You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
250 lines
6.4 KiB
250 lines
6.4 KiB
#pragma once |
|
|
|
#include <cmath> |
|
#include <limits> |
|
#include <stdint.h> |
|
#include <type_traits> |
|
|
|
#include <AP_Common/AP_Common.h> |
|
#include <AP_Param/AP_Param.h> |
|
|
|
#include "definitions.h" |
|
#include "edc.h" |
|
#include "location.h" |
|
#include "matrix3.h" |
|
#include "polygon.h" |
|
#include "quaternion.h" |
|
#include "rotations.h" |
|
#include "vector2.h" |
|
#include "vector3.h" |
|
|
|
// define AP_Param types AP_Vector3f and Ap_Matrix3f |
|
AP_PARAMDEFV(Vector3f, Vector3f, AP_PARAM_VECTOR3F); |
|
|
|
/* |
|
* Check whether two floats are equal |
|
*/ |
|
template <typename Arithmetic1, typename Arithmetic2> |
|
typename std::enable_if<std::is_integral<typename std::common_type<Arithmetic1, Arithmetic2>::type>::value ,bool>::type |
|
is_equal(const Arithmetic1 v_1, const Arithmetic2 v_2); |
|
|
|
template <typename Arithmetic1, typename Arithmetic2> |
|
typename std::enable_if<std::is_floating_point<typename std::common_type<Arithmetic1, Arithmetic2>::type>::value, bool>::type |
|
is_equal(const Arithmetic1 v_1, const Arithmetic2 v_2); |
|
|
|
/* |
|
* @brief: Check whether a float is zero |
|
*/ |
|
template <typename T> |
|
inline bool is_zero(const T fVal1) { |
|
static_assert(std::is_floating_point<T>::value || std::is_base_of<T,AP_Float>::value, |
|
"Template parameter not of type float"); |
|
return (fabsf(static_cast<float>(fVal1)) < FLT_EPSILON); |
|
} |
|
|
|
/* |
|
* @brief: Check whether a float is greater than zero |
|
*/ |
|
template <typename T> |
|
inline bool is_positive(const T fVal1) { |
|
static_assert(std::is_floating_point<T>::value || std::is_base_of<T,AP_Float>::value, |
|
"Template parameter not of type float"); |
|
return (static_cast<float>(fVal1) >= FLT_EPSILON); |
|
} |
|
|
|
|
|
/* |
|
* @brief: Check whether a float is less than zero |
|
*/ |
|
template <typename T> |
|
inline bool is_negative(const T fVal1) { |
|
static_assert(std::is_floating_point<T>::value || std::is_base_of<T,AP_Float>::value, |
|
"Template parameter not of type float"); |
|
return (static_cast<float>(fVal1) <= (-1.0 * FLT_EPSILON)); |
|
} |
|
|
|
|
|
/* |
|
* A variant of asin() that checks the input ranges and ensures a valid angle |
|
* as output. If nan is given as input then zero is returned. |
|
*/ |
|
template <typename T> |
|
float safe_asin(const T v); |
|
|
|
/* |
|
* A variant of sqrt() that checks the input ranges and ensures a valid value |
|
* as output. If a negative number is given then 0 is returned. The reasoning |
|
* is that a negative number for sqrt() in our code is usually caused by small |
|
* numerical rounding errors, so the real input should have been zero |
|
*/ |
|
template <typename T> |
|
float safe_sqrt(const T v); |
|
|
|
// invOut is an inverted 4x4 matrix when returns true, otherwise matrix is Singular |
|
bool inverse3x3(float m[], float invOut[]); |
|
|
|
// invOut is an inverted 3x3 matrix when returns true, otherwise matrix is Singular |
|
bool inverse4x4(float m[],float invOut[]); |
|
|
|
// matrix multiplication of two NxN matrices |
|
float *mat_mul(float *A, float *B, uint8_t n); |
|
|
|
// matrix algebra |
|
bool inverse(float x[], float y[], uint16_t dim); |
|
|
|
/* |
|
* Constrain an angle to be within the range: -180 to 180 degrees. The second |
|
* parameter changes the units. Default: 1 == degrees, 10 == dezi, |
|
* 100 == centi. |
|
*/ |
|
template <typename T> |
|
float wrap_180(const T angle, float unit_mod = 1); |
|
|
|
/* |
|
* Wrap an angle in centi-degrees. See wrap_180(). |
|
*/ |
|
template <typename T> |
|
auto wrap_180_cd(const T angle) -> decltype(wrap_180(angle, 100.f)); |
|
|
|
/* |
|
* Constrain an euler angle to be within the range: 0 to 360 degrees. The |
|
* second parameter changes the units. Default: 1 == degrees, 10 == dezi, |
|
* 100 == centi. |
|
*/ |
|
template <typename T> |
|
float wrap_360(const T angle, float unit_mod = 1); |
|
|
|
/* |
|
* Wrap an angle in centi-degrees. See wrap_360(). |
|
*/ |
|
template <typename T> |
|
auto wrap_360_cd(const T angle) -> decltype(wrap_360(angle, 100.f)); |
|
|
|
/* |
|
wrap an angle in radians to -PI ~ PI (equivalent to +- 180 degrees) |
|
*/ |
|
template <typename T> |
|
float wrap_PI(const T radian); |
|
|
|
/* |
|
* wrap an angle in radians to 0..2PI |
|
*/ |
|
template <typename T> |
|
float wrap_2PI(const T radian); |
|
|
|
/* |
|
* Constrain a value to be within the range: low and high |
|
*/ |
|
template <typename T> |
|
T constrain_value(const T amt, const T low, const T high); |
|
|
|
inline float constrain_float(const float amt, const float low, const float high) |
|
{ |
|
return constrain_value(amt, low, high); |
|
} |
|
|
|
inline int16_t constrain_int16(const int16_t amt, const int16_t low, const int16_t high) |
|
{ |
|
return constrain_value(amt, low, high); |
|
} |
|
|
|
inline int32_t constrain_int32(const int32_t amt, const int32_t low, const int32_t high) |
|
{ |
|
return constrain_value(amt, low, high); |
|
} |
|
|
|
// degrees -> radians |
|
static inline constexpr float radians(float deg) |
|
{ |
|
return deg * DEG_TO_RAD; |
|
} |
|
|
|
// radians -> degrees |
|
static inline constexpr float degrees(float rad) |
|
{ |
|
return rad * RAD_TO_DEG; |
|
} |
|
|
|
template<typename T> |
|
float sq(const T val) |
|
{ |
|
return powf(static_cast<float>(val), 2); |
|
} |
|
|
|
/* |
|
* Variadic template for calculating the square norm of a vector of any |
|
* dimension. |
|
*/ |
|
template<typename T, typename... Params> |
|
float sq(const T first, const Params... parameters) |
|
{ |
|
return sq(first) + sq(parameters...); |
|
} |
|
|
|
/* |
|
* Variadic template for calculating the norm (pythagoras) of a vector of any |
|
* dimension. |
|
*/ |
|
template<typename T, typename U, typename... Params> |
|
float norm(const T first, const U second, const Params... parameters) |
|
{ |
|
return sqrtf(sq(first, second, parameters...)); |
|
} |
|
|
|
template<typename A, typename B> |
|
static inline auto MIN(const A &one, const B &two) -> decltype(one < two ? one : two) |
|
{ |
|
return one < two ? one : two; |
|
} |
|
|
|
template<typename A, typename B> |
|
static inline auto MAX(const A &one, const B &two) -> decltype(one > two ? one : two) |
|
{ |
|
return one > two ? one : two; |
|
} |
|
|
|
inline uint32_t hz_to_nsec(uint32_t freq) |
|
{ |
|
return AP_NSEC_PER_SEC / freq; |
|
} |
|
|
|
inline uint32_t nsec_to_hz(uint32_t nsec) |
|
{ |
|
return AP_NSEC_PER_SEC / nsec; |
|
} |
|
|
|
inline uint32_t usec_to_nsec(uint32_t usec) |
|
{ |
|
return usec * AP_NSEC_PER_USEC; |
|
} |
|
|
|
inline uint32_t nsec_to_usec(uint32_t nsec) |
|
{ |
|
return nsec / AP_NSEC_PER_USEC; |
|
} |
|
|
|
inline uint32_t hz_to_usec(uint32_t freq) |
|
{ |
|
return AP_USEC_PER_SEC / freq; |
|
} |
|
|
|
inline uint32_t usec_to_hz(uint32_t usec) |
|
{ |
|
return AP_USEC_PER_SEC / usec; |
|
} |
|
|
|
/* |
|
linear interpolation based on a variable in a range |
|
*/ |
|
float linear_interpolate(float low_output, float high_output, |
|
float var_value, |
|
float var_low, float var_high); |
|
|
|
/* simple 16 bit random number generator */ |
|
uint16_t get_random16(void); |
|
|
|
// generate a random float between -1 and 1, for use in SITL |
|
float rand_float(void); |
|
|
|
// generate a random Vector3f of size 1 |
|
Vector3f rand_vec3f(void);
|
|
|