You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1256 lines
37 KiB
1256 lines
37 KiB
/* |
|
* The MIT License (MIT) |
|
* |
|
* Copyright (c) 2014 Pavel Kirienko |
|
* |
|
* Permission is hereby granted, free of charge, to any person obtaining a copy of |
|
* this software and associated documentation files (the "Software"), to deal in |
|
* the Software without restriction, including without limitation the rights to |
|
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of |
|
* the Software, and to permit persons to whom the Software is furnished to do so, |
|
* subject to the following conditions: |
|
* |
|
* The above copyright notice and this permission notice shall be included in all |
|
* copies or substantial portions of the Software. |
|
* |
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS |
|
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR |
|
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER |
|
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
|
*/ |
|
|
|
/* |
|
* This file is free software: you can redistribute it and/or modify it |
|
* under the terms of the GNU General Public License as published by the |
|
* Free Software Foundation, either version 3 of the License, or |
|
* (at your option) any later version. |
|
* |
|
* This file is distributed in the hope that it will be useful, but |
|
* WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
|
* See the GNU General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU General Public License along |
|
* with this program. If not, see <http://www.gnu.org/licenses/>. |
|
* |
|
* Code by Siddharth Bharat Purohit |
|
*/ |
|
|
|
#include "AP_HAL_ChibiOS.h" |
|
|
|
#if HAL_WITH_UAVCAN |
|
#include <cassert> |
|
#include <cstring> |
|
#include "CANIface.h" |
|
#include "CANClock.h" |
|
#include "CANInternal.h" |
|
#include "CANSerialRouter.h" |
|
#include <AP_UAVCAN/AP_UAVCAN_SLCAN.h> |
|
# include <hal.h> |
|
|
|
#if CH_KERNEL_MAJOR == 2 |
|
# if !(defined(STM32F10X_CL) || defined(STM32F2XX) || defined(STM32F3XX) || defined(STM32F4XX)) |
|
// IRQ numbers |
|
# define CAN1_RX0_IRQn USB_LP_CAN1_RX0_IRQn |
|
# define CAN1_TX_IRQn USB_HP_CAN1_TX_IRQn |
|
// IRQ vectors |
|
# if !defined(CAN1_RX0_IRQHandler) || !defined(CAN1_TX_IRQHandler) |
|
# define CAN1_TX_IRQHandler USB_HP_CAN1_TX_IRQHandler |
|
# define CAN1_RX0_IRQHandler USB_LP_CAN1_RX0_IRQHandler |
|
# endif |
|
# endif |
|
#endif |
|
|
|
#if (CH_KERNEL_MAJOR == 3 || CH_KERNEL_MAJOR == 4 || CH_KERNEL_MAJOR == 5 || CH_KERNEL_MAJOR == 6) |
|
#define CAN1_TX_IRQHandler STM32_CAN1_TX_HANDLER |
|
#define CAN1_RX0_IRQHandler STM32_CAN1_RX0_HANDLER |
|
#define CAN1_RX1_IRQHandler STM32_CAN1_RX1_HANDLER |
|
#define CAN2_TX_IRQHandler STM32_CAN2_TX_HANDLER |
|
#define CAN2_RX0_IRQHandler STM32_CAN2_RX0_HANDLER |
|
#define CAN2_RX1_IRQHandler STM32_CAN2_RX1_HANDLER |
|
#endif |
|
|
|
|
|
/* STM32F3's only CAN inteface does not have a number. */ |
|
#if defined(STM32F3XX) |
|
#define RCC_APB1ENR_CAN1EN RCC_APB1ENR_CANEN |
|
#define RCC_APB1RSTR_CAN1RST RCC_APB1RSTR_CANRST |
|
#define CAN1_TX_IRQn CAN_TX_IRQn |
|
#define CAN1_RX0_IRQn CAN_RX0_IRQn |
|
#define CAN1_RX1_IRQn CAN_RX1_IRQn |
|
#define CAN1_TX_IRQHandler CAN_TX_IRQHandler |
|
#define CAN1_RX0_IRQHandler CAN_RX0_IRQHandler |
|
#define CAN1_RX1_IRQHandler CAN_RX1_IRQHandler |
|
#endif |
|
|
|
|
|
namespace ChibiOS_CAN |
|
{ |
|
namespace |
|
{ |
|
|
|
CanIface* ifaces[UAVCAN_STM32_NUM_IFACES] = |
|
{ |
|
UAVCAN_NULLPTR |
|
#if UAVCAN_STM32_NUM_IFACES > 1 |
|
, UAVCAN_NULLPTR |
|
#endif |
|
}; |
|
|
|
inline void handleTxInterrupt(uavcan::uint8_t iface_index) |
|
{ |
|
UAVCAN_ASSERT(iface_index < UAVCAN_STM32_NUM_IFACES); |
|
uavcan::uint64_t utc_usec = clock::getUtcUSecFromCanInterrupt(); |
|
if (utc_usec > 0) |
|
{ |
|
utc_usec--; |
|
} |
|
if (ifaces[iface_index] != UAVCAN_NULLPTR) |
|
{ |
|
ifaces[iface_index]->handleTxInterrupt(utc_usec); |
|
} |
|
else |
|
{ |
|
UAVCAN_ASSERT(0); |
|
} |
|
} |
|
|
|
inline void handleRxInterrupt(uavcan::uint8_t iface_index, uavcan::uint8_t fifo_index) |
|
{ |
|
UAVCAN_ASSERT(iface_index < UAVCAN_STM32_NUM_IFACES); |
|
uavcan::uint64_t utc_usec = clock::getUtcUSecFromCanInterrupt(); |
|
if (utc_usec > 0) |
|
{ |
|
utc_usec--; |
|
} |
|
if (ifaces[iface_index] != UAVCAN_NULLPTR) |
|
{ |
|
ifaces[iface_index]->handleRxInterrupt(fifo_index, utc_usec); |
|
} |
|
else |
|
{ |
|
UAVCAN_ASSERT(0); |
|
} |
|
} |
|
|
|
} // namespace |
|
|
|
/* |
|
* CanIface::RxQueue |
|
*/ |
|
void CanIface::RxQueue::registerOverflow() |
|
{ |
|
if (overflow_cnt_ < 0xFFFFFFFF) |
|
{ |
|
overflow_cnt_++; |
|
} |
|
} |
|
|
|
void CanIface::RxQueue::push(const uavcan::CanFrame& frame, const uint64_t& utc_usec, uavcan::CanIOFlags flags) |
|
{ |
|
buf_[in_].frame = frame; |
|
buf_[in_].utc_usec = utc_usec; |
|
buf_[in_].flags = flags; |
|
in_++; |
|
if (in_ >= capacity_) |
|
{ |
|
in_ = 0; |
|
} |
|
len_++; |
|
if (len_ > capacity_) |
|
{ |
|
len_ = capacity_; |
|
registerOverflow(); |
|
out_++; |
|
if (out_ >= capacity_) |
|
{ |
|
out_ = 0; |
|
} |
|
} |
|
} |
|
|
|
void CanIface::RxQueue::pop(uavcan::CanFrame& out_frame, uavcan::uint64_t& out_utc_usec, uavcan::CanIOFlags& out_flags) |
|
{ |
|
if (len_ > 0) |
|
{ |
|
out_frame = buf_[out_].frame; |
|
out_utc_usec = buf_[out_].utc_usec; |
|
out_flags = buf_[out_].flags; |
|
out_++; |
|
if (out_ >= capacity_) |
|
{ |
|
out_ = 0; |
|
} |
|
len_--; |
|
} |
|
else { UAVCAN_ASSERT(0); } |
|
} |
|
|
|
void CanIface::RxQueue::reset() |
|
{ |
|
in_ = 0; |
|
out_ = 0; |
|
len_ = 0; |
|
overflow_cnt_ = 0; |
|
} |
|
|
|
/* |
|
* CanIface |
|
*/ |
|
const uavcan::uint32_t CanIface::TSR_ABRQx[CanIface::NumTxMailboxes] = |
|
{ |
|
bxcan::TSR_ABRQ0, |
|
bxcan::TSR_ABRQ1, |
|
bxcan::TSR_ABRQ2 |
|
}; |
|
|
|
int CanIface::computeTimings(const uavcan::uint32_t target_bitrate, Timings& out_timings) |
|
{ |
|
if (target_bitrate < 1) |
|
{ |
|
return -ErrInvalidBitRate; |
|
} |
|
|
|
/* |
|
* Hardware configuration |
|
*/ |
|
const uavcan::uint32_t pclk = STM32_PCLK1; |
|
|
|
static const int MaxBS1 = 16; |
|
static const int MaxBS2 = 8; |
|
|
|
/* |
|
* Ref. "Automatic Baudrate Detection in CANopen Networks", U. Koppe, MicroControl GmbH & Co. KG |
|
* CAN in Automation, 2003 |
|
* |
|
* According to the source, optimal quanta per bit are: |
|
* Bitrate Optimal Maximum |
|
* 1000 kbps 8 10 |
|
* 500 kbps 16 17 |
|
* 250 kbps 16 17 |
|
* 125 kbps 16 17 |
|
*/ |
|
const int max_quanta_per_bit = (target_bitrate >= 1000000) ? 10 : 17; |
|
|
|
UAVCAN_ASSERT(max_quanta_per_bit <= (MaxBS1 + MaxBS2)); |
|
|
|
static const int MaxSamplePointLocation = 900; |
|
|
|
/* |
|
* Computing (prescaler * BS): |
|
* BITRATE = 1 / (PRESCALER * (1 / PCLK) * (1 + BS1 + BS2)) -- See the Reference Manual |
|
* BITRATE = PCLK / (PRESCALER * (1 + BS1 + BS2)) -- Simplified |
|
* let: |
|
* BS = 1 + BS1 + BS2 -- Number of time quanta per bit |
|
* PRESCALER_BS = PRESCALER * BS |
|
* ==> |
|
* PRESCALER_BS = PCLK / BITRATE |
|
*/ |
|
const uavcan::uint32_t prescaler_bs = pclk / target_bitrate; |
|
|
|
/* |
|
* Searching for such prescaler value so that the number of quanta per bit is highest. |
|
*/ |
|
uavcan::uint8_t bs1_bs2_sum = uavcan::uint8_t(max_quanta_per_bit - 1); |
|
|
|
while ((prescaler_bs % (1 + bs1_bs2_sum)) != 0) |
|
{ |
|
if (bs1_bs2_sum <= 2) |
|
{ |
|
return -ErrInvalidBitRate; // No solution |
|
} |
|
bs1_bs2_sum--; |
|
} |
|
|
|
const uavcan::uint32_t prescaler = prescaler_bs / (1 + bs1_bs2_sum); |
|
if ((prescaler < 1U) || (prescaler > 1024U)) |
|
{ |
|
return -ErrInvalidBitRate; // No solution |
|
} |
|
|
|
/* |
|
* Now we have a constraint: (BS1 + BS2) == bs1_bs2_sum. |
|
* We need to find the values so that the sample point is as close as possible to the optimal value. |
|
* |
|
* Solve[(1 + bs1)/(1 + bs1 + bs2) == 7/8, bs2] (* Where 7/8 is 0.875, the recommended sample point location *) |
|
* {{bs2 -> (1 + bs1)/7}} |
|
* |
|
* Hence: |
|
* bs2 = (1 + bs1) / 7 |
|
* bs1 = (7 * bs1_bs2_sum - 1) / 8 |
|
* |
|
* Sample point location can be computed as follows: |
|
* Sample point location = (1 + bs1) / (1 + bs1 + bs2) |
|
* |
|
* Since the optimal solution is so close to the maximum, we prepare two solutions, and then pick the best one: |
|
* - With rounding to nearest |
|
* - With rounding to zero |
|
*/ |
|
struct BsPair |
|
{ |
|
uavcan::uint8_t bs1; |
|
uavcan::uint8_t bs2; |
|
uavcan::uint16_t sample_point_permill; |
|
|
|
BsPair() : |
|
bs1(0), |
|
bs2(0), |
|
sample_point_permill(0) |
|
{ } |
|
|
|
BsPair(uavcan::uint8_t bs1_bs2_sum, uavcan::uint8_t arg_bs1) : |
|
bs1(arg_bs1), |
|
bs2(uavcan::uint8_t(bs1_bs2_sum - bs1)), |
|
sample_point_permill(uavcan::uint16_t(1000 * (1 + bs1) / (1 + bs1 + bs2))) |
|
{ |
|
UAVCAN_ASSERT(bs1_bs2_sum > arg_bs1); |
|
} |
|
|
|
bool isValid() const { return (bs1 >= 1) && (bs1 <= MaxBS1) && (bs2 >= 1) && (bs2 <= MaxBS2); } |
|
}; |
|
|
|
// First attempt with rounding to nearest |
|
BsPair solution(bs1_bs2_sum, uavcan::uint8_t(((7 * bs1_bs2_sum - 1) + 4) / 8)); |
|
|
|
if (solution.sample_point_permill > MaxSamplePointLocation) |
|
{ |
|
// Second attempt with rounding to zero |
|
solution = BsPair(bs1_bs2_sum, uavcan::uint8_t((7 * bs1_bs2_sum - 1) / 8)); |
|
} |
|
|
|
/* |
|
* Final validation |
|
* Helpful Python: |
|
* def sample_point_from_btr(x): |
|
* assert 0b0011110010000000111111000000000 & x == 0 |
|
* ts2,ts1,brp = (x>>20)&7, (x>>16)&15, x&511 |
|
* return (1+ts1+1)/(1+ts1+1+ts2+1) |
|
* |
|
*/ |
|
if ((target_bitrate != (pclk / (prescaler * (1 + solution.bs1 + solution.bs2)))) || !solution.isValid()) |
|
{ |
|
UAVCAN_ASSERT(0); |
|
return -ErrLogic; |
|
} |
|
|
|
UAVCAN_STM32_LOG("Timings: quanta/bit: %d, sample point location: %.1f%%", |
|
int(1 + solution.bs1 + solution.bs2), float(solution.sample_point_permill) / 10.F); |
|
|
|
out_timings.prescaler = uavcan::uint16_t(prescaler - 1U); |
|
out_timings.sjw = 0; // Which means one |
|
out_timings.bs1 = uavcan::uint8_t(solution.bs1 - 1); |
|
out_timings.bs2 = uavcan::uint8_t(solution.bs2 - 1); |
|
return 0; |
|
} |
|
|
|
uavcan::int16_t CanIface::send(const uavcan::CanFrame& frame, uavcan::MonotonicTime tx_deadline, |
|
uavcan::CanIOFlags flags) |
|
{ |
|
if (frame.isErrorFrame() || frame.dlc > 8) |
|
{ |
|
return -ErrUnsupportedFrame; |
|
} |
|
|
|
/* |
|
* Normally we should perform the same check as in @ref canAcceptNewTxFrame(), because |
|
* it is possible that the highest-priority frame between select() and send() could have been |
|
* replaced with a lower priority one due to TX timeout. But we don't do this check because: |
|
* |
|
* - It is a highly unlikely scenario. |
|
* |
|
* - Frames do not timeout on a properly functioning bus. Since frames do not timeout, the new |
|
* frame can only have higher priority, which doesn't break the logic. |
|
* |
|
* - If high-priority frames are timing out in the TX queue, there's probably a lot of other |
|
* issues to take care of before this one becomes relevant. |
|
* |
|
* - It takes CPU time. Not just CPU time, but critical section time, which is expensive. |
|
*/ |
|
CriticalSectionLocker lock; |
|
|
|
/* |
|
* Seeking for an empty slot |
|
*/ |
|
uavcan::uint8_t txmailbox = 0xFF; |
|
if ((can_->TSR & bxcan::TSR_TME0) == bxcan::TSR_TME0) |
|
{ |
|
txmailbox = 0; |
|
} |
|
else if ((can_->TSR & bxcan::TSR_TME1) == bxcan::TSR_TME1) |
|
{ |
|
txmailbox = 1; |
|
} |
|
else if ((can_->TSR & bxcan::TSR_TME2) == bxcan::TSR_TME2) |
|
{ |
|
txmailbox = 2; |
|
} |
|
else |
|
{ |
|
return 0; // No transmission for you. |
|
} |
|
|
|
peak_tx_mailbox_index_ = uavcan::max(peak_tx_mailbox_index_, txmailbox); // Statistics |
|
|
|
/* |
|
* Setting up the mailbox |
|
*/ |
|
bxcan::TxMailboxType& mb = can_->TxMailbox[txmailbox]; |
|
if (frame.isExtended()) |
|
{ |
|
mb.TIR = ((frame.id & uavcan::CanFrame::MaskExtID) << 3) | bxcan::TIR_IDE; |
|
} |
|
else |
|
{ |
|
mb.TIR = ((frame.id & uavcan::CanFrame::MaskStdID) << 21); |
|
} |
|
|
|
if (frame.isRemoteTransmissionRequest()) |
|
{ |
|
mb.TIR |= bxcan::TIR_RTR; |
|
} |
|
|
|
mb.TDTR = frame.dlc; |
|
|
|
mb.TDHR = (uavcan::uint32_t(frame.data[7]) << 24) | |
|
(uavcan::uint32_t(frame.data[6]) << 16) | |
|
(uavcan::uint32_t(frame.data[5]) << 8) | |
|
(uavcan::uint32_t(frame.data[4]) << 0); |
|
mb.TDLR = (uavcan::uint32_t(frame.data[3]) << 24) | |
|
(uavcan::uint32_t(frame.data[2]) << 16) | |
|
(uavcan::uint32_t(frame.data[1]) << 8) | |
|
(uavcan::uint32_t(frame.data[0]) << 0); |
|
|
|
mb.TIR |= bxcan::TIR_TXRQ; // Go. |
|
|
|
/* |
|
* Registering the pending transmission so we can track its deadline and loopback it as needed |
|
*/ |
|
TxItem& txi = pending_tx_[txmailbox]; |
|
txi.deadline = tx_deadline; |
|
txi.frame = frame; |
|
txi.loopback = (flags & uavcan::CanIOFlagLoopback) != 0; |
|
txi.abort_on_error = (flags & uavcan::CanIOFlagAbortOnError) != 0; |
|
txi.pending = true; |
|
return 1; |
|
} |
|
|
|
uavcan::int16_t CanIface::receive(uavcan::CanFrame& out_frame, uavcan::MonotonicTime& out_ts_monotonic, |
|
uavcan::UtcTime& out_ts_utc, uavcan::CanIOFlags& out_flags) |
|
{ |
|
out_ts_monotonic = clock::getMonotonic(); // High precision is not required for monotonic timestamps |
|
uavcan::uint64_t utc_usec = 0; |
|
{ |
|
CriticalSectionLocker lock; |
|
if (rx_queue_.getLength() == 0) |
|
{ |
|
return 0; |
|
} |
|
rx_queue_.pop(out_frame, utc_usec, out_flags); |
|
} |
|
out_ts_utc = uavcan::UtcTime::fromUSec(utc_usec); |
|
return 1; |
|
} |
|
|
|
uavcan::int16_t CanIface::configureFilters(const uavcan::CanFilterConfig* filter_configs, |
|
uavcan::uint16_t num_configs) |
|
{ |
|
if (num_configs <= NumFilters) |
|
{ |
|
CriticalSectionLocker lock; |
|
|
|
can_->FMR |= bxcan::FMR_FINIT; |
|
|
|
// Slave (CAN2) gets half of the filters |
|
can_->FMR &= ~0x00003F00UL; |
|
can_->FMR |= static_cast<uint32_t>(NumFilters) << 8; |
|
|
|
can_->FFA1R = 0x0AAAAAAA; // FIFO's are interleaved between filters |
|
can_->FM1R = 0; // Identifier Mask mode |
|
can_->FS1R = 0x7ffffff; // Single 32-bit for all |
|
|
|
const uint8_t filter_start_index = (self_index_ == 0) ? 0 : NumFilters; |
|
|
|
if (num_configs == 0) |
|
{ |
|
can_->FilterRegister[filter_start_index].FR1 = 0; |
|
can_->FilterRegister[filter_start_index].FR2 = 0; |
|
can_->FA1R = 1 << filter_start_index; |
|
} |
|
else |
|
{ |
|
for (uint8_t i = 0; i < NumFilters; i++) |
|
{ |
|
if (i < num_configs) |
|
{ |
|
uint32_t id = 0; |
|
uint32_t mask = 0; |
|
|
|
const uavcan::CanFilterConfig* const cfg = filter_configs + i; |
|
|
|
if ((cfg->id & uavcan::CanFrame::FlagEFF) || !(cfg->mask & uavcan::CanFrame::FlagEFF)) |
|
{ |
|
id = (cfg->id & uavcan::CanFrame::MaskExtID) << 3; |
|
mask = (cfg->mask & uavcan::CanFrame::MaskExtID) << 3; |
|
id |= bxcan::RIR_IDE; |
|
} |
|
else |
|
{ |
|
id = (cfg->id & uavcan::CanFrame::MaskStdID) << 21; // Regular std frames, nothing fancy. |
|
mask = (cfg->mask & uavcan::CanFrame::MaskStdID) << 21; // Boring. |
|
} |
|
|
|
if (cfg->id & uavcan::CanFrame::FlagRTR) |
|
{ |
|
id |= bxcan::RIR_RTR; |
|
} |
|
|
|
if (cfg->mask & uavcan::CanFrame::FlagEFF) |
|
{ |
|
mask |= bxcan::RIR_IDE; |
|
} |
|
|
|
if (cfg->mask & uavcan::CanFrame::FlagRTR) |
|
{ |
|
mask |= bxcan::RIR_RTR; |
|
} |
|
|
|
can_->FilterRegister[filter_start_index + i].FR1 = id; |
|
can_->FilterRegister[filter_start_index + i].FR2 = mask; |
|
|
|
can_->FA1R |= (1 << (filter_start_index + i)); |
|
} |
|
else |
|
{ |
|
can_->FA1R &= ~(1 << (filter_start_index + i)); |
|
} |
|
} |
|
} |
|
|
|
can_->FMR &= ~bxcan::FMR_FINIT; |
|
|
|
return 0; |
|
} |
|
|
|
return -ErrFilterNumConfigs; |
|
} |
|
|
|
bool CanIface::waitMsrINakBitStateChange(bool target_state) |
|
{ |
|
const unsigned Timeout = 1000; |
|
for (unsigned wait_ack = 0; wait_ack < Timeout; wait_ack++) |
|
{ |
|
const bool state = (can_->MSR & bxcan::MSR_INAK) != 0; |
|
if (state == target_state) |
|
{ |
|
return true; |
|
} |
|
#if CH_KERNEL_MAJOR >= 5 |
|
::chThdSleep(chTimeMS2I(1)); |
|
#else |
|
::chThdSleep(MS2ST(1)); |
|
#endif |
|
} |
|
return false; |
|
} |
|
|
|
int CanIface::init(const uavcan::uint32_t bitrate, const OperatingMode mode) |
|
{ |
|
/* |
|
* We need to silence the controller in the first order, otherwise it may interfere with the following operations. |
|
*/ |
|
{ |
|
CriticalSectionLocker lock; |
|
|
|
can_->MCR &= ~bxcan::MCR_SLEEP; // Exit sleep mode |
|
can_->MCR |= bxcan::MCR_INRQ; // Request init |
|
|
|
can_->IER = 0; // Disable interrupts while initialization is in progress |
|
} |
|
|
|
if (!waitMsrINakBitStateChange(true)) |
|
{ |
|
UAVCAN_STM32_LOG("MSR INAK not set"); |
|
can_->MCR = bxcan::MCR_RESET; |
|
return -ErrMsrInakNotSet; |
|
} |
|
|
|
/* |
|
* Object state - interrupts are disabled, so it's safe to modify it now |
|
*/ |
|
rx_queue_.reset(); |
|
error_cnt_ = 0; |
|
served_aborts_cnt_ = 0; |
|
uavcan::fill_n(pending_tx_, NumTxMailboxes, TxItem()); |
|
peak_tx_mailbox_index_ = 0; |
|
had_activity_ = false; |
|
|
|
/* |
|
* CAN timings for this bitrate |
|
*/ |
|
Timings timings; |
|
const int timings_res = computeTimings(bitrate, timings); |
|
if (timings_res < 0) |
|
{ |
|
can_->MCR = bxcan::MCR_RESET; |
|
return timings_res; |
|
} |
|
UAVCAN_STM32_LOG("Timings: presc=%u sjw=%u bs1=%u bs2=%u", |
|
unsigned(timings.prescaler), unsigned(timings.sjw), unsigned(timings.bs1), unsigned(timings.bs2)); |
|
|
|
/* |
|
* Hardware initialization (the hardware has already confirmed initialization mode, see above) |
|
*/ |
|
can_->MCR = bxcan::MCR_ABOM | bxcan::MCR_AWUM | bxcan::MCR_INRQ; // RM page 648 |
|
|
|
can_->BTR = ((timings.sjw & 3U) << 24) | |
|
((timings.bs1 & 15U) << 16) | |
|
((timings.bs2 & 7U) << 20) | |
|
(timings.prescaler & 1023U) | |
|
((mode == SilentMode) ? bxcan::BTR_SILM : 0); |
|
|
|
can_->IER = bxcan::IER_TMEIE | // TX mailbox empty |
|
bxcan::IER_FMPIE0 | // RX FIFO 0 is not empty |
|
bxcan::IER_FMPIE1; // RX FIFO 1 is not empty |
|
|
|
can_->MCR &= ~bxcan::MCR_INRQ; // Leave init mode |
|
|
|
if (!waitMsrINakBitStateChange(false)) |
|
{ |
|
UAVCAN_STM32_LOG("MSR INAK not cleared"); |
|
can_->MCR = bxcan::MCR_RESET; |
|
return -ErrMsrInakNotCleared; |
|
} |
|
|
|
/* |
|
* Default filter configuration |
|
*/ |
|
if (self_index_ == 0) |
|
{ |
|
can_->FMR |= bxcan::FMR_FINIT; |
|
|
|
can_->FMR &= 0xFFFFC0F1; |
|
can_->FMR |= static_cast<uavcan::uint32_t>(NumFilters) << 8; // Slave (CAN2) gets half of the filters |
|
|
|
can_->FFA1R = 0; // All assigned to FIFO0 by default |
|
can_->FM1R = 0; // Indentifier Mask mode |
|
|
|
#if UAVCAN_STM32_NUM_IFACES > 1 |
|
can_->FS1R = 0x7ffffff; // Single 32-bit for all |
|
can_->FilterRegister[0].FR1 = 0; // CAN1 accepts everything |
|
can_->FilterRegister[0].FR2 = 0; |
|
can_->FilterRegister[NumFilters].FR1 = 0; // CAN2 accepts everything |
|
can_->FilterRegister[NumFilters].FR2 = 0; |
|
can_->FA1R = 1 | (1 << NumFilters); // One filter per each iface |
|
#else |
|
can_->FS1R = 0x1fff; |
|
can_->FilterRegister[0].FR1 = 0; |
|
can_->FilterRegister[0].FR2 = 0; |
|
can_->FA1R = 1; |
|
#endif |
|
|
|
can_->FMR &= ~bxcan::FMR_FINIT; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
void CanIface::handleTxMailboxInterrupt(uavcan::uint8_t mailbox_index, bool txok, const uavcan::uint64_t utc_usec) |
|
{ |
|
UAVCAN_ASSERT(mailbox_index < NumTxMailboxes); |
|
|
|
had_activity_ = had_activity_ || txok; |
|
|
|
TxItem& txi = pending_tx_[mailbox_index]; |
|
|
|
if (txi.loopback && txok && txi.pending) |
|
{ |
|
rx_queue_.push(txi.frame, utc_usec, uavcan::CanIOFlagLoopback); |
|
} |
|
|
|
txi.pending = false; |
|
} |
|
|
|
void CanIface::handleTxInterrupt(const uavcan::uint64_t utc_usec) |
|
{ |
|
// TXOK == false means that there was a hardware failure |
|
if (can_->TSR & bxcan::TSR_RQCP0) |
|
{ |
|
const bool txok = can_->TSR & bxcan::TSR_TXOK0; |
|
can_->TSR = bxcan::TSR_RQCP0; |
|
handleTxMailboxInterrupt(0, txok, utc_usec); |
|
} |
|
if (can_->TSR & bxcan::TSR_RQCP1) |
|
{ |
|
const bool txok = can_->TSR & bxcan::TSR_TXOK1; |
|
can_->TSR = bxcan::TSR_RQCP1; |
|
handleTxMailboxInterrupt(1, txok, utc_usec); |
|
} |
|
if (can_->TSR & bxcan::TSR_RQCP2) |
|
{ |
|
const bool txok = can_->TSR & bxcan::TSR_TXOK2; |
|
can_->TSR = bxcan::TSR_RQCP2; |
|
handleTxMailboxInterrupt(2, txok, utc_usec); |
|
} |
|
update_event_.signalFromInterrupt(); |
|
|
|
pollErrorFlagsFromISR(); |
|
|
|
#if UAVCAN_STM32_FREERTOS |
|
update_event_.yieldFromISR(); |
|
#endif |
|
} |
|
|
|
void CanIface::handleRxInterrupt(uavcan::uint8_t fifo_index, uavcan::uint64_t utc_usec) |
|
{ |
|
UAVCAN_ASSERT(fifo_index < 2); |
|
|
|
volatile uavcan::uint32_t* const rfr_reg = (fifo_index == 0) ? &can_->RF0R : &can_->RF1R; |
|
if ((*rfr_reg & bxcan::RFR_FMP_MASK) == 0) |
|
{ |
|
UAVCAN_ASSERT(0); // Weird, IRQ is here but no data to read |
|
return; |
|
} |
|
|
|
/* |
|
* Register overflow as a hardware error |
|
*/ |
|
if ((*rfr_reg & bxcan::RFR_FOVR) != 0) |
|
{ |
|
error_cnt_++; |
|
} |
|
|
|
/* |
|
* Read the frame contents |
|
*/ |
|
uavcan::CanFrame frame; |
|
const bxcan::RxMailboxType& rf = can_->RxMailbox[fifo_index]; |
|
|
|
if ((rf.RIR & bxcan::RIR_IDE) == 0) |
|
{ |
|
frame.id = uavcan::CanFrame::MaskStdID & (rf.RIR >> 21); |
|
} |
|
else |
|
{ |
|
frame.id = uavcan::CanFrame::MaskExtID & (rf.RIR >> 3); |
|
frame.id |= uavcan::CanFrame::FlagEFF; |
|
} |
|
|
|
if ((rf.RIR & bxcan::RIR_RTR) != 0) |
|
{ |
|
frame.id |= uavcan::CanFrame::FlagRTR; |
|
} |
|
|
|
frame.dlc = rf.RDTR & 15; |
|
|
|
frame.data[0] = uavcan::uint8_t(0xFF & (rf.RDLR >> 0)); |
|
frame.data[1] = uavcan::uint8_t(0xFF & (rf.RDLR >> 8)); |
|
frame.data[2] = uavcan::uint8_t(0xFF & (rf.RDLR >> 16)); |
|
frame.data[3] = uavcan::uint8_t(0xFF & (rf.RDLR >> 24)); |
|
frame.data[4] = uavcan::uint8_t(0xFF & (rf.RDHR >> 0)); |
|
frame.data[5] = uavcan::uint8_t(0xFF & (rf.RDHR >> 8)); |
|
frame.data[6] = uavcan::uint8_t(0xFF & (rf.RDHR >> 16)); |
|
frame.data[7] = uavcan::uint8_t(0xFF & (rf.RDHR >> 24)); |
|
|
|
*rfr_reg = bxcan::RFR_RFOM | bxcan::RFR_FOVR | bxcan::RFR_FULL; // Release FIFO entry we just read |
|
|
|
/* |
|
* Store with timeout into the FIFO buffer and signal update event |
|
*/ |
|
rx_queue_.push(frame, utc_usec, 0); |
|
#if !HAL_MINIMIZE_FEATURES |
|
slcan_router().route_frame_to_slcan(this, frame, utc_usec); |
|
#endif |
|
had_activity_ = true; |
|
update_event_.signalFromInterrupt(); |
|
|
|
pollErrorFlagsFromISR(); |
|
|
|
#if UAVCAN_STM32_FREERTOS |
|
update_event_.yieldFromISR(); |
|
#endif |
|
} |
|
|
|
void CanIface::pollErrorFlagsFromISR() |
|
{ |
|
const uavcan::uint8_t lec = uavcan::uint8_t((can_->ESR & bxcan::ESR_LEC_MASK) >> bxcan::ESR_LEC_SHIFT); |
|
if (lec != 0) |
|
{ |
|
can_->ESR = 0; |
|
error_cnt_++; |
|
|
|
// Serving abort requests |
|
for (int i = 0; i < NumTxMailboxes; i++) // Dear compiler, may I suggest you to unroll this loop please. |
|
{ |
|
TxItem& txi = pending_tx_[i]; |
|
if (txi.pending && txi.abort_on_error) |
|
{ |
|
can_->TSR = TSR_ABRQx[i]; |
|
txi.pending = false; |
|
served_aborts_cnt_++; |
|
} |
|
} |
|
} |
|
} |
|
|
|
void CanIface::discardTimedOutTxMailboxes(uavcan::MonotonicTime current_time) |
|
{ |
|
CriticalSectionLocker lock; |
|
for (int i = 0; i < NumTxMailboxes; i++) |
|
{ |
|
TxItem& txi = pending_tx_[i]; |
|
if (txi.pending && txi.deadline < current_time) |
|
{ |
|
can_->TSR = TSR_ABRQx[i]; // Goodnight sweet transmission |
|
txi.pending = false; |
|
error_cnt_++; |
|
} |
|
} |
|
} |
|
|
|
bool CanIface::canAcceptNewTxFrame(const uavcan::CanFrame& frame) const |
|
{ |
|
/* |
|
* We can accept more frames only if the following conditions are satisfied: |
|
* - There is at least one TX mailbox free (obvious enough); |
|
* - The priority of the new frame is higher than priority of all TX mailboxes. |
|
*/ |
|
{ |
|
static const uavcan::uint32_t TME = bxcan::TSR_TME0 | bxcan::TSR_TME1 | bxcan::TSR_TME2; |
|
const uavcan::uint32_t tme = can_->TSR & TME; |
|
|
|
if (tme == TME) // All TX mailboxes are free (as in freedom). |
|
{ |
|
return true; |
|
} |
|
|
|
if (tme == 0) // All TX mailboxes are busy transmitting. |
|
{ |
|
return false; |
|
} |
|
} |
|
|
|
/* |
|
* The second condition requires a critical section. |
|
*/ |
|
CriticalSectionLocker lock; |
|
|
|
for (int mbx = 0; mbx < NumTxMailboxes; mbx++) |
|
{ |
|
if (pending_tx_[mbx].pending && !frame.priorityHigherThan(pending_tx_[mbx].frame)) |
|
{ |
|
return false; // There's a mailbox whose priority is higher or equal the priority of the new frame. |
|
} |
|
} |
|
|
|
return true; // This new frame will be added to a free TX mailbox in the next @ref send(). |
|
} |
|
|
|
bool CanIface::isRxBufferEmpty() const |
|
{ |
|
CriticalSectionLocker lock; |
|
return rx_queue_.getLength() == 0; |
|
} |
|
|
|
uavcan::uint64_t CanIface::getErrorCount() const |
|
{ |
|
CriticalSectionLocker lock; |
|
return error_cnt_ + rx_queue_.getOverflowCount(); |
|
} |
|
|
|
unsigned CanIface::getRxQueueLength() const |
|
{ |
|
CriticalSectionLocker lock; |
|
return rx_queue_.getLength(); |
|
} |
|
|
|
bool CanIface::hadActivity() |
|
{ |
|
CriticalSectionLocker lock; |
|
const bool ret = had_activity_; |
|
had_activity_ = false; |
|
return ret; |
|
} |
|
|
|
/* |
|
* CanDriver |
|
*/ |
|
uavcan::CanSelectMasks CanDriver::makeSelectMasks(const uavcan::CanFrame* (& pending_tx)[uavcan::MaxCanIfaces]) const |
|
{ |
|
uavcan::CanSelectMasks msk; |
|
|
|
for (uavcan::uint8_t i = 0; i < num_ifaces_; i++) { |
|
CanIface* iface = ifaces[if_int_to_gl_index_[i]]; |
|
msk.read |= (iface->isRxBufferEmpty() ? 0 : 1) << i; |
|
|
|
if (pending_tx[i] != UAVCAN_NULLPTR) |
|
{ |
|
msk.write |= (iface->canAcceptNewTxFrame(*pending_tx[i]) ? 1 : 0) << i; |
|
} |
|
} |
|
|
|
return msk; |
|
} |
|
|
|
bool CanDriver::hasReadableInterfaces() const |
|
{ |
|
for (uavcan::uint8_t i = 0; i < num_ifaces_; i++) { |
|
if (!ifaces[if_int_to_gl_index_[i]]->isRxBufferEmpty()) { |
|
return true; |
|
} |
|
} |
|
|
|
return false; |
|
} |
|
|
|
uavcan::int16_t CanDriver::select(uavcan::CanSelectMasks& inout_masks, |
|
const uavcan::CanFrame* (& pending_tx)[uavcan::MaxCanIfaces], |
|
const uavcan::MonotonicTime blocking_deadline) |
|
{ |
|
const uavcan::CanSelectMasks in_masks = inout_masks; |
|
const uavcan::MonotonicTime time = clock::getMonotonic(); |
|
|
|
for (uavcan::uint8_t i = 0; i < num_ifaces_; i++) { |
|
CanIface* iface = ifaces[if_int_to_gl_index_[i]]; |
|
iface->discardTimedOutTxMailboxes(time); // Check TX timeouts - this may release some TX slots |
|
{ |
|
CriticalSectionLocker cs_locker; |
|
iface->pollErrorFlagsFromISR(); |
|
} |
|
} |
|
|
|
inout_masks = makeSelectMasks(pending_tx); // Check if we already have some of the requested events |
|
if ((inout_masks.read & in_masks.read) != 0 || |
|
(inout_masks.write & in_masks.write) != 0) |
|
{ |
|
return 1; |
|
} |
|
|
|
(void)update_event_.wait(blocking_deadline - time); // Block until timeout expires or any iface updates |
|
inout_masks = makeSelectMasks(pending_tx); // Return what we got even if none of the requested events are set |
|
return 1; // Return value doesn't matter as long as it is non-negative |
|
} |
|
|
|
|
|
#if UAVCAN_STM32_BAREMETAL || UAVCAN_STM32_FREERTOS |
|
|
|
static void nvicEnableVector(IRQn_Type irq, uint8_t prio) |
|
{ |
|
#if !defined (USE_HAL_DRIVER) |
|
NVIC_InitTypeDef NVIC_InitStructure; |
|
NVIC_InitStructure.NVIC_IRQChannel = irq; |
|
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = prio; |
|
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; |
|
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; |
|
NVIC_Init(&NVIC_InitStructure); |
|
#else |
|
HAL_NVIC_SetPriority(irq, prio, 0); |
|
HAL_NVIC_EnableIRQ(irq); |
|
#endif |
|
} |
|
|
|
#endif |
|
|
|
void CanDriver::initOnce() |
|
{ |
|
/* |
|
* CAN1, CAN2 |
|
*/ |
|
{ |
|
CriticalSectionLocker lock; |
|
RCC->APB1ENR |= RCC_APB1ENR_CAN1EN; |
|
RCC->APB1RSTR |= RCC_APB1RSTR_CAN1RST; |
|
RCC->APB1RSTR &= ~RCC_APB1RSTR_CAN1RST; |
|
# if UAVCAN_STM32_NUM_IFACES > 1 |
|
RCC->APB1ENR |= RCC_APB1ENR_CAN2EN; |
|
RCC->APB1RSTR |= RCC_APB1RSTR_CAN2RST; |
|
RCC->APB1RSTR &= ~RCC_APB1RSTR_CAN2RST; |
|
# endif |
|
} |
|
|
|
/* |
|
* IRQ |
|
*/ |
|
{ |
|
CriticalSectionLocker lock; |
|
nvicEnableVector(CAN1_TX_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK); |
|
nvicEnableVector(CAN1_RX0_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK); |
|
nvicEnableVector(CAN1_RX1_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK); |
|
# if UAVCAN_STM32_NUM_IFACES > 1 |
|
nvicEnableVector(CAN2_TX_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK); |
|
nvicEnableVector(CAN2_RX0_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK); |
|
nvicEnableVector(CAN2_RX1_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK); |
|
# endif |
|
} |
|
} |
|
|
|
int CanDriver::init(const uavcan::uint32_t bitrate, const CanIface::OperatingMode mode) |
|
{ |
|
int res = 0; |
|
|
|
UAVCAN_STM32_LOG("Bitrate %lu mode %d", static_cast<unsigned long>(bitrate), static_cast<int>(mode)); |
|
|
|
static bool initialized_once = false; |
|
if (!initialized_once) |
|
{ |
|
initialized_once = true; |
|
UAVCAN_STM32_LOG("First initialization"); |
|
initOnce(); |
|
} |
|
|
|
/* |
|
* CAN1 |
|
*/ |
|
UAVCAN_STM32_LOG("Initing iface 0..."); |
|
ifaces[0] = &if0_; // This link must be initialized first, |
|
res = if0_.init(bitrate, mode); // otherwise an IRQ may fire while the interface is not linked yet; |
|
if (res < 0) // a typical race condition. |
|
{ |
|
UAVCAN_STM32_LOG("Iface 0 init failed %i", res); |
|
ifaces[0] = UAVCAN_NULLPTR; |
|
goto fail; |
|
} |
|
|
|
/* |
|
* CAN2 |
|
*/ |
|
#if UAVCAN_STM32_NUM_IFACES > 1 |
|
UAVCAN_STM32_LOG("Initing iface 1..."); |
|
ifaces[1] = &if1_; // Same thing here. |
|
res = if1_.init(bitrate, mode); |
|
if (res < 0) |
|
{ |
|
UAVCAN_STM32_LOG("Iface 1 init failed %i", res); |
|
ifaces[1] = UAVCAN_NULLPTR; |
|
goto fail; |
|
} |
|
#endif |
|
|
|
UAVCAN_STM32_LOG("CAN drv init OK"); |
|
UAVCAN_ASSERT(res >= 0); |
|
return res; |
|
|
|
fail: |
|
UAVCAN_STM32_LOG("CAN drv init failed %i", res); |
|
UAVCAN_ASSERT(res < 0); |
|
return res; |
|
} |
|
|
|
void CanDriver::initOnce(uavcan::uint8_t can_number, bool enable_irqs) |
|
{ |
|
/* |
|
* CAN1, CAN2 |
|
*/ |
|
{ |
|
CriticalSectionLocker lock; |
|
if (can_number == 0) { |
|
RCC->APB1ENR |= RCC_APB1ENR_CAN1EN; |
|
RCC->APB1RSTR |= RCC_APB1RSTR_CAN1RST; |
|
RCC->APB1RSTR &= ~RCC_APB1RSTR_CAN1RST; |
|
} |
|
# if UAVCAN_STM32_NUM_IFACES > 1 |
|
else if (can_number == 1) { |
|
RCC->APB1ENR |= RCC_APB1ENR_CAN2EN; |
|
RCC->APB1RSTR |= RCC_APB1RSTR_CAN2RST; |
|
RCC->APB1RSTR &= ~RCC_APB1RSTR_CAN2RST; |
|
} |
|
# endif |
|
} |
|
|
|
if (!enable_irqs) { |
|
return; |
|
} |
|
/* |
|
* IRQ |
|
*/ |
|
{ |
|
CriticalSectionLocker lock; |
|
if (can_number == 0) { |
|
nvicEnableVector(CAN1_TX_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK); |
|
nvicEnableVector(CAN1_RX0_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK); |
|
nvicEnableVector(CAN1_RX1_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK); |
|
} |
|
# if UAVCAN_STM32_NUM_IFACES > 1 |
|
else if (can_number == 1) { |
|
nvicEnableVector(CAN2_TX_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK); |
|
nvicEnableVector(CAN2_RX0_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK); |
|
nvicEnableVector(CAN2_RX1_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK); |
|
} |
|
# endif |
|
} |
|
} |
|
|
|
int CanDriver::init(const uavcan::uint32_t bitrate, const CanIface::OperatingMode mode, uavcan::uint8_t can_number) |
|
{ |
|
int res = 0; |
|
|
|
UAVCAN_STM32_LOG("Bitrate %lu mode %d", static_cast<unsigned long>(bitrate), static_cast<int>(mode)); |
|
if (can_number > UAVCAN_STM32_NUM_IFACES) { |
|
res = -1; |
|
goto fail; |
|
} |
|
static bool initialized_once[UAVCAN_STM32_NUM_IFACES] = {false}; |
|
|
|
if (!initialized_once[can_number]) { |
|
initialized_once[can_number] = true; |
|
initialized_by_me_[can_number] = true; |
|
|
|
if (can_number == 1 && !initialized_once[0]) { |
|
UAVCAN_STM32_LOG("Iface 0 is not initialized yet but we need it for Iface 1, trying to init it"); |
|
UAVCAN_STM32_LOG("Enabling CAN iface 0"); |
|
initOnce(0, false); |
|
UAVCAN_STM32_LOG("Initing iface 0..."); |
|
res = if0_.init(bitrate, mode); |
|
|
|
if (res < 0) { |
|
UAVCAN_STM32_LOG("Iface 0 init failed %i", res); |
|
goto fail; |
|
} |
|
} |
|
|
|
UAVCAN_STM32_LOG("Enabling CAN iface %d", can_number); |
|
initOnce(can_number, true); |
|
} else if (!initialized_by_me_[can_number]) { |
|
UAVCAN_STM32_LOG("CAN iface %d initialized in another CANDriver!", can_number); |
|
res = -2; |
|
goto fail; |
|
} |
|
|
|
if (can_number == 0) { |
|
/* |
|
* CAN1 |
|
*/ |
|
UAVCAN_STM32_LOG("Initing iface 0..."); |
|
ifaces[0] = &if0_; // This link must be initialized first, |
|
res = if0_.init(bitrate, mode); // otherwise an IRQ may fire while the interface is not linked yet; |
|
if (res < 0) // a typical race condition. |
|
{ |
|
UAVCAN_STM32_LOG("Iface 0 init failed %i", res); |
|
ifaces[0] = UAVCAN_NULLPTR; |
|
goto fail; |
|
} |
|
} else if (can_number == 1) { |
|
/* |
|
* CAN2 |
|
*/ |
|
#if UAVCAN_STM32_NUM_IFACES > 1 |
|
UAVCAN_STM32_LOG("Initing iface 1..."); |
|
ifaces[1] = &if1_; // Same thing here. |
|
res = if1_.init(bitrate, mode); |
|
if (res < 0) |
|
{ |
|
UAVCAN_STM32_LOG("Iface 1 init failed %i", res); |
|
ifaces[1] = UAVCAN_NULLPTR; |
|
goto fail; |
|
} |
|
#endif |
|
} |
|
|
|
if_int_to_gl_index_[num_ifaces_++] = can_number; |
|
|
|
UAVCAN_STM32_LOG("CAN drv init OK"); |
|
UAVCAN_ASSERT(res >= 0); |
|
return res; |
|
|
|
fail: |
|
UAVCAN_STM32_LOG("CAN drv init failed %i", res); |
|
UAVCAN_ASSERT(res < 0); |
|
return res; |
|
} |
|
|
|
CanIface* CanDriver::getIface(uavcan::uint8_t iface_index) |
|
{ |
|
if (iface_index < num_ifaces_) |
|
{ |
|
return ifaces[if_int_to_gl_index_[iface_index]]; |
|
} |
|
return UAVCAN_NULLPTR; |
|
} |
|
|
|
bool CanDriver::hadActivity() |
|
{ |
|
for (uavcan::uint8_t i = 0; i < num_ifaces_; i++) { |
|
if (ifaces[if_int_to_gl_index_[i]]->hadActivity()) { |
|
return true; |
|
} |
|
} |
|
|
|
return false; |
|
} |
|
|
|
} // namespace uavcan_stm32 |
|
|
|
/* |
|
* Interrupt handlers |
|
*/ |
|
extern "C" |
|
{ |
|
|
|
UAVCAN_STM32_IRQ_HANDLER(CAN1_TX_IRQHandler); |
|
UAVCAN_STM32_IRQ_HANDLER(CAN1_TX_IRQHandler) |
|
{ |
|
UAVCAN_STM32_IRQ_PROLOGUE(); |
|
ChibiOS_CAN::handleTxInterrupt(0); |
|
UAVCAN_STM32_IRQ_EPILOGUE(); |
|
} |
|
|
|
UAVCAN_STM32_IRQ_HANDLER(CAN1_RX0_IRQHandler); |
|
UAVCAN_STM32_IRQ_HANDLER(CAN1_RX0_IRQHandler) |
|
{ |
|
UAVCAN_STM32_IRQ_PROLOGUE(); |
|
ChibiOS_CAN::handleRxInterrupt(0, 0); |
|
UAVCAN_STM32_IRQ_EPILOGUE(); |
|
} |
|
|
|
UAVCAN_STM32_IRQ_HANDLER(CAN1_RX1_IRQHandler); |
|
UAVCAN_STM32_IRQ_HANDLER(CAN1_RX1_IRQHandler) |
|
{ |
|
UAVCAN_STM32_IRQ_PROLOGUE(); |
|
ChibiOS_CAN::handleRxInterrupt(0, 1); |
|
UAVCAN_STM32_IRQ_EPILOGUE(); |
|
} |
|
|
|
# if UAVCAN_STM32_NUM_IFACES > 1 |
|
|
|
#if !defined(CAN2_TX_IRQHandler) |
|
# error "Misconfigured build1" |
|
#endif |
|
|
|
#if !defined(CAN2_RX0_IRQHandler) |
|
# error "Misconfigured build2" |
|
#endif |
|
|
|
#if !defined(CAN2_RX1_IRQHandler) |
|
# error "Misconfigured build3" |
|
#endif |
|
|
|
UAVCAN_STM32_IRQ_HANDLER(CAN2_TX_IRQHandler); |
|
UAVCAN_STM32_IRQ_HANDLER(CAN2_TX_IRQHandler) |
|
{ |
|
UAVCAN_STM32_IRQ_PROLOGUE(); |
|
ChibiOS_CAN::handleTxInterrupt(1); |
|
UAVCAN_STM32_IRQ_EPILOGUE(); |
|
} |
|
|
|
UAVCAN_STM32_IRQ_HANDLER(CAN2_RX0_IRQHandler); |
|
UAVCAN_STM32_IRQ_HANDLER(CAN2_RX0_IRQHandler) |
|
{ |
|
UAVCAN_STM32_IRQ_PROLOGUE(); |
|
ChibiOS_CAN::handleRxInterrupt(1, 0); |
|
UAVCAN_STM32_IRQ_EPILOGUE(); |
|
} |
|
|
|
UAVCAN_STM32_IRQ_HANDLER(CAN2_RX1_IRQHandler); |
|
UAVCAN_STM32_IRQ_HANDLER(CAN2_RX1_IRQHandler) |
|
{ |
|
UAVCAN_STM32_IRQ_PROLOGUE(); |
|
ChibiOS_CAN::handleRxInterrupt(1, 1); |
|
UAVCAN_STM32_IRQ_EPILOGUE(); |
|
} |
|
|
|
# endif |
|
|
|
} // extern "C" |
|
|
|
#endif //HAL_WITH_UAVCAN
|
|
|