You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
199 lines
6.1 KiB
199 lines
6.1 KiB
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
|
|
#include <AP_HAL/AP_HAL.h> |
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN |
|
#include <AP_BoardConfig/AP_BoardConfig.h> |
|
#include "AP_RangeFinder_PX4_PWM.h" |
|
|
|
#include <sys/types.h> |
|
#include <sys/stat.h> |
|
#include <fcntl.h> |
|
#include <unistd.h> |
|
|
|
#include <drivers/drv_pwm_input.h> |
|
#include <drivers/drv_hrt.h> |
|
#include <drivers/drv_sensor.h> |
|
#include <uORB/topics/pwm_input.h> |
|
#include <stdio.h> |
|
#include <errno.h> |
|
#include <cmath> |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
extern "C" { |
|
int pwm_input_main(int, char **); |
|
}; |
|
|
|
/* |
|
The constructor also initialises the rangefinder. Note that this |
|
constructor is not called until detect() returns true, so we |
|
already know that we should setup the rangefinder |
|
*/ |
|
AP_RangeFinder_PX4_PWM::AP_RangeFinder_PX4_PWM(RangeFinder::RangeFinder_State &_state, AP_Int16 &powersave_range, float &_estimated_terrain_height) : |
|
AP_RangeFinder_Backend(_state), |
|
_powersave_range(powersave_range), |
|
estimated_terrain_height(_estimated_terrain_height) |
|
{ |
|
_fd = open(PWMIN0_DEVICE_PATH, O_RDONLY); |
|
if (_fd == -1) { |
|
hal.console->printf("Unable to open PX4 PWM rangefinder\n"); |
|
set_status(RangeFinder::RangeFinder_NotConnected); |
|
return; |
|
} |
|
|
|
// keep a queue of 20 samples |
|
if (ioctl(_fd, SENSORIOCSQUEUEDEPTH, 20) != 0) { |
|
hal.console->printf("Failed to setup range finder queue\n"); |
|
set_status(RangeFinder::RangeFinder_NotConnected); |
|
return; |
|
} |
|
|
|
// initialise to connected but no data |
|
set_status(RangeFinder::RangeFinder_NoData); |
|
} |
|
|
|
/* |
|
close the file descriptor |
|
*/ |
|
AP_RangeFinder_PX4_PWM::~AP_RangeFinder_PX4_PWM() |
|
{ |
|
if (_fd != -1) { |
|
close(_fd); |
|
} |
|
set_status(RangeFinder::RangeFinder_NotConnected); |
|
} |
|
|
|
/* |
|
see if the PX4 driver is available |
|
*/ |
|
bool AP_RangeFinder_PX4_PWM::detect() |
|
{ |
|
#if !defined(CONFIG_ARCH_BOARD_PX4FMU_V1) && \ |
|
!defined(CONFIG_ARCH_BOARD_AEROFC_V1) |
|
if (AP_BoardConfig::px4_start_driver(pwm_input_main, "pwm_input", "start")) { |
|
hal.console->printf("started pwm_input driver\n"); |
|
} |
|
#endif |
|
int fd = open(PWMIN0_DEVICE_PATH, O_RDONLY); |
|
if (fd == -1) { |
|
return false; |
|
} |
|
close(fd); |
|
return true; |
|
} |
|
|
|
void AP_RangeFinder_PX4_PWM::update(void) |
|
{ |
|
if (_fd == -1) { |
|
set_status(RangeFinder::RangeFinder_NotConnected); |
|
return; |
|
} |
|
|
|
struct pwm_input_s pwm; |
|
float sum_cm = 0; |
|
uint16_t count = 0; |
|
const float scaling = state.scaling; |
|
uint32_t now = AP_HAL::millis(); |
|
|
|
while (::read(_fd, &pwm, sizeof(pwm)) == sizeof(pwm)) { |
|
// report the voltage as the pulse width, so we get the raw |
|
// pulse widths in the log |
|
state.voltage_mv = pwm.pulse_width; |
|
|
|
_last_pulse_time_ms = now; |
|
|
|
// setup for scaling in meters per millisecond |
|
float _distance_cm = pwm.pulse_width * 0.1f * scaling + state.offset; |
|
|
|
float distance_delta_cm = fabsf(_distance_cm - _last_sample_distance_cm); |
|
_last_sample_distance_cm = _distance_cm; |
|
|
|
if (distance_delta_cm > 100) { |
|
// varying by more than 1m in a single sample, which means |
|
// between 50 and 100m/s vertically - discard |
|
_good_sample_count = 0; |
|
continue; |
|
} |
|
|
|
if (_good_sample_count > 1) { |
|
count++; |
|
sum_cm += _distance_cm; |
|
_last_timestamp = pwm.timestamp; |
|
} else { |
|
_good_sample_count++; |
|
} |
|
} |
|
|
|
// if we haven't received a pulse for 1 second then we may need to |
|
// reset the timer |
|
int8_t stop_pin = state.stop_pin; |
|
uint16_t settle_time_ms = (uint16_t)state.settle_time_ms; |
|
|
|
if (stop_pin != -1 && out_of_range()) { |
|
// we are above the power saving range. Disable the sensor |
|
hal.gpio->pinMode(stop_pin, HAL_GPIO_OUTPUT); |
|
hal.gpio->write(stop_pin, false); |
|
set_status(RangeFinder::RangeFinder_NoData); |
|
state.distance_cm = 0; |
|
state.voltage_mv = 0; |
|
return; |
|
} |
|
|
|
// if we have not taken a reading in the last 0.2s set status to No Data |
|
if (AP_HAL::micros64() - _last_timestamp >= 200000) { |
|
set_status(RangeFinder::RangeFinder_NoData); |
|
} |
|
|
|
/* if we haven't seen any pulses for 0.5s then the sensor is |
|
probably dead. Try resetting it. Tests show the sensor takes |
|
about 0.2s to boot, so 500ms offers some safety margin |
|
*/ |
|
if (now - _last_pulse_time_ms > 500U && _disable_time_ms == 0) { |
|
ioctl(_fd, SENSORIOCRESET, 0); |
|
_last_pulse_time_ms = now; |
|
|
|
// if a stop pin is configured then disable the sensor for the |
|
// settle time |
|
if (stop_pin != -1) { |
|
hal.gpio->pinMode(stop_pin, HAL_GPIO_OUTPUT); |
|
hal.gpio->write(stop_pin, false); |
|
_disable_time_ms = now; |
|
} |
|
} |
|
|
|
/* the user can configure a settle time. This controls how |
|
long the sensor is disabled for using the stop pin when it is |
|
reset. This is used both to make sure the sensor is properly |
|
reset, and also to allow for power management by running a low |
|
duty cycle when it has no signal |
|
*/ |
|
if (stop_pin != -1 && _disable_time_ms != 0 && |
|
(now - _disable_time_ms > settle_time_ms)) { |
|
hal.gpio->write(stop_pin, true); |
|
_disable_time_ms = 0; |
|
_last_pulse_time_ms = now; |
|
} |
|
|
|
if (count != 0) { |
|
state.distance_cm = sum_cm / count; |
|
|
|
// update range_valid state based on distance measured |
|
update_status(); |
|
} |
|
} |
|
|
|
#endif // CONFIG_HAL_BOARD
|
|
|