You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
139 lines
5.2 KiB
139 lines
5.2 KiB
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
|
|
#include <AP_HAL/AP_HAL.h> |
|
#include "AP_Proximity_NanaRadar_MR72.h" |
|
#include <AP_SerialManager/AP_SerialManager.h> |
|
#include <AP_Math/crc.h> |
|
#include <ctype.h> |
|
#include <stdio.h> |
|
#include <GCS_MAVLink/GCS.h> |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
/* |
|
The constructor also initialises the proximity sensor. Note that this |
|
constructor is not called until detect() returns true, so we |
|
already know that we should setup the proximity sensor |
|
*/ |
|
AP_Proximity_NanaRadar_MR72::AP_Proximity_NanaRadar_MR72( |
|
AP_Proximity &_frontend, |
|
AP_Proximity::Proximity_State &_state) : |
|
AP_Proximity_Backend(_frontend, _state) |
|
{ |
|
const AP_SerialManager &serial_manager = AP::serialmanager(); |
|
|
|
uart = serial_manager.find_serial(AP_SerialManager::SerialProtocol_Lidar360, 0); |
|
if (uart != nullptr) { |
|
uart->begin(serial_manager.find_baudrate(AP_SerialManager::SerialProtocol_Lidar360, 0)); |
|
} |
|
} |
|
|
|
// detect if a TeraRanger Tower proximity sensor is connected by looking for a configured serial port |
|
bool AP_Proximity_NanaRadar_MR72::detect() |
|
{ |
|
AP_HAL::UARTDriver *uart = nullptr; |
|
uart = AP::serialmanager().find_serial(AP_SerialManager::SerialProtocol_Lidar360, 0); |
|
return uart != nullptr; |
|
} |
|
|
|
// update the state of the sensor |
|
void AP_Proximity_NanaRadar_MR72::update(void) |
|
{ |
|
if (uart == nullptr) { |
|
return; |
|
} |
|
|
|
// process incoming messages |
|
read_sensor_data(); |
|
|
|
// check for timeout and set health status |
|
if ((_last_distance_received_ms == 0) || (AP_HAL::millis() - _last_distance_received_ms > PROXIMITY_TRTOWER_TIMEOUT_MS)) { |
|
set_status(AP_Proximity::Status::NoData); |
|
} else { |
|
set_status(AP_Proximity::Status::Good); |
|
} |
|
} |
|
|
|
// get maximum and minimum distances (in meters) of primary sensor |
|
float AP_Proximity_NanaRadar_MR72::distance_max() const |
|
{ |
|
return 40.0f; |
|
} |
|
float AP_Proximity_NanaRadar_MR72::distance_min() const |
|
{ |
|
return 0.20f; |
|
} |
|
|
|
// check for replies from sensor, returns true if at least one message was processed |
|
bool AP_Proximity_NanaRadar_MR72::read_sensor_data() |
|
{ |
|
if (uart == nullptr) { |
|
return false; |
|
} |
|
|
|
uint16_t message_count = 0; |
|
int16_t nbytes = uart->available(); |
|
while (nbytes-- > 0) { |
|
// uint8_t c = uart->read(); |
|
// gcs().send_text(MAV_SEVERITY_INFO, "getc 0x%02x",c); |
|
if (uart->read() == Head1) |
|
{ //判断数据包帧头0x54 |
|
buffer[0] = Head1; |
|
// gcs().send_text(MAV_SEVERITY_INFO, "getc 0x%02x",buffer[0]); |
|
if (uart->read() == Head2) |
|
{ //判断数据包帧头0X48 |
|
buffer[1] = Head2; |
|
// gcs().send_text(MAV_SEVERITY_INFO, "getc 0x%02x",buffer[1]); |
|
for (int i = 2; i < 19; i++) |
|
{ //存储数据到数组 |
|
buffer[i] = uart->read(); |
|
// gcs().send_text(MAV_SEVERITY_INFO, "%02d: 0x%02x",i,buffer[i]); |
|
} |
|
CheckSum = crc_crc8(buffer,18); |
|
// gcs().send_text(MAV_SEVERITY_INFO, "crc 0x%02x, rec:0x%02x",CheckSum,buffer[18]); |
|
if (buffer[18] == CheckSum) |
|
{ //按照协议对收到的数据进行校验 |
|
update_sector_data(0, UINT16_VALUE(buffer[2], buffer[3])); // d1 |
|
update_sector_data(45, UINT16_VALUE(buffer[4], buffer[5])); // d8 |
|
update_sector_data(90, UINT16_VALUE(buffer[6], buffer[7])); // d7 |
|
update_sector_data(135, UINT16_VALUE(buffer[8], buffer[9])); // d6 |
|
update_sector_data(180, UINT16_VALUE(buffer[10], buffer[11])); // d5 |
|
update_sector_data(225, UINT16_VALUE(buffer[12], buffer[13])); // d4 |
|
update_sector_data(270, UINT16_VALUE(buffer[14], buffer[15])); // d3 |
|
update_sector_data(315, UINT16_VALUE(buffer[16], buffer[17])); // d2 |
|
|
|
message_count++; |
|
} |
|
} |
|
} |
|
|
|
} |
|
return (message_count > 0); |
|
} |
|
|
|
// process reply |
|
void AP_Proximity_NanaRadar_MR72::update_sector_data(int16_t angle_deg, uint16_t distance_cm) |
|
{ |
|
uint8_t sector; |
|
if (convert_angle_to_sector(angle_deg, sector)) { |
|
_angle[sector] = angle_deg; |
|
_distance[sector] = ((float) distance_cm) / 100; |
|
_distance_valid[sector] = distance_cm != 0xffff; |
|
_last_distance_received_ms = AP_HAL::millis(); |
|
// update boundary used for avoidance |
|
update_boundary_for_sector(sector, true); |
|
} |
|
}
|
|
|