You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
440 lines
12 KiB
440 lines
12 KiB
/* |
|
* matrix3.cpp |
|
* Copyright (C) Siddharth Bharat Purohit, 3DRobotics Inc. 2015 |
|
* |
|
* This file is free software: you can redistribute it and/or modify it |
|
* under the terms of the GNU General Public License as published by the |
|
* Free Software Foundation, either version 3 of the License, or |
|
* (at your option) any later version. |
|
* |
|
* This file is distributed in the hope that it will be useful, but |
|
* WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
|
* See the GNU General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU General Public License along |
|
* with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
#pragma GCC optimize("O2") |
|
|
|
#include <AP_HAL/AP_HAL.h> |
|
|
|
#include <stdio.h> |
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL |
|
#include <fenv.h> |
|
#endif |
|
|
|
#include <AP_Math/AP_Math.h> |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
//TODO: use higher precision datatypes to achieve more accuracy for matrix algebra operations |
|
|
|
/* |
|
* Does matrix multiplication of two regular/square matrices |
|
* |
|
* @param A, Matrix A |
|
* @param B, Matrix B |
|
* @param n, dimemsion of square matrices |
|
* @returns multiplied matrix i.e. A*B |
|
*/ |
|
|
|
float* mat_mul(float *A, float *B, uint8_t n) |
|
{ |
|
float* ret = new float[n*n]; |
|
memset(ret,0.0f,n*n*sizeof(float)); |
|
|
|
for(uint8_t i = 0; i < n; i++) { |
|
for(uint8_t j = 0; j < n; j++) { |
|
for(uint8_t k = 0;k < n; k++) { |
|
ret[i*n + j] += A[i*n + k] * B[k*n + j]; |
|
} |
|
} |
|
} |
|
return ret; |
|
} |
|
|
|
static inline void swap(float &a, float &b) |
|
{ |
|
float c; |
|
c = a; |
|
a = b; |
|
b = c; |
|
} |
|
|
|
/* |
|
* calculates pivot matrix such that all the larger elements in the row are on diagonal |
|
* |
|
* @param A, input matrix matrix |
|
* @param pivot |
|
* @param n, dimenstion of square matrix |
|
* @returns false = matrix is Singular or non positive definite, true = matrix inversion successful |
|
*/ |
|
|
|
static void mat_pivot(float* A, float* pivot, uint8_t n) |
|
{ |
|
for(uint8_t i = 0;i<n;i++){ |
|
for(uint8_t j=0;j<n;j++) { |
|
pivot[i*n+j] = static_cast<float>(i==j); |
|
} |
|
} |
|
|
|
for(uint8_t i = 0;i < n; i++) { |
|
uint8_t max_j = i; |
|
for(uint8_t j=i;j<n;j++){ |
|
if(fabsf(A[j*n + i]) > fabsf(A[max_j*n + i])) { |
|
max_j = j; |
|
} |
|
} |
|
|
|
if(max_j != i) { |
|
for(uint8_t k = 0; k < n; k++) { |
|
swap(pivot[i*n + k], pivot[max_j*n + k]); |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* |
|
* calculates matrix inverse of Lower trangular matrix using forward substitution |
|
* |
|
* @param L, lower triangular matrix |
|
* @param out, Output inverted lower triangular matrix |
|
* @param n, dimension of matrix |
|
*/ |
|
|
|
static void mat_forward_sub(float *L, float *out, uint8_t n) |
|
{ |
|
// Forward substitution solve LY = I |
|
for(int i = 0; i < n; i++) { |
|
out[i*n + i] = 1/L[i*n + i]; |
|
for (int j = i+1; j < n; j++) { |
|
for (int k = i; k < j; k++) { |
|
out[j*n + i] -= L[j*n + k] * out[k*n + i]; |
|
} |
|
out[j*n + i] /= L[j*n + j]; |
|
} |
|
} |
|
} |
|
|
|
/* |
|
* calculates matrix inverse of Upper trangular matrix using backward substitution |
|
* |
|
* @param U, upper triangular matrix |
|
* @param out, Output inverted upper triangular matrix |
|
* @param n, dimension of matrix |
|
*/ |
|
|
|
static void mat_back_sub(float *U, float *out, uint8_t n) |
|
{ |
|
// Backward Substitution solve UY = I |
|
for(int i = n-1; i >= 0; i--) { |
|
out[i*n + i] = 1/U[i*n + i]; |
|
for (int j = i - 1; j >= 0; j--) { |
|
for (int k = i; k > j; k--) { |
|
out[j*n + i] -= U[j*n + k] * out[k*n + i]; |
|
} |
|
out[j*n + i] /= U[j*n + j]; |
|
} |
|
} |
|
} |
|
|
|
/* |
|
* Decomposes square matrix into Lower and Upper triangular matrices such that |
|
* A*P = L*U, where P is the pivot matrix |
|
* ref: http://rosettacode.org/wiki/LU_decomposition |
|
* @param U, upper triangular matrix |
|
* @param out, Output inverted upper triangular matrix |
|
* @param n, dimension of matrix |
|
*/ |
|
|
|
static void mat_LU_decompose(float* A, float* L, float* U, float *P, uint8_t n) |
|
{ |
|
memset(L,0,n*n*sizeof(float)); |
|
memset(U,0,n*n*sizeof(float)); |
|
memset(P,0,n*n*sizeof(float)); |
|
mat_pivot(A,P,n); |
|
|
|
float *APrime = mat_mul(P,A,n); |
|
for(uint8_t i = 0; i < n; i++) { |
|
L[i*n + i] = 1; |
|
} |
|
for(uint8_t i = 0; i < n; i++) { |
|
for(uint8_t j = 0; j < n; j++) { |
|
if(j <= i) { |
|
U[j*n + i] = APrime[j*n + i]; |
|
for(uint8_t k = 0; k < j; k++) { |
|
U[j*n + i] -= L[j*n + k] * U[k*n + i]; |
|
} |
|
} |
|
if(j >= i) { |
|
L[j*n + i] = APrime[j*n + i]; |
|
for(uint8_t k = 0; k < i; k++) { |
|
L[j*n + i] -= L[j*n + k] * U[k*n + i]; |
|
} |
|
L[j*n + i] /= U[i*n + i]; |
|
} |
|
} |
|
} |
|
delete[] APrime; |
|
} |
|
|
|
/* |
|
* matrix inverse code for any square matrix using LU decomposition |
|
* inv = inv(U)*inv(L)*P, where L and U are triagular matrices and P the pivot matrix |
|
* ref: http://www.cl.cam.ac.uk/teaching/1314/NumMethods/supporting/mcmaster-kiruba-ludecomp.pdf |
|
* @param m, input 4x4 matrix |
|
* @param inv, Output inverted 4x4 matrix |
|
* @param n, dimension of square matrix |
|
* @returns false = matrix is Singular, true = matrix inversion successful |
|
*/ |
|
static bool mat_inverse(float* A, float* inv, uint8_t n) |
|
{ |
|
float *L, *U, *P; |
|
bool ret = true; |
|
L = new float[n*n]; |
|
U = new float[n*n]; |
|
P = new float[n*n]; |
|
mat_LU_decompose(A,L,U,P,n); |
|
|
|
float *L_inv = new float[n*n]; |
|
float *U_inv = new float[n*n]; |
|
|
|
memset(L_inv,0,n*n*sizeof(float)); |
|
mat_forward_sub(L,L_inv,n); |
|
|
|
memset(U_inv,0,n*n*sizeof(float)); |
|
mat_back_sub(U,U_inv,n); |
|
|
|
// decomposed matrices no longer required |
|
delete[] L; |
|
delete[] U; |
|
|
|
float *inv_unpivoted = mat_mul(U_inv,L_inv,n); |
|
float *inv_pivoted = mat_mul(inv_unpivoted, P, n); |
|
|
|
//check sanity of results |
|
for(uint8_t i = 0; i < n; i++) { |
|
for(uint8_t j = 0; j < n; j++) { |
|
if(isnan(inv_pivoted[i*n+j]) || isinf(inv_pivoted[i*n+j])){ |
|
ret = false; |
|
} |
|
} |
|
} |
|
memcpy(inv,inv_pivoted,n*n*sizeof(float)); |
|
|
|
//free memory |
|
delete[] inv_pivoted; |
|
delete[] inv_unpivoted; |
|
delete[] P; |
|
delete[] U_inv; |
|
delete[] L_inv; |
|
return ret; |
|
} |
|
|
|
/* |
|
* fast matrix inverse code only for 3x3 square matrix |
|
* |
|
* @param m, input 4x4 matrix |
|
* @param invOut, Output inverted 4x4 matrix |
|
* @returns false = matrix is Singular, true = matrix inversion successful |
|
*/ |
|
|
|
bool inverse3x3(float m[], float invOut[]) |
|
{ |
|
float inv[9]; |
|
// computes the inverse of a matrix m |
|
float det = m[0] * (m[4] * m[8] - m[7] * m[5]) - |
|
m[1] * (m[3] * m[8] - m[5] * m[6]) + |
|
m[2] * (m[3] * m[7] - m[4] * m[6]); |
|
if (is_zero(det) || isinf(det)) { |
|
return false; |
|
} |
|
|
|
float invdet = 1 / det; |
|
|
|
inv[0] = (m[4] * m[8] - m[7] * m[5]) * invdet; |
|
inv[1] = (m[2] * m[7] - m[1] * m[8]) * invdet; |
|
inv[2] = (m[1] * m[5] - m[2] * m[4]) * invdet; |
|
inv[3] = (m[5] * m[6] - m[3] * m[8]) * invdet; |
|
inv[4] = (m[0] * m[8] - m[2] * m[6]) * invdet; |
|
inv[5] = (m[3] * m[2] - m[0] * m[5]) * invdet; |
|
inv[6] = (m[3] * m[7] - m[6] * m[4]) * invdet; |
|
inv[7] = (m[6] * m[1] - m[0] * m[7]) * invdet; |
|
inv[8] = (m[0] * m[4] - m[3] * m[1]) * invdet; |
|
|
|
for(uint8_t i = 0; i < 9; i++){ |
|
invOut[i] = inv[i]; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
/* |
|
* fast matrix inverse code only for 4x4 square matrix copied from |
|
* gluInvertMatrix implementation in opengl for 4x4 matrices. |
|
* |
|
* @param m, input 4x4 matrix |
|
* @param invOut, Output inverted 4x4 matrix |
|
* @returns false = matrix is Singular, true = matrix inversion successful |
|
*/ |
|
|
|
bool inverse4x4(float m[],float invOut[]) |
|
{ |
|
float inv[16], det; |
|
uint8_t i; |
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL |
|
int old = fedisableexcept(FE_OVERFLOW); |
|
if (old < 0) { |
|
hal.console->printf("inverse4x4(): warning: error on disabling FE_OVERFLOW floating point exception\n"); |
|
} |
|
#endif |
|
|
|
inv[0] = m[5] * m[10] * m[15] - |
|
m[5] * m[11] * m[14] - |
|
m[9] * m[6] * m[15] + |
|
m[9] * m[7] * m[14] + |
|
m[13] * m[6] * m[11] - |
|
m[13] * m[7] * m[10]; |
|
|
|
inv[4] = -m[4] * m[10] * m[15] + |
|
m[4] * m[11] * m[14] + |
|
m[8] * m[6] * m[15] - |
|
m[8] * m[7] * m[14] - |
|
m[12] * m[6] * m[11] + |
|
m[12] * m[7] * m[10]; |
|
|
|
inv[8] = m[4] * m[9] * m[15] - |
|
m[4] * m[11] * m[13] - |
|
m[8] * m[5] * m[15] + |
|
m[8] * m[7] * m[13] + |
|
m[12] * m[5] * m[11] - |
|
m[12] * m[7] * m[9]; |
|
|
|
inv[12] = -m[4] * m[9] * m[14] + |
|
m[4] * m[10] * m[13] + |
|
m[8] * m[5] * m[14] - |
|
m[8] * m[6] * m[13] - |
|
m[12] * m[5] * m[10] + |
|
m[12] * m[6] * m[9]; |
|
|
|
inv[1] = -m[1] * m[10] * m[15] + |
|
m[1] * m[11] * m[14] + |
|
m[9] * m[2] * m[15] - |
|
m[9] * m[3] * m[14] - |
|
m[13] * m[2] * m[11] + |
|
m[13] * m[3] * m[10]; |
|
|
|
inv[5] = m[0] * m[10] * m[15] - |
|
m[0] * m[11] * m[14] - |
|
m[8] * m[2] * m[15] + |
|
m[8] * m[3] * m[14] + |
|
m[12] * m[2] * m[11] - |
|
m[12] * m[3] * m[10]; |
|
|
|
inv[9] = -m[0] * m[9] * m[15] + |
|
m[0] * m[11] * m[13] + |
|
m[8] * m[1] * m[15] - |
|
m[8] * m[3] * m[13] - |
|
m[12] * m[1] * m[11] + |
|
m[12] * m[3] * m[9]; |
|
|
|
inv[13] = m[0] * m[9] * m[14] - |
|
m[0] * m[10] * m[13] - |
|
m[8] * m[1] * m[14] + |
|
m[8] * m[2] * m[13] + |
|
m[12] * m[1] * m[10] - |
|
m[12] * m[2] * m[9]; |
|
|
|
inv[2] = m[1] * m[6] * m[15] - |
|
m[1] * m[7] * m[14] - |
|
m[5] * m[2] * m[15] + |
|
m[5] * m[3] * m[14] + |
|
m[13] * m[2] * m[7] - |
|
m[13] * m[3] * m[6]; |
|
|
|
inv[6] = -m[0] * m[6] * m[15] + |
|
m[0] * m[7] * m[14] + |
|
m[4] * m[2] * m[15] - |
|
m[4] * m[3] * m[14] - |
|
m[12] * m[2] * m[7] + |
|
m[12] * m[3] * m[6]; |
|
|
|
inv[10] = m[0] * m[5] * m[15] - |
|
m[0] * m[7] * m[13] - |
|
m[4] * m[1] * m[15] + |
|
m[4] * m[3] * m[13] + |
|
m[12] * m[1] * m[7] - |
|
m[12] * m[3] * m[5]; |
|
|
|
inv[14] = -m[0] * m[5] * m[14] + |
|
m[0] * m[6] * m[13] + |
|
m[4] * m[1] * m[14] - |
|
m[4] * m[2] * m[13] - |
|
m[12] * m[1] * m[6] + |
|
m[12] * m[2] * m[5]; |
|
|
|
inv[3] = -m[1] * m[6] * m[11] + |
|
m[1] * m[7] * m[10] + |
|
m[5] * m[2] * m[11] - |
|
m[5] * m[3] * m[10] - |
|
m[9] * m[2] * m[7] + |
|
m[9] * m[3] * m[6]; |
|
|
|
inv[7] = m[0] * m[6] * m[11] - |
|
m[0] * m[7] * m[10] - |
|
m[4] * m[2] * m[11] + |
|
m[4] * m[3] * m[10] + |
|
m[8] * m[2] * m[7] - |
|
m[8] * m[3] * m[6]; |
|
|
|
inv[11] = -m[0] * m[5] * m[11] + |
|
m[0] * m[7] * m[9] + |
|
m[4] * m[1] * m[11] - |
|
m[4] * m[3] * m[9] - |
|
m[8] * m[1] * m[7] + |
|
m[8] * m[3] * m[5]; |
|
|
|
inv[15] = m[0] * m[5] * m[10] - |
|
m[0] * m[6] * m[9] - |
|
m[4] * m[1] * m[10] + |
|
m[4] * m[2] * m[9] + |
|
m[8] * m[1] * m[6] - |
|
m[8] * m[2] * m[5]; |
|
|
|
det = m[0] * inv[0] + m[1] * inv[4] + m[2] * inv[8] + m[3] * inv[12]; |
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL |
|
if (old >= 0 && feenableexcept(old) < 0) { |
|
hal.console->printf("inverse4x4(): warning: error on restoring floating exception mask\n"); |
|
} |
|
#endif |
|
|
|
if (is_zero(det) || isinf(det)){ |
|
return false; |
|
} |
|
|
|
det = 1.0f / det; |
|
|
|
for (i = 0; i < 16; i++) |
|
invOut[i] = inv[i] * det; |
|
return true; |
|
} |
|
|
|
/* |
|
* generic matrix inverse code |
|
* |
|
* @param x, input nxn matrix |
|
* @param y, Output inverted nxn matrix |
|
* @param n, dimension of square matrix |
|
* @returns false = matrix is Singular, true = matrix inversion successful |
|
*/ |
|
bool inverse(float x[], float y[], uint16_t dim) |
|
{ |
|
switch(dim){ |
|
case 3: return inverse3x3(x,y); |
|
case 4: return inverse4x4(x,y); |
|
default: return mat_inverse(x,y,dim); |
|
} |
|
}
|
|
|