
|
|
|
|
bool AP_InertialSensor_Invensense::_hardware_init(void) |
|
{ |
|
if (!_dev->get_semaphore()->take(HAL_SEMAPHORE_BLOCK_FOREVER)) { |
|
return false; |
|
} |
|
|
|
// setup for register checking. We check much less often on I2C |
|
// where the cost of the checks is higher |
|
_dev->setup_checked_registers(7, _dev->bus_type() == AP_HAL::Device::BUS_TYPE_I2C?200:20); |
|
|
|
// initially run the bus at low speed |
|
_dev->set_speed(AP_HAL::Device::SPEED_LOW); |
|
|
|
if (!_check_whoami()) { |
|
_dev->get_semaphore()->give(); |
|
return false; |
|
} |
|
|
|
// Chip reset |
|
uint8_t tries; |
|
for (tries = 0; tries < 5; tries++) { |
|
_last_stat_user_ctrl = _register_read(MPUREG_USER_CTRL); |
|
|
|
/* First disable the master I2C to avoid hanging the slaves on the |
|
* aulixiliar I2C bus - it will be enabled again if the AuxiliaryBus |
|
* is used */ |
|
if (_last_stat_user_ctrl & BIT_USER_CTRL_I2C_MST_EN) { |
|
_last_stat_user_ctrl &= ~BIT_USER_CTRL_I2C_MST_EN; |
|
_register_write(MPUREG_USER_CTRL, _last_stat_user_ctrl); |
|
hal.scheduler->delay(10); |
|
} |
|
|
|
/* reset device */ |
|
_register_write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_DEVICE_RESET); |
|
hal.scheduler->delay(100); |
|
|
|
/* bus-dependent initialization */ |
|
if (_dev->bus_type() == AP_HAL::Device::BUS_TYPE_SPI) { |
|
/* Disable I2C bus if SPI selected (Recommended in Datasheet to be |
|
* done just after the device is reset) */ |
|
_last_stat_user_ctrl |= BIT_USER_CTRL_I2C_IF_DIS; |
|
_register_write(MPUREG_USER_CTRL, _last_stat_user_ctrl); |
|
} |
|
|
|
/* bus-dependent initialization */ |
|
if ((_dev->bus_type() == AP_HAL::Device::BUS_TYPE_I2C) && (_mpu_type == Invensense_MPU9250 || _mpu_type == Invensense_ICM20789)) { |
|
/* Enable I2C bypass to access internal device */ |
|
_register_write(MPUREG_INT_PIN_CFG, BIT_BYPASS_EN); |
|
} |
|
|
|
|
|
// Wake up device and select GyroZ clock. Note that the |
|
// Invensense starts up in sleep mode, and it can take some time |
|
// for it to come out of sleep |
|
_register_write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_CLK_ZGYRO); |
|
hal.scheduler->delay(5); |
|
|
|
// check it has woken up |
|
if (_register_read(MPUREG_PWR_MGMT_1) == BIT_PWR_MGMT_1_CLK_ZGYRO) { |
|
break; |
|
} |
|
|
|
hal.scheduler->delay(10); |
|
if (_data_ready()) { |
|
break; |
|
} |
|
} |
|
|
|
_dev->set_speed(AP_HAL::Device::SPEED_HIGH); |
|
|
|
if (tries == 5) { |
|
hal.console->printf("Failed to boot Invensense 5 times\n"); |
|
_dev->get_semaphore()->give(); |
|
return false; |
|
} |
|
|
|
if (_mpu_type == Invensense_ICM20608 || |
|
_mpu_type == Invensense_ICM20602 || |
|
_mpu_type == Invensense_ICM20601) { |
|
// this avoids a sensor bug, see description above |
|
_register_write(MPUREG_ICM_UNDOC1, MPUREG_ICM_UNDOC1_VALUE, true); |
|
} |
|
_dev->get_semaphore()->give(); |
|
|
|
return true; |
|
} |
|
|
|
AP_Invensense_AuxiliaryBusSlave::AP_Invensense_AuxiliaryBusSlave(AuxiliaryBus &bus, uint8_t addr, |
|
uint8_t instance) |
|
: AuxiliaryBusSlave(bus, addr, instance) |
|
, _mpu_addr(MPUREG_I2C_SLV0_ADDR + _instance * 3) |
|
, _mpu_reg(_mpu_addr + 1) |
|
, _mpu_ctrl(_mpu_addr + 2) |
|
, _mpu_do(MPUREG_I2C_SLV0_DO + _instance) |
|
{ |
|
} |
|
|
|
int AP_Invensense_AuxiliaryBusSlave::_set_passthrough(uint8_t reg, uint8_t size, |
|
uint8_t *out) |
|
{ |
|
auto &backend = AP_InertialSensor_Invensense::from(_bus.get_backend()); |
|
uint8_t addr; |
|
|
|
/* Ensure the slave read/write is disabled before changing the registers */ |
|
backend._register_write(_mpu_ctrl, 0); |
|
|
|
if (out) { |
|
backend._register_write(_mpu_do, *out); |
|
addr = _addr; |
|
} else { |
|
addr = _addr | BIT_READ_FLAG; |
|
} |
|
|
|
backend._register_write(_mpu_addr, addr); |
|
backend._register_write(_mpu_reg, reg); |
|
backend._register_write(_mpu_ctrl, BIT_I2C_SLVX_EN | size); |
|
|
|
return 0; |
|
} |
|
|
|
int AP_Invensense_AuxiliaryBusSlave::passthrough_read(uint8_t reg, uint8_t *buf, |
|
uint8_t size) |
|
{ |
|
assert(buf); |
|
|
|
if (_registered) { |
|
hal.console->printf("Error: can't passthrough when slave is already configured\n"); |
|
return -1; |
|
} |
|
|
|
int r = _set_passthrough(reg, size); |
|
if (r < 0) { |
|
return r; |
|
} |
|
|
|
/* wait the value to be read from the slave and read it back */ |
|
hal.scheduler->delay(10); |
|
|
|
auto &backend = AP_InertialSensor_Invensense::from(_bus.get_backend()); |
|
if (!backend._block_read(MPUREG_EXT_SENS_DATA_00 + _ext_sens_data, buf, size)) { |
|
return -1; |
|
} |
|
|
|
/* disable new reads */ |
|
backend._register_write(_mpu_ctrl, 0); |
|
|
|
return size; |
|
} |
|
|
|
int AP_Invensense_AuxiliaryBusSlave::passthrough_write(uint8_t reg, uint8_t val) |
|
{ |
|
if (_registered) { |
|
hal.console->printf("Error: can't passthrough when slave is already configured\n"); |
|
return -1; |
|
} |
|
|
|
int r = _set_passthrough(reg, 1, &val); |
|
if (r < 0) { |
|
return r; |
|
} |
|
|
|
/* wait the value to be written to the slave */ |
|
hal.scheduler->delay(10); |
|
|
|
auto &backend = AP_InertialSensor_Invensense::from(_bus.get_backend()); |
|
|
|
/* disable new writes */ |
|
backend._register_write(_mpu_ctrl, 0); |
|
|
|
return 1; |
|
} |
|
|
|
int AP_Invensense_AuxiliaryBusSlave::read(uint8_t *buf) |
|
{ |
|
if (!_registered) { |
|
hal.console->printf("Error: can't read before configuring slave\n"); |
|
return -1; |
|
} |
|
|
|
auto &backend = AP_InertialSensor_Invensense::from(_bus.get_backend()); |
|
if (!backend._block_read(MPUREG_EXT_SENS_DATA_00 + _ext_sens_data, buf, _sample_size)) { |
|
return -1; |
|
} |
|
|
|
return _sample_size; |
|
} |
|
|
|
/* Invensense provides up to 5 slave devices, but the 5th is way too different to |
|
* configure and is seldom used */ |
|
AP_Invensense_AuxiliaryBus::AP_Invensense_AuxiliaryBus(AP_InertialSensor_Invensense &backend, uint32_t devid) |
|
: AuxiliaryBus(backend, 4, devid) |
|
{ |
|
} |
|
|
|
AP_HAL::Semaphore *AP_Invensense_AuxiliaryBus::get_semaphore() |
|
{ |
|
return static_cast<AP_InertialSensor_Invensense&>(_ins_backend)._dev->get_semaphore(); |
|
} |
|
|
|
AuxiliaryBusSlave *AP_Invensense_AuxiliaryBus::_instantiate_slave(uint8_t addr, uint8_t instance) |
|
{ |
|
/* Enable slaves on Invensense if this is the first time */ |
|
if (_ext_sens_data == 0) { |
|
_configure_slaves(); |
|
} |
|
|
|
return new AP_Invensense_AuxiliaryBusSlave(*this, addr, instance); |
|
} |
|
|
|
void AP_Invensense_AuxiliaryBus::_configure_slaves() |
|
{ |
|
auto &backend = AP_InertialSensor_Invensense::from(_ins_backend); |
|
|
|
if (backend._mpu_type == AP_InertialSensor_Invensense::Invensense_ICM20789) { |
|
// on 20789 we can't enable slaves if we want to be able to use the baro |
|
return; |
|
} |
|
|
|
if (!backend._dev->get_semaphore()->take(HAL_SEMAPHORE_BLOCK_FOREVER)) { |
|
return; |
|
} |
|
|
|
/* Enable the I2C master to slaves on the auxiliary I2C bus*/ |
|
if (!(backend._last_stat_user_ctrl & BIT_USER_CTRL_I2C_MST_EN)) { |
|
backend._last_stat_user_ctrl |= BIT_USER_CTRL_I2C_MST_EN; |
|
backend._register_write(MPUREG_USER_CTRL, backend._last_stat_user_ctrl); |
|
} |
|
|
|
/* stop condition between reads; clock at 400kHz */ |
|
backend._register_write(MPUREG_I2C_MST_CTRL, |
|
BIT_I2C_MST_P_NSR | BIT_I2C_MST_CLK_400KHZ); |
|
|
|
/* Hard-code divider for internal sample rate, 1 kHz, resulting in a |
|
* sample rate of 100Hz */ |
|
backend._register_write(MPUREG_I2C_SLV4_CTRL, 9); |
|
|
|
/* All slaves are subject to the sample rate */ |
|
backend._register_write(MPUREG_I2C_MST_DELAY_CTRL, |
|
BIT_I2C_SLV0_DLY_EN | BIT_I2C_SLV1_DLY_EN | |
|
BIT_I2C_SLV2_DLY_EN | BIT_I2C_SLV3_DLY_EN); |
|
|
|
backend._dev->get_semaphore()->give(); |
|
} |
|
|
|
int AP_Invensense_AuxiliaryBus::_configure_periodic_read(AuxiliaryBusSlave *slave, |
|
uint8_t reg, uint8_t size) |
|
{ |
|
if (_ext_sens_data + size > MAX_EXT_SENS_DATA) { |
|
return -1; |
|
} |
|
|
|
AP_Invensense_AuxiliaryBusSlave *mpu_slave = |
|
static_cast<AP_Invensense_AuxiliaryBusSlave*>(slave); |
|
mpu_slave->_set_passthrough(reg, size); |
|
mpu_slave->_ext_sens_data = _ext_sens_data; |
|
_ext_sens_data += size; |
|
|
|
return 0; |
|
} |
|
|
|
AP_HAL::Device::PeriodicHandle AP_Invensense_AuxiliaryBus::register_periodic_callback(uint32_t period_usec, AP_HAL::Device::PeriodicCb cb) |
|
{ |
|
auto &backend = AP_InertialSensor_Invensense::from(_ins_backend); |
|
return backend._dev->register_periodic_callback(period_usec, cb); |
|
}
|
|
|