You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
524 lines
18 KiB
524 lines
18 KiB
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
|
|
// |
|
// Swift Navigation SBP GPS driver for ArduPilot. |
|
// Code by Niels Joubert |
|
// |
|
// Swift Binary Protocol format: http://docs.swift-nav.com/ |
|
// |
|
|
|
#include "AP_GPS.h" |
|
#include "AP_GPS_SBP2.h" |
|
#include <AP_Logger/AP_Logger.h> |
|
#include <GCS_MAVLink/GCS_MAVLink.h> |
|
#include <GCS_MAVLink/GCS.h> |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
#define SBP_DEBUGGING 0 |
|
#define SBP_INFOREPORTING 1 |
|
|
|
//INVARIANT: We expect SBP to give us a heartbeat in less than 2 seconds. |
|
// This is more lax than the default Piksi settings, |
|
// and we assume the user hasn't reconfigured their Piksi to longer heartbeat intervals |
|
#define SBP_TIMEOUT_HEARTBEAT 2000 |
|
|
|
#if SBP_DEBUGGING |
|
# define Debug(fmt, args ...) \ |
|
do { \ |
|
hal.console->printf("%s:%d: " fmt "\n", \ |
|
__FUNCTION__, __LINE__, \ |
|
## args); \ |
|
hal.scheduler->delay(1); \ |
|
} while(0) |
|
#else |
|
# define Debug(fmt, args ...) |
|
#endif |
|
|
|
#if SBP_INFOREPORTING |
|
# define Info(fmt, args ...) \ |
|
do { \ |
|
gcs().send_text(MAV_SEVERITY_INFO, fmt "\n", ## args); \ |
|
} while(0) |
|
#else |
|
# define Info(fmt, args ...) |
|
#endif |
|
|
|
|
|
AP_GPS_SBP2::AP_GPS_SBP2(AP_GPS &_gps, AP_GPS::GPS_State &_state, |
|
AP_HAL::UARTDriver *_port) : |
|
AP_GPS_Backend(_gps, _state, _port) |
|
{ |
|
Debug("SBP Driver Initialized"); |
|
parser_state.state = sbp_parser_state_t::WAITING; |
|
} |
|
|
|
// Process all bytes available from the stream |
|
// |
|
bool |
|
AP_GPS_SBP2::read(void) |
|
{ |
|
//Invariant: Calling this function processes *all* data current in the UART buffer. |
|
// |
|
//IMPORTANT NOTICE: This function is NOT CALLED for several seconds |
|
// during arming. That should not cause the driver to die. Process *all* waiting messages |
|
|
|
_sbp_process(); |
|
return _attempt_state_update(); |
|
} |
|
|
|
void |
|
AP_GPS_SBP2::inject_data(const uint8_t *data, uint16_t len) |
|
{ |
|
if (port->txspace() > len) { |
|
last_injected_data_ms = AP_HAL::millis(); |
|
port->write(data, len); |
|
} else { |
|
Debug("PIKSI: Not enough TXSPACE"); |
|
} |
|
} |
|
|
|
//This attempts to reads all SBP messages from the incoming port. |
|
//Returns true if a new message was read, false if we failed to read a message. |
|
void |
|
AP_GPS_SBP2::_sbp_process() |
|
{ |
|
uint32_t nleft = port->available(); |
|
while (nleft > 0) { |
|
nleft--; |
|
uint8_t temp = port->read(); |
|
uint16_t crc; |
|
|
|
//This switch reads one character at a time, |
|
//parsing it into buffers until a full message is dispatched |
|
switch (parser_state.state) { |
|
case sbp_parser_state_t::WAITING: |
|
if (temp == SBP_PREAMBLE) { |
|
parser_state.n_read = 0; |
|
parser_state.state = sbp_parser_state_t::GET_TYPE; |
|
} |
|
break; |
|
|
|
case sbp_parser_state_t::GET_TYPE: |
|
*((uint8_t*)&(parser_state.msg_type) + parser_state.n_read) = temp; |
|
parser_state.n_read += 1; |
|
if (parser_state.n_read >= 2) { |
|
parser_state.n_read = 0; |
|
parser_state.state = sbp_parser_state_t::GET_SENDER; |
|
} |
|
break; |
|
|
|
case sbp_parser_state_t::GET_SENDER: |
|
*((uint8_t*)&(parser_state.sender_id) + parser_state.n_read) = temp; |
|
parser_state.n_read += 1; |
|
if (parser_state.n_read >= 2) { |
|
parser_state.n_read = 0; |
|
parser_state.state = sbp_parser_state_t::GET_LEN; |
|
} |
|
break; |
|
|
|
case sbp_parser_state_t::GET_LEN: |
|
parser_state.msg_len = temp; |
|
parser_state.n_read = 0; |
|
parser_state.state = sbp_parser_state_t::GET_MSG; |
|
break; |
|
|
|
case sbp_parser_state_t::GET_MSG: |
|
*((uint8_t*)&(parser_state.msg_buff) + parser_state.n_read) = temp; |
|
parser_state.n_read += 1; |
|
if (parser_state.n_read >= parser_state.msg_len) { |
|
parser_state.n_read = 0; |
|
parser_state.state = sbp_parser_state_t::GET_CRC; |
|
} |
|
break; |
|
|
|
case sbp_parser_state_t::GET_CRC: |
|
*((uint8_t*)&(parser_state.crc) + parser_state.n_read) = temp; |
|
parser_state.n_read += 1; |
|
if (parser_state.n_read >= 2) { |
|
parser_state.state = sbp_parser_state_t::WAITING; |
|
|
|
crc = crc16_ccitt((uint8_t*)&(parser_state.msg_type), 2, 0); |
|
crc = crc16_ccitt((uint8_t*)&(parser_state.sender_id), 2, crc); |
|
crc = crc16_ccitt(&(parser_state.msg_len), 1, crc); |
|
crc = crc16_ccitt(parser_state.msg_buff, parser_state.msg_len, crc); |
|
if (parser_state.crc == crc) { |
|
_sbp_process_message(); |
|
} else { |
|
Debug("CRC Error Occurred!"); |
|
crc_error_counter += 1; |
|
} |
|
} |
|
break; |
|
|
|
default: |
|
parser_state.state = sbp_parser_state_t::WAITING; |
|
break; |
|
} |
|
} |
|
} |
|
|
|
|
|
//INVARIANT: A fully received message with correct CRC is currently in parser_state |
|
void |
|
AP_GPS_SBP2::_sbp_process_message() { |
|
//Here, we copy messages into local structs. |
|
switch (parser_state.msg_type) { |
|
case SBP_HEARTBEAT_MSGTYPE: |
|
memcpy(&last_heartbeat, parser_state.msg_buff, sizeof(struct sbp_heartbeat_t)); |
|
last_heartbeat_received_ms = AP_HAL::millis(); |
|
break; |
|
|
|
case SBP_GPS_TIME_MSGTYPE: |
|
memcpy(&last_gps_time, parser_state.msg_buff, sizeof(struct sbp_gps_time_t)); |
|
check_new_itow(last_gps_time.tow, parser_state.msg_len); |
|
break; |
|
|
|
case SBP_VEL_NED_MSGTYPE: |
|
memcpy(&last_vel_ned, parser_state.msg_buff, sizeof(struct sbp_vel_ned_t)); |
|
check_new_itow(last_vel_ned.tow, parser_state.msg_len); |
|
break; |
|
|
|
case SBP_POS_LLH_MSGTYPE: |
|
memcpy(&last_pos_llh, parser_state.msg_buff, sizeof(struct sbp_pos_llh_t)); |
|
check_new_itow(last_pos_llh.tow, parser_state.msg_len); |
|
break; |
|
|
|
case SBP_DOPS_MSGTYPE: |
|
memcpy(&last_dops, parser_state.msg_buff, sizeof(struct sbp_dops_t)); |
|
check_new_itow(last_dops.tow, parser_state.msg_len); |
|
break; |
|
|
|
case SBP_EXT_EVENT_MSGTYPE: |
|
memcpy(&last_event, parser_state.msg_buff, sizeof(struct sbp_ext_event_t)); |
|
check_new_itow(last_event.tow, parser_state.msg_len); |
|
logging_ext_event(); |
|
break; |
|
|
|
default: |
|
break; |
|
} |
|
|
|
// send all messages we receive to log, even if it's an unsupported message, |
|
// so we can do additional post-processing from logs. |
|
// The log mask will be used to adjust or suppress logging |
|
logging_log_raw_sbp(parser_state.msg_type, parser_state.sender_id, parser_state.msg_len, parser_state.msg_buff); |
|
} |
|
|
|
int32_t |
|
AP_GPS_SBP2::distMod(int32_t tow1_ms, int32_t tow2_ms, int32_t mod) { |
|
return MIN(abs(tow1_ms - tow2_ms), mod - abs(tow1_ms - tow2_ms)); |
|
} |
|
|
|
bool |
|
AP_GPS_SBP2::_attempt_state_update() |
|
{ |
|
if (last_heartbeat_received_ms == 0) |
|
return false; |
|
|
|
uint32_t now = AP_HAL::millis(); |
|
|
|
if (now - last_heartbeat_received_ms > SBP_TIMEOUT_HEARTBEAT) { |
|
|
|
state.status = AP_GPS::NO_FIX; |
|
Info("No Heartbeats from Piksi! Status to NO_FIX."); |
|
return false; |
|
|
|
} else if (last_heartbeat.protocol_major != 2) { |
|
|
|
state.status = AP_GPS::NO_FIX; |
|
Info("Received a heartbeat from non-SBPv2 device. Current driver only supports SBPv2. Status to NO_FIX."); |
|
return false; |
|
|
|
} else if (last_heartbeat.nap_error == 1 || |
|
last_heartbeat.io_error == 1 || |
|
last_heartbeat.sys_error == 1) { |
|
|
|
state.status = AP_GPS::NO_FIX; |
|
|
|
Info("Piksi reported an error. Status to NO_FIX."); |
|
Debug(" ext_antenna: %d", last_heartbeat.ext_antenna); |
|
Debug(" res2: %d", last_heartbeat.res2); |
|
Debug(" protocol_major: %d", last_heartbeat.protocol_major); |
|
Debug(" protocol_minor: %d", last_heartbeat.protocol_minor); |
|
Debug(" res: %d", last_heartbeat.res); |
|
Debug(" nap_error: %d", last_heartbeat.nap_error); |
|
Debug(" io_error: %d", last_heartbeat.io_error); |
|
Debug(" sys_error: %d", last_heartbeat.sys_error); |
|
|
|
return false; |
|
|
|
} else if (last_pos_llh.tow == last_vel_ned.tow |
|
&& (distMod(last_gps_time.tow, last_vel_ned.tow, AP_MSEC_PER_WEEK) < 10000) |
|
&& (distMod(last_dops.tow, last_vel_ned.tow, AP_MSEC_PER_WEEK) < 60000) |
|
&& (last_vel_ned.tow > last_full_update_tow || (last_gps_time.wn > last_full_update_wn && last_vel_ned.tow < last_full_update_tow))) { |
|
|
|
//We have an aligned VEL and LLH, and a recent DOPS and TIME. |
|
|
|
// |
|
// Check Flags for Valid Messages |
|
// |
|
if (last_gps_time.flags.time_src == 0 || |
|
last_vel_ned.flags.vel_mode == 0 || |
|
last_pos_llh.flags.fix_mode == 0 || |
|
last_dops.flags.fix_mode == 0) { |
|
|
|
Debug("Message Marked as Invalid. NO FIX! Flags: {GPS_TIME: %d, VEL_NED: %d, POS_LLH: %d, DOPS: %d}", |
|
last_gps_time.flags.time_src, |
|
last_vel_ned.flags.vel_mode, |
|
last_pos_llh.flags.fix_mode, |
|
last_dops.flags.fix_mode); |
|
|
|
state.status = AP_GPS::NO_FIX; |
|
return false; |
|
} |
|
|
|
// |
|
// Update external time and accuracy state |
|
// |
|
state.time_week = last_gps_time.wn; |
|
state.time_week_ms = last_vel_ned.tow; |
|
state.hdop = last_dops.hdop; |
|
state.vdop = last_dops.vdop; |
|
state.last_gps_time_ms = now; |
|
|
|
// |
|
// Update velocity state |
|
// |
|
state.velocity[0] = (float)(last_vel_ned.n * 1.0e-3); |
|
state.velocity[1] = (float)(last_vel_ned.e * 1.0e-3); |
|
state.velocity[2] = (float)(last_vel_ned.d * 1.0e-3); |
|
|
|
float ground_vector_sq = state.velocity[0]*state.velocity[0] + state.velocity[1]*state.velocity[1]; |
|
state.ground_speed = safe_sqrt(ground_vector_sq); |
|
|
|
state.ground_course = wrap_360(degrees(atan2f(state.velocity[1], state.velocity[0]))); |
|
|
|
state.speed_accuracy = safe_sqrt( |
|
powf((float)last_vel_ned.h_accuracy * 1.0e-3f, 2) + |
|
powf((float)last_vel_ned.v_accuracy * 1.0e-3f, 2)); |
|
state.horizontal_accuracy = (float) last_pos_llh.h_accuracy * 1.0e-3f; |
|
state.vertical_accuracy = (float) last_pos_llh.v_accuracy * 1.0e-3f; |
|
|
|
// |
|
// Set flags appropriately |
|
// |
|
state.have_vertical_velocity = true; |
|
state.have_speed_accuracy = !is_zero(state.speed_accuracy); |
|
state.have_horizontal_accuracy = !is_zero(state.horizontal_accuracy); |
|
state.have_vertical_accuracy = !is_zero(state.vertical_accuracy); |
|
|
|
// |
|
// Update position state |
|
// |
|
state.location.lat = (int32_t) (last_pos_llh.lat * (double)1e7); |
|
state.location.lng = (int32_t) (last_pos_llh.lon * (double)1e7); |
|
state.location.alt = (int32_t) (last_pos_llh.height * 100); |
|
state.num_sats = last_pos_llh.n_sats; |
|
|
|
switch (last_pos_llh.flags.fix_mode) { |
|
case 1: |
|
state.status = AP_GPS::GPS_OK_FIX_3D; |
|
break; |
|
case 2: |
|
state.status = AP_GPS::GPS_OK_FIX_3D_DGPS; |
|
break; |
|
case 3: |
|
state.status = AP_GPS::GPS_OK_FIX_3D_RTK_FLOAT; |
|
break; |
|
case 4: |
|
state.status = AP_GPS::GPS_OK_FIX_3D_RTK_FIXED; |
|
break; |
|
case 6: |
|
state.status = AP_GPS::GPS_OK_FIX_3D_DGPS; |
|
break; |
|
default: |
|
state.status = AP_GPS::NO_FIX; |
|
break; |
|
} |
|
|
|
// |
|
// Update Internal Timing |
|
// |
|
last_full_update_tow = last_vel_ned.tow; |
|
last_full_update_wn = last_gps_time.wn; |
|
|
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
|
|
|
|
bool |
|
AP_GPS_SBP2::_detect(struct SBP2_detect_state &state, uint8_t data) |
|
{ |
|
// This switch reads one character at a time, if we find something that |
|
// looks like our preamble we'll try to read the full message length, |
|
// calculating the CRC. If the CRC matches, we have an SBP GPS! |
|
switch (state.state) { |
|
case SBP2_detect_state::WAITING: |
|
if (data == SBP_PREAMBLE) { |
|
state.n_read = 0; |
|
state.crc_so_far = 0; |
|
state.state = SBP2_detect_state::GET_TYPE; |
|
} |
|
break; |
|
|
|
case SBP2_detect_state::GET_TYPE: |
|
*((uint8_t*)&(state.msg_type) + state.n_read) = data; |
|
state.crc_so_far = crc16_ccitt(&data, 1, state.crc_so_far); |
|
state.n_read += 1; |
|
if (state.n_read >= 2) { |
|
state.n_read = 0; |
|
state.state = SBP2_detect_state::GET_SENDER; |
|
} |
|
break; |
|
|
|
case SBP2_detect_state::GET_SENDER: |
|
state.crc_so_far = crc16_ccitt(&data, 1, state.crc_so_far); |
|
state.n_read += 1; |
|
if (state.n_read >= 2) { |
|
state.n_read = 0; |
|
state.state = SBP2_detect_state::GET_LEN; |
|
} |
|
break; |
|
|
|
case SBP2_detect_state::GET_LEN: |
|
state.crc_so_far = crc16_ccitt(&data, 1, state.crc_so_far); |
|
state.msg_len = data; |
|
state.n_read = 0; |
|
state.state = SBP2_detect_state::GET_MSG; |
|
break; |
|
|
|
case SBP2_detect_state::GET_MSG: |
|
if (state.msg_type == SBP_HEARTBEAT_MSGTYPE && state.n_read < 4) { |
|
*((uint8_t*)&(state.heartbeat_buff) + state.n_read) = data; |
|
} |
|
state.crc_so_far = crc16_ccitt(&data, 1, state.crc_so_far); |
|
state.n_read += 1; |
|
if (state.n_read >= state.msg_len) { |
|
state.n_read = 0; |
|
state.state = SBP2_detect_state::GET_CRC; |
|
} |
|
break; |
|
|
|
case SBP2_detect_state::GET_CRC: |
|
*((uint8_t*)&(state.crc) + state.n_read) = data; |
|
state.n_read += 1; |
|
if (state.n_read >= 2) { |
|
state.state = SBP2_detect_state::WAITING; |
|
if (state.crc == state.crc_so_far |
|
&& state.msg_type == SBP_HEARTBEAT_MSGTYPE) { |
|
struct sbp_heartbeat_t* heartbeat = ((struct sbp_heartbeat_t*)state.heartbeat_buff); |
|
return heartbeat->protocol_major == 2; |
|
} |
|
return false; |
|
} |
|
break; |
|
|
|
default: |
|
state.state = SBP2_detect_state::WAITING; |
|
break; |
|
} |
|
return false; |
|
} |
|
|
|
void |
|
AP_GPS_SBP2::logging_log_full_update() |
|
{ |
|
if (!should_log()) { |
|
return; |
|
} |
|
|
|
//TODO: Expand with heartbeat info. |
|
//TODO: Get rid of IAR NUM HYPO |
|
|
|
struct log_SbpHealth pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_MSG_SBPHEALTH), |
|
time_us : AP_HAL::micros64(), |
|
crc_error_counter : crc_error_counter, |
|
last_injected_data_ms : last_injected_data_ms, |
|
last_iar_num_hypotheses : 0, |
|
}; |
|
AP::logger().WriteBlock(&pkt, sizeof(pkt)); |
|
}; |
|
|
|
void |
|
AP_GPS_SBP2::logging_log_raw_sbp(uint16_t msg_type, |
|
uint16_t sender_id, |
|
uint8_t msg_len, |
|
uint8_t *msg_buff) { |
|
if (!should_log()) { |
|
return; |
|
} |
|
|
|
//MASK OUT MESSAGES WE DON'T WANT TO LOG |
|
if (( ((uint16_t) gps._sbp_logmask) & msg_type) == 0) { |
|
return; |
|
} |
|
|
|
uint64_t time_us = AP_HAL::micros64(); |
|
uint8_t pages = 1; |
|
|
|
if (msg_len > 48) { |
|
pages += (msg_len - 48) / 104 + 1; |
|
} |
|
|
|
struct log_SbpRAWH pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_MSG_SBPRAWH), |
|
time_us : time_us, |
|
msg_type : msg_type, |
|
sender_id : sender_id, |
|
index : 1, |
|
pages : pages, |
|
msg_len : msg_len, |
|
}; |
|
memcpy(pkt.data, msg_buff, MIN(msg_len, 48)); |
|
AP::logger().WriteBlock(&pkt, sizeof(pkt)); |
|
|
|
for (uint8_t i = 0; i < pages - 1; i++) { |
|
struct log_SbpRAWM pkt2 = { |
|
LOG_PACKET_HEADER_INIT(LOG_MSG_SBPRAWM), |
|
time_us : time_us, |
|
msg_type : msg_type, |
|
sender_id : sender_id, |
|
index : uint8_t(i + 2), |
|
pages : pages, |
|
msg_len : msg_len, |
|
}; |
|
memcpy(pkt2.data, &msg_buff[48 + i * 104], MIN(msg_len - (48 + i * 104), 104)); |
|
AP::logger().WriteBlock(&pkt2, sizeof(pkt2)); |
|
} |
|
}; |
|
|
|
void |
|
AP_GPS_SBP2::logging_ext_event() { |
|
if (!should_log()) { |
|
return; |
|
} |
|
|
|
struct log_SbpEvent pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_MSG_SBPEVENT), |
|
time_us : AP_HAL::micros64(), |
|
wn : last_event.wn, |
|
tow : last_event.tow, |
|
ns_residual : last_event.ns_residual, |
|
level : last_event.flags.level, |
|
quality : last_event.flags.quality, |
|
}; |
|
AP::logger().WriteBlock(&pkt, sizeof(pkt)); |
|
};
|
|
|