You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
877 lines
27 KiB
877 lines
27 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*- |
|
|
|
/* |
|
ArduPilotMega (unstable development version) |
|
Authors: Doug Weibel, Jose Julio, Jordi Munoz, Jason Short |
|
Thanks to: Chris Anderson, HappyKillMore, Bill Premerlani, James Cohen, JB from rotorFX, Automatik, Fefenin, Peter Meister, Remzibi |
|
Please contribute your ideas! |
|
|
|
|
|
This firmware is free software; you can redistribute it and/or |
|
modify it under the terms of the GNU Lesser General Public |
|
License as published by the Free Software Foundation; either |
|
version 2.1 of the License, or (at your option) any later version. |
|
*/ |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Header includes |
|
//////////////////////////////////////////////////////////////////////////////// |
|
|
|
// AVR runtime |
|
#include <avr/io.h> |
|
#include <avr/eeprom.h> |
|
#include <avr/pgmspace.h> |
|
#include <math.h> |
|
|
|
// Libraries |
|
#include <FastSerial.h> |
|
#include <AP_Common.h> |
|
#include <APM_BinComm.h> |
|
#include <APM_RC.h> // ArduPilot Mega RC Library |
|
#include <AP_GPS.h> // ArduPilot GPS library |
|
#include <Wire.h> |
|
#include <DataFlash.h> // ArduPilot Mega Flash Memory Library |
|
#include <AP_ADC.h> // ArduPilot Mega Analog to Digital Converter Library |
|
#include <APM_BMP085.h> // ArduPilot Mega BMP085 Library |
|
#include <AP_Compass.h> // ArduPilot Mega Magnetometer Library |
|
#include <AP_Math.h> // ArduPilot Mega Vector/Matrix math Library |
|
#include <AP_IMU.h> // ArduPilot Mega IMU Library |
|
#include <AP_DCM.h> // ArduPilot Mega DCM Library |
|
#include <PID.h> // PID library |
|
|
|
#include <GCS_MAVLink.h> // MAVLink GCS definitions |
|
|
|
// Configuration |
|
#include "config.h" |
|
|
|
// Local modules |
|
#include "defines.h" |
|
#include "global_data.h" |
|
#include "GCS.h" |
|
#include "HIL.h" |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Serial ports |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// Note that FastSerial port buffers are allocated at ::begin time, |
|
// so there is not much of a penalty to defining ports that we don't |
|
// use. |
|
// |
|
FastSerialPort0(Serial); // FTDI/console |
|
FastSerialPort1(Serial1); // GPS port |
|
FastSerialPort3(Serial3); // Telemetry port |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Sensors |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// There are three basic options related to flight sensor selection. |
|
// |
|
// - Normal flight mode. Real sensors are used. |
|
// - HIL Attitude mode. Most sensors are disabled, as the HIL |
|
// protocol supplies attitude information directly. |
|
// - HIL Sensors mode. Synthetic sensors are configured that |
|
// supply data from the simulation. |
|
// |
|
|
|
#if HIL_MODE == HIL_MODE_NONE |
|
|
|
// real sensors |
|
AP_ADC_ADS7844 adc; |
|
APM_BMP085_Class pitot; //TODO: 'pitot' is not an appropriate name for a static pressure sensor |
|
AP_Compass_HMC5843 compass; |
|
|
|
// real GPS selection |
|
#if GPS_PROTOCOL == GPS_PROTOCOL_NMEA |
|
AP_GPS_NMEA gps(&Serial1); |
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_SIRF |
|
AP_GPS_SIRF gps(&Serial1); |
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_UBLOX |
|
AP_GPS_UBLOX gps(&Serial1); |
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK |
|
AP_GPS_MTK gps(&Serial1); |
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_NONE |
|
AP_GPS_NONE gps(NULL); |
|
#else |
|
#error Unrecognised GPS_PROTOCOL setting. |
|
#endif // GPS PROTOCOL |
|
|
|
#elif HIL_MODE == HIL_MODE_SENSORS |
|
// sensor emulators |
|
AP_ADC_HIL adc; |
|
APM_BMP085_HIL_Class pitot; |
|
AP_Compass_HIL compass; |
|
AP_GPS_HIL gps(NULL); |
|
|
|
#elif HIL_MODE == HIL_MODE_ATTITUDE |
|
AP_DCM_HIL dcm; |
|
AP_GPS_HIL gps(NULL); |
|
|
|
#else |
|
#error Unrecognised HIL_MODE setting. |
|
#endif // HIL MODE |
|
|
|
#if HIL_MODE != HIL_MODE_DISABLED |
|
|
|
#if HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK |
|
HIL_MAVLINK hil; |
|
#elif HIL_PROTOCOL == HIL_PROTOCOL_XPLANE |
|
HIL_XPLANE hil; |
|
#endif // HIL PROTOCOL |
|
|
|
#endif |
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE |
|
AP_IMU imu(&adc,getAddress(PARAM_IMU_OFFSET_0)); |
|
AP_DCM dcm(&imu, &gps, &compass); |
|
#endif |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// GCS selection |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// |
|
#if GCS_PROTOCOL == GCS_PROTOCOL_STANDARD |
|
// create an instance of the standard GCS. |
|
BinComm::MessageHandler GCS_MessageHandlers[] = { |
|
{BinComm::MSG_ANY, receive_message, NULL}, |
|
{BinComm::MSG_NULL, NULL, NULL} |
|
}; |
|
GCS_STANDARD gcs(GCS_MessageHandlers); |
|
|
|
#elif GCS_PROTOCOL == GCS_PROTOCOL_LEGACY |
|
GCS_LEGACY gcs; |
|
#elif GCS_PROTOCOL == GCS_PROTOCOL_DEBUGTERMINAL |
|
GCS_DEBUGTERMINAL gcs; |
|
#elif GCS_PROTOCOL == GCS_PROTOCOL_XPLANE |
|
GCS_XPLANE gcs; // Should become a HIL |
|
#elif GCS_PROTOCOL == GCS_PROTOCOL_MAVLINK |
|
GCS_MAVLINK gcs; |
|
#else |
|
// If we are not using a GCS, we need a stub that does nothing. |
|
GCS_Class gcs; |
|
#endif |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Global variables |
|
//////////////////////////////////////////////////////////////////////////////// |
|
|
|
byte control_mode = MANUAL; |
|
boolean failsafe = false; // did our throttle dip below the failsafe value? |
|
boolean ch3_failsafe = false; |
|
byte crash_timer; |
|
byte oldSwitchPosition; // for remembering the control mode switch |
|
boolean reverse_switch = 1; // do we read the reversing switches after startup? |
|
|
|
byte ground_start_count = 6; // have we achieved first lock and set Home? |
|
int ground_start_avg; // 5 samples to avg speed for ground start |
|
boolean ground_start = false; // have we started on the ground? |
|
const char *comma = ","; |
|
|
|
const char* flight_mode_strings[] = { |
|
"Manual", |
|
"Circle", |
|
"Stabilize", |
|
"", |
|
"", |
|
"FBW_A", |
|
"FBW_B", |
|
"", |
|
"", |
|
"", |
|
"Auto", |
|
"RTL", |
|
"Loiter", |
|
"Takeoff", |
|
"Land"}; |
|
|
|
|
|
/* Radio values |
|
Channel assignments |
|
1 Ailerons (rudder if no ailerons) |
|
2 Elevator |
|
3 Throttle |
|
4 Rudder (if we have ailerons) |
|
5 Mode |
|
6 TBD |
|
7 TBD |
|
8 TBD |
|
*/ |
|
|
|
uint16_t radio_in[8]; // current values from the transmitter - microseconds |
|
uint16_t radio_out[8]; // Send to the PWM library |
|
int16_t servo_out[8]; // current values to the servos - degrees * 100 (approx assuming servo is -45 to 45 degrees except [3] is 0 to 100 |
|
|
|
uint16_t elevon1_trim = 1500; // TODO: handle in EEProm |
|
uint16_t elevon2_trim = 1500; |
|
uint16_t ch1_temp = 1500; // Used for elevon mixing |
|
uint16_t ch2_temp = 1500; |
|
|
|
int reverse_roll = 1; |
|
int reverse_pitch = 1; |
|
int reverse_rudder = 1; |
|
byte mix_mode = 0; // 0 = normal , 1 = elevons |
|
int reverse_elevons = 1; |
|
int reverse_ch1_elevon = 1; |
|
int reverse_ch2_elevon = 1; |
|
|
|
// for elevons radio_in[CH_ROLL] and radio_in[CH_PITCH] are equivalent aileron and elevator, not left and right elevon |
|
|
|
|
|
float nav_gain_scaler = 1; // Gain scaling for headwind/tailwind TODO: why does this variable need to be initialized to 1? |
|
|
|
// PID controllers |
|
PID pidServoRoll(getAddress(PARAM_RLL2SRV_P),PID::STORE_EEPROM_FLOAT); |
|
PID pidServoPitch(getAddress(PARAM_PTCH2SRV_P),PID::STORE_EEPROM_FLOAT); |
|
PID pidServoRudder(getAddress(PARAM_YW2SRV_P),PID::STORE_EEPROM_FLOAT); |
|
PID pidNavRoll(getAddress(PARAM_HDNG2RLL_P),PID::STORE_EEPROM_FLOAT); |
|
PID pidNavPitchAirspeed(getAddress(PARAM_ARSPD2PTCH_P),PID::STORE_EEPROM_FLOAT); |
|
PID pidNavPitchAltitude(getAddress(PARAM_ALT2PTCH_P),PID::STORE_EEPROM_FLOAT); |
|
PID pidTeThrottle(getAddress(PARAM_ENRGY2THR_P),PID::STORE_EEPROM_FLOAT); |
|
PID pidAltitudeThrottle(getAddress(PARAM_ALT2THR_P),PID::STORE_EEPROM_FLOAT); |
|
|
|
PID *pid_index[] = { |
|
&pidServoRoll, |
|
&pidServoPitch, |
|
&pidServoRudder, |
|
&pidNavRoll, |
|
&pidNavPitchAirspeed, |
|
&pidNavPitchAltitude, |
|
&pidTeThrottle, |
|
&pidAltitudeThrottle |
|
}; |
|
|
|
// GPS variables |
|
// ------------- |
|
const float t7 = 10000000.0; // used to scale values for EEPROM and flash memory storage |
|
float scaleLongUp; // used to reverse longtitude scaling |
|
float scaleLongDown; // used to reverse longtitude scaling |
|
boolean GPS_light = false; // status of the GPS light |
|
|
|
// Location & Navigation |
|
// --------------------- |
|
const float radius_of_earth = 6378100; // meters |
|
const float gravity = 9.81; // meters/ sec^2 |
|
long hold_course = -1; // deg * 100 dir of plane |
|
long nav_bearing; // deg * 100 : 0 to 360 current desired bearing to navigate |
|
long target_bearing; // deg * 100 : 0 to 360 location of the plane to the target |
|
long crosstrack_bearing; // deg * 100 : 0 to 360 desired angle of plane to target |
|
int climb_rate; // m/s * 100 - For future implementation of controlled ascent/descent by rate |
|
|
|
|
|
byte command_must_index; // current command memory location |
|
byte command_may_index; // current command memory location |
|
byte command_must_ID; // current command ID |
|
byte command_may_ID; // current command ID |
|
//byte EEPROM_command // 1 = from the list, 0 = generated |
|
|
|
|
|
// Airspeed |
|
// -------- |
|
int airspeed; // m/s * 100 |
|
int airspeed_nudge = 0; // m/s * 100 : additional airspeed based on throttle stick position in top 1/2 of range |
|
float airspeed_error; // m/s * 100 |
|
long energy_error; // energy state error (kinetic + potential) for altitude hold |
|
long airspeed_energy_error; // kinetic portion of energy error |
|
|
|
// Location Errors |
|
// --------------- |
|
long bearing_error; // deg * 100 : 0 to 36000 |
|
long altitude_error; // meters * 100 we are off in altitude |
|
float crosstrack_error; // meters we are off trackline |
|
|
|
// Sensors |
|
// -------- |
|
float airpressure_raw; // Airspeed Sensor - is a float to better handle filtering |
|
int airpressure_offset; // analog air pressure sensor while still |
|
int airpressure; // airspeed as a pressure value |
|
float battery_voltage = LOW_VOLTAGE * 1.05; // Battery Voltage of total battery, initialized above threshold for filter |
|
float battery_voltage1 = LOW_VOLTAGE * 1.05; // Battery Voltage of cell 1, initialized above threshold for filter |
|
float battery_voltage2 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1+2, initialized above threshold for filter |
|
float battery_voltage3 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1+2+3, initialized above threshold for filter |
|
float battery_voltage4 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1+2+3+4, initialized above threshold for filter |
|
|
|
// Pressure Sensor variables |
|
unsigned long abs_press; |
|
unsigned long abs_press_filt; |
|
unsigned long abs_press_gnd; |
|
int ground_temperature; |
|
int temp_unfilt; |
|
long ground_alt; // Ground altitude from gps at startup in centimeters |
|
long press_alt; // Pressure altitude |
|
|
|
// flight mode specific |
|
// -------------------- |
|
boolean takeoff_complete = true; // Flag for using gps ground course instead of IMU yaw. Set false when takeoff command processes. |
|
boolean land_complete = false; |
|
int landing_pitch; // pitch for landing set by commands |
|
int takeoff_pitch; |
|
int takeoff_altitude; |
|
int landing_distance; // meters; |
|
|
|
// Loiter management |
|
// ----------------- |
|
long old_target_bearing; // deg * 100 |
|
int loiter_total; // deg : how many times to loiter * 360 |
|
int loiter_delta; // deg : how far we just turned |
|
int loiter_sum; // deg : how far we have turned around a waypoint |
|
long loiter_time; // millis : when we started LOITER mode |
|
int loiter_time_max; // millis : how long to stay in LOITER mode |
|
|
|
// these are the values for navigation control functions |
|
// ---------------------------------------------------- |
|
long nav_roll; // deg * 100 : target roll angle |
|
long nav_pitch; // deg * 100 : target pitch angle |
|
long altitude_estimate; // for smoothing GPS output |
|
|
|
int throttle_nudge = 0; // 0-(throttle_max - throttle_cruise) : throttle nudge in Auto mode using top 1/2 of throttle stick travel |
|
|
|
// Waypoints |
|
// --------- |
|
long wp_distance; // meters - distance between plane and next waypoint |
|
long wp_totalDistance; // meters - distance between old and next waypoint |
|
byte next_wp_index; // Current active command index |
|
|
|
// repeating event control |
|
// ----------------------- |
|
byte event_id; // what to do - see defines |
|
long event_timer; // when the event was asked for in ms |
|
int event_delay; // how long to delay the next firing of event in millis |
|
int event_repeat; // how many times to fire : 0 = forever, 1 = do once, 2 = do twice |
|
int event_value; // per command value, such as PWM for servos |
|
int event_undo_value; // the value used to undo commands |
|
byte repeat_forever; |
|
byte undo_event; // counter for timing the undo |
|
|
|
// delay command |
|
// -------------- |
|
int delay_timeout = 0; // used to delay commands |
|
long delay_start = 0; // used to delay commands |
|
|
|
// 3D Location vectors |
|
// ------------------- |
|
struct Location home; // home location |
|
struct Location prev_WP; // last waypoint |
|
struct Location current_loc; // current location |
|
struct Location next_WP; // next waypoint |
|
struct Location tell_command; // command for telemetry |
|
struct Location next_command; // command preloaded |
|
long target_altitude; // used for |
|
long offset_altitude; // used for |
|
boolean home_is_set = false; // Flag for if we have gps lock and have set the home location |
|
|
|
// patch antenna variables |
|
struct Location trackVehicle_loc; // vehicle location to track with antenna |
|
|
|
// IMU variables |
|
// ------------- |
|
float G_Dt = 0.02; // Integration time for the gyros (DCM algorithm) |
|
|
|
float COGX; // Course overground X axis |
|
float COGY = 1; // Course overground Y axis |
|
|
|
// Performance monitoring |
|
// ---------------------- |
|
long perf_mon_timer; |
|
float imu_health; // Metric based on accel gain deweighting |
|
int G_Dt_max; // Max main loop cycle time in milliseconds |
|
byte gyro_sat_count; |
|
byte adc_constraints; |
|
byte renorm_sqrt_count; |
|
byte renorm_blowup_count; |
|
int gps_fix_count; |
|
byte gcs_messages_sent; |
|
|
|
|
|
// GCS |
|
// --- |
|
char GCS_buffer[53]; |
|
char display_PID = -1; // Flag used by DebugTerminal to indicate that the next PID calculation with this index should be displayed |
|
|
|
// System Timers |
|
// -------------- |
|
unsigned long fast_loopTimer; // Time in miliseconds of main control loop |
|
unsigned long fast_loopTimeStamp = 0; // Time Stamp when fast loop was complete |
|
unsigned long medium_loopTimer; // Time in miliseconds of navigation control loop |
|
byte medium_loopCounter = 0; // Counters for branching from main control loop to slower loops |
|
byte slow_loopCounter = 0; |
|
byte superslow_loopCounter = 0; |
|
unsigned long deltaMiliSeconds; // Delta Time in miliseconds |
|
unsigned long dTnav; // Delta Time in milliseconds for navigation computations |
|
int mainLoop_count; |
|
unsigned long elapsedTime; // for doing custom events |
|
unsigned long GPS_timer; |
|
float load; // % MCU cycles used |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Top-level logic |
|
//////////////////////////////////////////////////////////////////////////////// |
|
|
|
void setup() { |
|
|
|
init_ardupilot(); |
|
} |
|
|
|
void loop() |
|
{ |
|
// We want this to execute at 50Hz if possible |
|
// ------------------------------------------- |
|
if (millis()-fast_loopTimer > 19) { |
|
deltaMiliSeconds = millis() - fast_loopTimer; |
|
load = float(fast_loopTimeStamp - fast_loopTimer)/deltaMiliSeconds; |
|
G_Dt = (float)deltaMiliSeconds / 1000.f; |
|
fast_loopTimer = millis(); |
|
|
|
mainLoop_count++; |
|
|
|
// Execute the fast loop |
|
// --------------------- |
|
fast_loop(); |
|
|
|
// Execute the medium loop |
|
// ----------------------- |
|
medium_loop(); |
|
|
|
if (millis()- perf_mon_timer > 20000) { |
|
if (mainLoop_count != 0) { |
|
gcs.send_message(MSG_PERF_REPORT); |
|
if (get(PARAM_LOG_BITMASK) & MASK_LOG_PM) |
|
Log_Write_Performance(); |
|
|
|
resetPerfData(); |
|
} |
|
} |
|
fast_loopTimeStamp = millis(); |
|
} |
|
} |
|
|
|
void fast_loop() |
|
{ |
|
// This is the fast loop - we want it to execute at 50Hz if possible |
|
// ----------------------------------------------------------------- |
|
if (deltaMiliSeconds > G_Dt_max) |
|
G_Dt_max = deltaMiliSeconds; |
|
|
|
// Read radio |
|
// ---------- |
|
read_radio(); |
|
|
|
// check for throtle failsafe condition |
|
// ------------------------------------ |
|
//if (get(PARAM_THR_FAILSAFE)) |
|
//set_failsafe(ch3_failsafe); |
|
|
|
// Read Airspeed |
|
// ------------- |
|
# if AIRSPEED_SENSOR == 1 && HIL_MODE != HIL_MODE_ATTITUDE |
|
//read_airspeed(); |
|
# endif |
|
|
|
//dcm.update_DCM(G_Dt); |
|
|
|
# if HIL_MODE == HIL_MODE_DISABLED |
|
//if (get(PARAM_LOG_BITMASK) & MASK_LOG_ATTITUDE_FAST) |
|
//Log_Write_Attitude((int)dcm.roll_sensor, (int)dcm.pitch_sensor, (uint16_t)dcm.yaw_sensor); |
|
|
|
//if (get(PARAM_LOG_BITMASK) & MASK_LOG_RAW) |
|
//Log_Write_Raw(); |
|
#endif // HIL_MODE |
|
|
|
// altitude smoothing |
|
// ------------------ |
|
//if (control_mode != FLY_BY_WIRE_B) |
|
//calc_altitude_error(); |
|
|
|
// inertial navigation |
|
// ------------------ |
|
#if INERTIAL_NAVIGATION == ENABLED |
|
// TODO: implement inertial nav function |
|
//inertialNavigation(); |
|
#endif |
|
|
|
// custom code/exceptions for flight modes |
|
// --------------------------------------- |
|
//update_current_flight_mode(); |
|
|
|
// apply desired roll, pitch and yaw to the plane |
|
// ---------------------------------------------- |
|
//if (control_mode > MANUAL) |
|
//stabilize(); |
|
|
|
// write out the servo PWM values |
|
// ------------------------------ |
|
set_servos_4(); |
|
|
|
|
|
// XXX is it appropriate to be doing the comms below on the fast loop? |
|
|
|
#if HIL_MODE != HIL_MODE_DISABLED |
|
// kick the HIL to process incoming sensor packets |
|
hil.update(); |
|
// send out hil data |
|
hil.send_message(MSG_SERVO_OUT); |
|
//hil.send_message(MSG_ATTITUDE); |
|
//hil.send_message(MSG_LOCATION); |
|
//hil.send_message(MSG_AIRSPEED); |
|
#endif |
|
|
|
// kick the GCS to process uplink data |
|
gcs.update(); |
|
#if GCS_PROTOCOL == GCS_PROTOCOL_MAVLINK |
|
gcs.data_stream_send(45,1000); |
|
#endif |
|
// XXX this should be absorbed into the above, |
|
// or be a "GCS fast loop" interface |
|
} |
|
|
|
void medium_loop() |
|
{ |
|
// This is the start of the medium (10 Hz) loop pieces |
|
// ----------------------------------------- |
|
switch(medium_loopCounter) { |
|
|
|
// This case deals with the GPS |
|
//------------------------------- |
|
case 0: |
|
medium_loopCounter++; |
|
update_GPS(); |
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE && MAGNETOMETER == 1 |
|
//compass.read(); // Read magnetometer |
|
//compass.calculate(dcm.roll,dcm.pitch); // Calculate heading |
|
#endif |
|
|
|
break; |
|
|
|
// This case performs some navigation computations |
|
//------------------------------------------------ |
|
case 1: |
|
medium_loopCounter++; |
|
|
|
|
|
if(gps.new_data){ |
|
dTnav = millis() - medium_loopTimer; |
|
medium_loopTimer = millis(); |
|
} |
|
|
|
// calculate the plane's desired bearing |
|
// ------------------------------------- |
|
//navigate(); |
|
break; |
|
|
|
// command processing |
|
//------------------------------ |
|
case 2: |
|
medium_loopCounter++; |
|
|
|
// perform next command |
|
// -------------------- |
|
//update_commands(); |
|
break; |
|
|
|
// This case deals with sending high rate telemetry |
|
//------------------------------------------------- |
|
case 3: |
|
medium_loopCounter++; |
|
|
|
//if ((get(PARAM_LOG_BITMASK) & MASK_LOG_ATTITUDE_MED) && !(get(PARAM_LOG_BITMASK) & MASK_LOG_ATTITUDE_FAST)) |
|
//Log_Write_Attitude((int)dcm.roll_sensor, (int)dcm.pitch_sensor, (uint16_t)dcm.yaw_sensor); |
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE |
|
//if (get(PARAM_LOG_BITMASK) & MASK_LOG_CTUN) |
|
//Log_Write_Control_Tuning(); |
|
#endif |
|
|
|
//if (get(PARAM_LOG_BITMASK) & MASK_LOG_NTUN) |
|
//Log_Write_Nav_Tuning(); |
|
|
|
//if (get(PARAM_LOG_BITMASK) & MASK_LOG_GPS) |
|
//Log_Write_GPS(gps.time, current_loc.lat, current_loc.lng, gps.altitude, current_loc.alt, (long) gps.ground_speed, gps.ground_course, gps.fix, gps.num_sats); |
|
|
|
// XXX this should be a "GCS medium loop" interface |
|
#if GCS_PROTOCOL == GCS_PROTOCOL_MAVLINK |
|
gcs.data_stream_send(5,45); |
|
// send all requested output streams with rates requested |
|
// between 5 and 45 Hz |
|
#else |
|
//gcs.send_message(MSG_ATTITUDE); // Sends attitude data |
|
#endif |
|
break; |
|
|
|
// This case controls the slow loop |
|
//--------------------------------- |
|
case 4: |
|
medium_loopCounter=0; |
|
slow_loop(); |
|
break; |
|
} |
|
} |
|
|
|
void slow_loop() |
|
{ |
|
// This is the slow (3 1/3 Hz) loop pieces |
|
//---------------------------------------- |
|
switch (slow_loopCounter){ |
|
case 0: |
|
slow_loopCounter++; |
|
|
|
|
|
|
|
|
|
superslow_loopCounter++; |
|
//if(superslow_loopCounter >=15) { |
|
// keep track of what page is in use in the log |
|
// *** We need to come up with a better scheme to handle this... |
|
//eeprom_write_word((uint16_t *) EE_LAST_LOG_PAGE, DataFlash.GetWritePage()); |
|
//superslow_loopCounter = 0; |
|
//} |
|
break; |
|
|
|
case 1: |
|
slow_loopCounter++; |
|
|
|
// Read 3-position switch on radio |
|
// ------------------------------- |
|
read_control_switch(); |
|
|
|
// Read Control Surfaces/Mix switches |
|
// ---------------------------------- |
|
if(reverse_switch){ |
|
update_servo_switches(); |
|
} |
|
|
|
// Read main battery voltage if hooked up - does not read the 5v from radio |
|
// ------------------------------------------------------------------------ |
|
#if BATTERY_EVENT == 1 |
|
read_battery(); |
|
#endif |
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE |
|
// Read Baro pressure |
|
// ------------------ |
|
//read_airpressure(); |
|
#endif |
|
|
|
break; |
|
|
|
case 2: |
|
slow_loopCounter = 0; |
|
//update_events(); |
|
|
|
// XXX this should be a "GCS slow loop" interface |
|
#if GCS_PROTOCOL == GCS_PROTOCOL_MAVLINK |
|
gcs.data_stream_send(1,5); |
|
// send all requested output streams with rates requested |
|
// between 1 and 5 Hz |
|
#else |
|
//gcs.send_message(MSG_LOCATION); |
|
#endif |
|
// send a heartbeat |
|
gcs.send_message(MSG_HEARTBEAT); // XXX This is running at 3 1/3 Hz |
|
//but should be at 1 Hz, new loop timer? |
|
// display load |
|
gcs.send_message(MSG_CPU_LOAD, load*100); |
|
break; |
|
} |
|
} |
|
|
|
|
|
void update_GPS(void) |
|
{ |
|
if(gps.status() == 0) |
|
{ |
|
gps.init(); // reinitialize dead connections |
|
return; // let it warm up while other stuff is running |
|
} |
|
gps.update(); |
|
update_GPS_light(); |
|
|
|
if (gps.new_data && gps.fix) { |
|
GPS_timer = millis(); |
|
// XXX We should be sending GPS data off one of the regular loops so that we send |
|
// no-GPS-fix data too |
|
#if GCS_PROTOCOL != GCS_PROTOCOL_MAVLINK |
|
gcs.send_message(MSG_LOCATION); |
|
#endif |
|
|
|
// for performance |
|
// --------------- |
|
gps_fix_count++; |
|
|
|
if(ground_start_count > 1){ |
|
ground_start_count--; |
|
ground_start_avg += gps.ground_speed; |
|
|
|
} else if (ground_start_count == 1) { |
|
// We countdown N number of good GPS fixes |
|
// so that the altitude is more accurate |
|
// ------------------------------------- |
|
if (current_loc.lat == 0) { |
|
SendDebugln("!! bad loc"); |
|
ground_start_count = 5; |
|
|
|
} else { |
|
if(ENABLE_AIR_START == 1 && (ground_start_avg / 5) < SPEEDFILT){ |
|
startup_ground(); |
|
|
|
if (get(PARAM_LOG_BITMASK) & MASK_LOG_CMD) |
|
Log_Write_Startup(TYPE_GROUNDSTART_MSG); |
|
|
|
init_home(); |
|
} else if (ENABLE_AIR_START == 0) { |
|
init_home(); |
|
} |
|
|
|
ground_start_count = 0; |
|
} |
|
} |
|
|
|
|
|
current_loc.lng = gps.longitude; // Lon * 10**7 |
|
current_loc.lat = gps.latitude; // Lat * 10**7 |
|
|
|
// XXX this is bogus; should just force get(PARAM_ALT_MIX) to zero for GPS_PROTOCOL_IMU |
|
#if HIL_MODE == HIL_MODE_ATTITUDE |
|
current_loc.alt = gps.altitude; |
|
#else |
|
current_loc.alt = ((1 - get(PARAM_ALT_MIX)) * gps.altitude) + (get(PARAM_ALT_MIX) * press_alt); // alt_MSL centimeters (meters * 100) |
|
#endif |
|
|
|
// Calculate new climb rate |
|
add_altitude_data(millis()/100, gps.altitude/10); |
|
|
|
COGX = cos(ToRad(gps.ground_course/100.0)); |
|
COGY = sin(ToRad(gps.ground_course/100.0)); |
|
} |
|
} |
|
|
|
void update_current_flight_mode(void) |
|
{ |
|
if(control_mode == AUTO){ |
|
crash_checker(); |
|
|
|
switch(command_must_ID){ |
|
case CMD_TAKEOFF: |
|
if (hold_course > -1) { |
|
calc_nav_roll(); |
|
} else { |
|
nav_roll = 0; |
|
} |
|
|
|
#if AIRSPEED_SENSOR == ENABLED |
|
calc_nav_pitch(); |
|
if (nav_pitch < (long)takeoff_pitch) nav_pitch = (long)takeoff_pitch; |
|
#else |
|
nav_pitch = (long)((float)gps.ground_speed / (float)get(PARAM_TRIM_AIRSPEED) * (float)takeoff_pitch * 0.5); |
|
nav_pitch = constrain(nav_pitch, 500l, (long)takeoff_pitch); |
|
#endif |
|
|
|
|
|
servo_out[CH_THROTTLE] = get(PARAM_THR_MAX); //TODO: Replace with THROTTLE_TAKEOFF or other method of controlling throttle |
|
// What is the case for doing something else? Why wouldn't you want max throttle for TO? |
|
// ****************************** |
|
|
|
break; |
|
|
|
case CMD_LAND: |
|
calc_nav_roll(); |
|
|
|
#if AIRSPEED_SENSOR == ENABLED |
|
calc_nav_pitch(); |
|
calc_throttle(); |
|
#else |
|
calc_nav_pitch(); // calculate nav_pitch just to use for calc_throttle |
|
calc_throttle(); // throttle based on altitude error |
|
nav_pitch = landing_pitch; // pitch held constant |
|
#endif |
|
|
|
if (land_complete) { |
|
servo_out[CH_THROTTLE] = 0; |
|
} |
|
break; |
|
|
|
default: |
|
hold_course = -1; |
|
calc_nav_roll(); |
|
calc_nav_pitch(); |
|
calc_throttle(); |
|
break; |
|
} |
|
}else{ |
|
switch(control_mode){ |
|
case RTL: |
|
case LOITER: |
|
hold_course = -1; |
|
crash_checker(); |
|
calc_nav_roll(); |
|
calc_nav_pitch(); |
|
calc_throttle(); |
|
break; |
|
|
|
case FLY_BY_WIRE_A: |
|
// fake Navigation output using sticks |
|
nav_roll = ((radio_in[CH_ROLL] - radio_trim(CH_ROLL)) * |
|
get(PARAM_LIM_ROLL) * reverse_roll) / 350; |
|
nav_pitch = ((radio_in[CH_PITCH] - radio_trim(CH_PITCH)) * |
|
3500l * reverse_pitch) / 350; |
|
nav_roll = constrain(nav_roll, -get(PARAM_LIM_ROLL), get(PARAM_LIM_ROLL)); |
|
nav_pitch = constrain(nav_pitch, -3000, 3000); // trying to give more pitch authority |
|
break; |
|
|
|
case FLY_BY_WIRE_B: |
|
// fake Navigation output using sticks |
|
// We use get(PARAM_PITCH_MIN) because its magnitude is |
|
// normally greater than get(PARAM_get(PARAM_PITCH_MAX)) |
|
nav_roll = ((radio_in[CH_ROLL] - radio_trim(CH_ROLL)) |
|
* get(PARAM_LIM_ROLL) * reverse_roll) / 350; |
|
altitude_error = ((radio_in[CH_PITCH] - radio_trim(CH_PITCH)) |
|
* get(PARAM_LIM_PITCH_MIN) * -reverse_pitch) / 350; |
|
nav_roll = constrain(nav_roll, -get(PARAM_LIM_ROLL), get(PARAM_LIM_ROLL)); |
|
|
|
#if AIRSPEED_SENSOR == ENABLED |
|
airspeed_error = ((int)(get(PARAM_ARSPD_FBW_MAX) - |
|
get(PARAM_ARSPD_FBW_MIN)) * |
|
servo_out[CH_THROTTLE]) + |
|
((int)get(PARAM_ARSPD_FBW_MIN) * 100); |
|
// Intermediate calculation - airspeed_error is just desired airspeed at this point |
|
airspeed_energy_error = (long)(((long)airspeed_error * |
|
(long)airspeed_error) - |
|
((long)airspeed * (long)airspeed))/20000; |
|
//Changed 0.00005f * to / 20000 to avoid floating point calculation |
|
airspeed_error = (airspeed_error - airspeed); |
|
#endif |
|
|
|
calc_throttle(); |
|
calc_nav_pitch(); |
|
break; |
|
|
|
case STABILIZE: |
|
nav_roll = 0; |
|
nav_pitch = 0; |
|
// throttle is passthrough |
|
break; |
|
|
|
case CIRCLE: |
|
// we have no GPS installed and have lost radio contact |
|
// or we just want to fly around in a gentle circle w/o GPS |
|
// ---------------------------------------------------- |
|
nav_roll = get(PARAM_LIM_ROLL) / 3; |
|
nav_pitch = 0; |
|
|
|
if (failsafe == true){ |
|
servo_out[CH_THROTTLE] = get(PARAM_TRIM_THROTTLE); |
|
} |
|
break; |
|
|
|
case MANUAL: |
|
// servo_out is for Sim control only |
|
// --------------------------------- |
|
servo_out[CH_ROLL] = reverse_roll * (radio_in[CH_ROLL] - radio_trim(CH_ROLL)) * 9; |
|
servo_out[CH_PITCH] = reverse_pitch * (radio_in[CH_PITCH] - radio_trim(CH_PITCH)) * 9; |
|
servo_out[CH_RUDDER] = reverse_rudder * (radio_in[CH_RUDDER] - radio_trim(CH_RUDDER)) * 9; |
|
break; |
|
//roll: -13788.000, pitch: -13698.000, thr: 0.000, rud: -13742.000 |
|
|
|
} |
|
} |
|
}
|
|
|