You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
235 lines
8.1 KiB
235 lines
8.1 KiB
/* |
|
* Copyright (C) 2015-2016 Intel Corporation. All rights reserved. |
|
* |
|
* This file is free software: you can redistribute it and/or modify it |
|
* under the terms of the GNU General Public License as published by the |
|
* Free Software Foundation, either version 3 of the License, or |
|
* (at your option) any later version. |
|
* |
|
* This file is distributed in the hope that it will be useful, but |
|
* WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
|
* See the GNU General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU General Public License along |
|
* with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
#include <cassert> |
|
#include <vector> |
|
|
|
#include "math_test.h" |
|
#include <AP_Math/AP_GeodesicGrid.h> |
|
|
|
class TestParam { |
|
public: |
|
/** |
|
* Vector to be tested. |
|
*/ |
|
Vector3f v; |
|
/** |
|
* Expected section if when AP_GeodesicGrid::section() is called with |
|
* inclusive set as false. |
|
*/ |
|
int section; |
|
/** |
|
* Array terminated with -1. This doesn't have to be touched if #section |
|
* isn't negative. If #section is -1, then calling |
|
* AP_GeodesicGrid::section() with inclusive set as true expects a return |
|
* value as one of the values in #inclusive_sections. |
|
*/ |
|
int inclusive_sections[7]; |
|
}; |
|
|
|
class GeodesicGridTest : public ::testing::TestWithParam<TestParam> { |
|
protected: |
|
/** |
|
* Test the functions for triangles indexes. |
|
* |
|
* @param p[in] The test parameter. |
|
*/ |
|
void test_triangles_indexes(const TestParam &p) { |
|
if (p.section >= 0) { |
|
int expected_triangle = |
|
p.section / AP_GeodesicGrid::NUM_SUBTRIANGLES; |
|
int triangle = AP_GeodesicGrid::_triangle_index(p.v, false); |
|
ASSERT_EQ(expected_triangle, triangle); |
|
|
|
int expected_subtriangle = |
|
p.section % AP_GeodesicGrid::NUM_SUBTRIANGLES; |
|
int subtriangle = |
|
AP_GeodesicGrid::_subtriangle_index(triangle, p.v, false); |
|
ASSERT_EQ(expected_subtriangle, subtriangle); |
|
} else { |
|
int triangle = AP_GeodesicGrid::_triangle_index(p.v, false); |
|
if (triangle >= 0) { |
|
int subtriangle = AP_GeodesicGrid::_subtriangle_index(triangle, |
|
p.v, |
|
false); |
|
ASSERT_EQ(-1, subtriangle) << "triangle is " << triangle; |
|
} |
|
} |
|
} |
|
}; |
|
|
|
static const Vector3f triangles[20][3] = { |
|
{{-M_GOLDEN, 1, 0}, {-1, 0,-M_GOLDEN}, {-M_GOLDEN,-1, 0}}, |
|
{{-1, 0,-M_GOLDEN}, {-M_GOLDEN,-1, 0}, { 0,-M_GOLDEN,-1}}, |
|
{{-M_GOLDEN,-1, 0}, { 0,-M_GOLDEN,-1}, { 0,-M_GOLDEN, 1}}, |
|
{{-1, 0,-M_GOLDEN}, { 0,-M_GOLDEN,-1}, { 1, 0,-M_GOLDEN}}, |
|
{{ 0,-M_GOLDEN,-1}, { 0,-M_GOLDEN, 1}, { M_GOLDEN,-1, 0}}, |
|
{{ 0,-M_GOLDEN,-1}, { 1, 0,-M_GOLDEN}, { M_GOLDEN,-1, 0}}, |
|
{{ M_GOLDEN,-1, 0}, { 1, 0,-M_GOLDEN}, { M_GOLDEN, 1, 0}}, |
|
{{ 1, 0,-M_GOLDEN}, { M_GOLDEN, 1, 0}, { 0, M_GOLDEN,-1}}, |
|
{{ 1, 0,-M_GOLDEN}, { 0, M_GOLDEN,-1}, {-1, 0,-M_GOLDEN}}, |
|
{{ 0, M_GOLDEN,-1}, {-M_GOLDEN, 1, 0}, {-1, 0,-M_GOLDEN}}, |
|
|
|
{{ M_GOLDEN,-1, 0}, { 1, 0, M_GOLDEN}, { M_GOLDEN, 1, 0}}, |
|
{{ 1, 0, M_GOLDEN}, { M_GOLDEN, 1, 0}, { 0, M_GOLDEN, 1}}, |
|
{{ M_GOLDEN, 1, 0}, { 0, M_GOLDEN, 1}, { 0, M_GOLDEN,-1}}, |
|
{{ 1, 0, M_GOLDEN}, { 0, M_GOLDEN, 1}, {-1, 0, M_GOLDEN}}, |
|
{{ 0, M_GOLDEN, 1}, { 0, M_GOLDEN,-1}, {-M_GOLDEN, 1, 0}}, |
|
{{ 0, M_GOLDEN, 1}, {-1, 0, M_GOLDEN}, {-M_GOLDEN, 1, 0}}, |
|
{{-M_GOLDEN, 1, 0}, {-1, 0, M_GOLDEN}, {-M_GOLDEN,-1, 0}}, |
|
{{-1, 0, M_GOLDEN}, {-M_GOLDEN,-1, 0}, { 0,-M_GOLDEN, 1}}, |
|
{{-1, 0, M_GOLDEN}, { 0,-M_GOLDEN, 1}, { 1, 0, M_GOLDEN}}, |
|
{{ 0,-M_GOLDEN, 1}, { M_GOLDEN,-1, 0}, { 1, 0, M_GOLDEN}}, |
|
}; |
|
|
|
static bool section_triangle(unsigned int section_index, |
|
Vector3f &a, |
|
Vector3f &b, |
|
Vector3f &c) { |
|
if (section_index >= 80) { |
|
return false; |
|
} |
|
|
|
unsigned int i = section_index / 4; |
|
unsigned int j = section_index % 4; |
|
auto &t = triangles[i]; |
|
Vector3f mt[3]{(t[0] + t[1]) / 2, (t[1] + t[2]) / 2, (t[2] + t[0]) / 2}; |
|
|
|
switch (j) { |
|
case 0: |
|
a = mt[0]; |
|
b = mt[1]; |
|
c = mt[2]; |
|
break; |
|
case 1: |
|
a = t[0]; |
|
b = mt[0]; |
|
c = mt[2]; |
|
break; |
|
case 2: |
|
a = mt[0]; |
|
b = t[1]; |
|
c = mt[1]; |
|
break; |
|
case 3: |
|
a = mt[2]; |
|
b = mt[1]; |
|
c = t[2]; |
|
break; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
AP_GTEST_PRINTATBLE_PARAM_MEMBER(TestParam, v); |
|
|
|
TEST_P(GeodesicGridTest, Sections) |
|
{ |
|
auto p = GetParam(); |
|
|
|
test_triangles_indexes(p); |
|
EXPECT_EQ(p.section, AP_GeodesicGrid::section(p.v)); |
|
|
|
if (p.section < 0) { |
|
int s = AP_GeodesicGrid::section(p.v, true); |
|
int i; |
|
for (i = 0; p.inclusive_sections[i] > 0; i++) { |
|
assert(i < 7); |
|
if (s == p.inclusive_sections[i]) { |
|
break; |
|
} |
|
} |
|
if (p.inclusive_sections[i] < 0) { |
|
ADD_FAILURE() << "section " << s << " with inclusive=true not found in inclusive_sections"; |
|
} |
|
} |
|
} |
|
|
|
static TestParam icosahedron_vertices[] = { |
|
{{ M_GOLDEN, 1.0f, 0.0f}, -1, {27, 30, 43, 46, 49, -1}}, |
|
{{ M_GOLDEN, -1.0f, 0.0f}, -1, {19, 23, 25, 41, 78, -1}}, |
|
{{-M_GOLDEN, 1.0f, 0.0f}, -1, { 1, 38, 59, 63, 65, -1}}, |
|
{{-M_GOLDEN, -1.0f, 0.0f}, -1, { 3, 6, 9, 67, 70, -1}}, |
|
{{ 1.0f, 0.0f, M_GOLDEN}, -1, {42, 45, 53, 75, 79, -1}}, |
|
{{-1.0f, 0.0f, M_GOLDEN}, -1, {55, 62, 66, 69, 73, -1}}, |
|
{{ 1.0f, 0.0f, -M_GOLDEN}, -1, {15, 22, 26, 29, 33, -1}}, |
|
{{-1.0f, 0.0f, -M_GOLDEN}, -1, { 2, 5, 13, 35, 39, -1}}, |
|
{{0.0f, M_GOLDEN, 1.0f}, -1, {47, 50, 54, 57, 61, -1}}, |
|
{{0.0f, M_GOLDEN, -1.0f}, -1, {31, 34, 37, 51, 58, -1}}, |
|
{{0.0f, -M_GOLDEN, 1.0f}, -1, {11, 18, 71, 74, 77, -1}}, |
|
{{0.0f, -M_GOLDEN, -1.0f}, -1, { 7, 10, 14, 17, 21, -1}}, |
|
}; |
|
INSTANTIATE_TEST_CASE_P(IcosahedronVertices, |
|
GeodesicGridTest, |
|
::testing::ValuesIn(icosahedron_vertices)); |
|
|
|
/* Generate vectors for each triangle */ |
|
static std::vector<TestParam> general_vectors = []() |
|
{ |
|
std::vector<TestParam> params; |
|
for (int i = 0; i < 20 * AP_GeodesicGrid::NUM_SUBTRIANGLES; i++) { |
|
Vector3f a, b, c; |
|
TestParam p; |
|
section_triangle(i, a, b, c); |
|
p.section = i; |
|
|
|
/* Vector that crosses the centroid */ |
|
p.v = a + b + c; |
|
params.push_back(p); |
|
|
|
/* Vectors that cross the triangle close to the edges */ |
|
p.v = a + b + c * 0.001f; |
|
params.push_back(p); |
|
p.v = a + b * 0.001f + c; |
|
params.push_back(p); |
|
p.v = a * 0.001f + b + c; |
|
params.push_back(p); |
|
|
|
/* Vectors that cross the triangle close to the vertices */ |
|
p.v = a + b * 0.001 + c * 0.001f; |
|
params.push_back(p); |
|
p.v = a * 0.001f + b + c * 0.001f; |
|
params.push_back(p); |
|
p.v = a * 0.001f + b * 0.001f + c; |
|
params.push_back(p); |
|
} |
|
return params; |
|
}(); |
|
INSTANTIATE_TEST_CASE_P(GeneralVectors, |
|
GeodesicGridTest, |
|
::testing::ValuesIn(general_vectors)); |
|
|
|
/* Other hardcoded vectors, so we don't rely just on the centroid vectors |
|
* (which are dependent on how the triangles are *defined by the |
|
* implementation*) |
|
* |
|
* See AP_GeodesicGrid.h for the notation on the comments below. |
|
*/ |
|
static TestParam hardcoded_vectors[] = { |
|
/* a + 2 * m_a + .5 * m_c for T_4 */ |
|
{{.25f * M_GOLDEN, -.25f * (13.0f * M_GOLDEN + 1.0f), - 1.25f}, 17}, |
|
/* 3 * m_a + 2 * m_b 0 * m_c for T_4 */ |
|
{{M_GOLDEN, -4.0f * M_GOLDEN -1.0f, 1.0f}, -1, {16, 18, -1}}, |
|
/* 2 * m_c + (1 / 3) * m_b + .1 * c for T_13 */ |
|
{{-.2667f, .1667f * M_GOLDEN, 2.2667f * M_GOLDEN + .1667f}, 55}, |
|
/* .25 * m_a + 5 * b + 2 * m_b for T_8 */ |
|
{{-.875f, 6.125f * M_GOLDEN, -1.125f * M_GOLDEN - 6.125f}, 34}, |
|
}; |
|
INSTANTIATE_TEST_CASE_P(HardcodedVectors, |
|
GeodesicGridTest, |
|
::testing::ValuesIn(hardcoded_vectors)); |
|
|
|
AP_GTEST_MAIN()
|
|
|