You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1056 lines
35 KiB
1056 lines
35 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
// |
|
// This is free software; you can redistribute it and/or modify it under |
|
// the terms of the GNU Lesser General Public License as published by the |
|
// Free Software Foundation; either version 2.1 of the License, or (at |
|
// your option) any later version. |
|
// |
|
|
|
// total up and check overflow |
|
// check size of group var_info |
|
|
|
/// @file AP_Param.cpp |
|
/// @brief The AP variable store. |
|
|
|
|
|
#include <AP_HAL.h> |
|
#include <AP_Common.h> |
|
#include <AP_Math.h> |
|
|
|
#include <math.h> |
|
#include <string.h> |
|
|
|
extern const AP_HAL::HAL &hal; |
|
|
|
// #define ENABLE_FASTSERIAL_DEBUG |
|
|
|
#ifdef ENABLE_FASTSERIAL_DEBUG |
|
# define serialDebug(fmt, args ...) do {hal.console->printf("%s:%d: " fmt "\n", __FUNCTION__, __LINE__, ## args); delay(0); } while(0) |
|
#else |
|
# define serialDebug(fmt, args ...) |
|
#endif |
|
|
|
// some useful progmem macros |
|
#define PGM_UINT8(addr) pgm_read_byte((const prog_char *)addr) |
|
#define PGM_UINT16(addr) pgm_read_word((const uint16_t *)addr) |
|
#define PGM_FLOAT(addr) pgm_read_float((const float *)addr) |
|
#define PGM_POINTER(addr) pgm_read_pointer((const void *)addr) |
|
|
|
// the 'GROUP_ID' of a element of a group is the 18 bit identifier |
|
// used to distinguish between this element of the group and other |
|
// elements of the same group. It is calculated using a bit shift per |
|
// level of nesting, so the first level of nesting gets 6 bits the 2nd |
|
// level gets the next 6 bits, and the 3rd level gets the last 6 |
|
// bits. This limits groups to having at most 64 elements. |
|
#define GROUP_ID(grpinfo, base, i, shift) ((base)+(((uint16_t)PGM_UINT8(&grpinfo[i].idx))<<(shift))) |
|
|
|
// Note about AP_Vector3f handling. |
|
// The code has special cases for AP_Vector3f to allow it to be viewed |
|
// as both a single 3 element vector and as a set of 3 AP_Float |
|
// variables. This is done to make it possible for MAVLink to see |
|
// vectors as parameters, which allows users to save their compass |
|
// offsets in MAVLink parameter files. The code involves quite a few |
|
// special cases which could be generalised to any vector/matrix type |
|
// if we end up needing this behaviour for other than AP_Vector3f |
|
|
|
|
|
// static member variables for AP_Param. |
|
// |
|
|
|
// max EEPROM write size. This is usually less than the physical |
|
// size as only part of the EEPROM is reserved for parameters |
|
uint16_t AP_Param::_eeprom_size; |
|
|
|
// number of rows in the _var_info[] table |
|
uint8_t AP_Param::_num_vars; |
|
|
|
// storage and naming information about all types that can be saved |
|
const AP_Param::Info *AP_Param::_var_info; |
|
|
|
// write to EEPROM, checking each byte to avoid writing |
|
// bytes that are already correct |
|
void AP_Param::eeprom_write_check(const void *ptr, uint16_t ofs, uint8_t size) |
|
{ |
|
const uint8_t *b = (const uint8_t *)ptr; |
|
while (size--) { |
|
uint8_t v = hal.storage->read_byte(ofs); |
|
if (v != *b) { |
|
hal.storage->write_byte(ofs, *b); |
|
} |
|
b++; |
|
ofs++; |
|
} |
|
} |
|
|
|
// write a sentinal value at the given offset |
|
void AP_Param::write_sentinal(uint16_t ofs) |
|
{ |
|
struct Param_header phdr; |
|
phdr.type = _sentinal_type; |
|
phdr.key = _sentinal_key; |
|
phdr.group_element = _sentinal_group; |
|
eeprom_write_check(&phdr, ofs, sizeof(phdr)); |
|
} |
|
|
|
// erase all EEPROM variables by re-writing the header and adding |
|
// a sentinal |
|
void AP_Param::erase_all(void) |
|
{ |
|
struct EEPROM_header hdr; |
|
|
|
serialDebug("erase_all"); |
|
|
|
// write the header |
|
hdr.magic[0] = k_EEPROM_magic0; |
|
hdr.magic[1] = k_EEPROM_magic1; |
|
hdr.revision = k_EEPROM_revision; |
|
hdr.spare = 0; |
|
eeprom_write_check(&hdr, 0, sizeof(hdr)); |
|
|
|
// add a sentinal directly after the header |
|
write_sentinal(sizeof(struct EEPROM_header)); |
|
} |
|
|
|
// validate a group info table |
|
bool AP_Param::check_group_info(const struct AP_Param::GroupInfo * group_info, |
|
uint16_t * total_size, |
|
uint8_t group_shift) |
|
{ |
|
uint8_t type; |
|
int8_t max_idx = -1; |
|
for (uint8_t i=0; |
|
(type=PGM_UINT8(&group_info[i].type)) != AP_PARAM_NONE; |
|
i++) { |
|
#ifdef AP_NESTED_GROUPS_ENABLED |
|
if (type == AP_PARAM_GROUP) { |
|
// a nested group |
|
const struct GroupInfo *ginfo = (const struct GroupInfo *)PGM_POINTER(&group_info[i].group_info); |
|
if (group_shift + _group_level_shift >= _group_bits) { |
|
// double nesting of groups is not allowed |
|
return false; |
|
} |
|
if (ginfo == NULL || |
|
!check_group_info(ginfo, total_size, group_shift + _group_level_shift)) { |
|
return false; |
|
} |
|
continue; |
|
} |
|
#endif // AP_NESTED_GROUPS_ENABLED |
|
uint8_t idx = PGM_UINT8(&group_info[i].idx); |
|
if (idx >= (1<<_group_level_shift)) { |
|
// passed limit on table size |
|
return false; |
|
} |
|
if ((int8_t)idx <= max_idx) { |
|
// the indexes must be in increasing order |
|
return false; |
|
} |
|
max_idx = (int8_t)idx; |
|
uint8_t size = type_size((enum ap_var_type)type); |
|
if (size == 0) { |
|
// not a valid type |
|
return false; |
|
} |
|
(*total_size) += size + sizeof(struct Param_header); |
|
} |
|
return true; |
|
} |
|
|
|
// check for duplicate key values |
|
bool AP_Param::duplicate_key(uint8_t vindex, uint8_t key) |
|
{ |
|
for (uint8_t i=vindex+1; i<_num_vars; i++) { |
|
uint8_t key2 = PGM_UINT8(&_var_info[i].key); |
|
if (key2 == key) { |
|
// no duplicate keys allowed |
|
return true; |
|
} |
|
} |
|
return false; |
|
} |
|
|
|
// validate the _var_info[] table |
|
bool AP_Param::check_var_info(void) |
|
{ |
|
uint16_t total_size = sizeof(struct EEPROM_header); |
|
|
|
for (uint8_t i=0; i<_num_vars; i++) { |
|
uint8_t type = PGM_UINT8(&_var_info[i].type); |
|
uint8_t key = PGM_UINT8(&_var_info[i].key); |
|
if (type == AP_PARAM_GROUP) { |
|
if (i == 0) { |
|
// first element can't be a group, for first() call |
|
return false; |
|
} |
|
const struct GroupInfo *group_info = (const struct GroupInfo *)PGM_POINTER(&_var_info[i].group_info); |
|
if (group_info == NULL || |
|
!check_group_info(group_info, &total_size, 0)) { |
|
return false; |
|
} |
|
} else { |
|
uint8_t size = type_size((enum ap_var_type)type); |
|
if (size == 0) { |
|
// not a valid type - the top level list can't contain |
|
// AP_PARAM_NONE |
|
return false; |
|
} |
|
total_size += size + sizeof(struct Param_header); |
|
} |
|
if (duplicate_key(i, key)) { |
|
return false; |
|
} |
|
} |
|
|
|
// we no longer check if total_size is larger than _eeprom_size, |
|
// as we allow for more variables than could fit, relying on not |
|
// saving default values |
|
|
|
return true; |
|
} |
|
|
|
|
|
// setup the _var_info[] table |
|
bool AP_Param::setup(void) |
|
{ |
|
struct EEPROM_header hdr; |
|
|
|
serialDebug("setup %u vars", (unsigned)_num_vars); |
|
|
|
// check the header |
|
hal.storage->read_block(&hdr, 0, sizeof(hdr)); |
|
if (hdr.magic[0] != k_EEPROM_magic0 || |
|
hdr.magic[1] != k_EEPROM_magic1 || |
|
hdr.revision != k_EEPROM_revision) { |
|
// header doesn't match. We can't recover any variables. Wipe |
|
// the header and setup the sentinal directly after the header |
|
serialDebug("bad header in setup - erasing"); |
|
erase_all(); |
|
} |
|
|
|
return true; |
|
} |
|
|
|
// check if AP_Param has been initialised |
|
bool AP_Param::initialised(void) |
|
{ |
|
return _var_info != NULL; |
|
} |
|
|
|
// find the info structure given a header and a group_info table |
|
// return the Info structure and a pointer to the variables storage |
|
const struct AP_Param::Info *AP_Param::find_by_header_group(struct Param_header phdr, void **ptr, |
|
uint8_t vindex, |
|
const struct GroupInfo *group_info, |
|
uint8_t group_base, |
|
uint8_t group_shift) |
|
{ |
|
uint8_t type; |
|
for (uint8_t i=0; |
|
(type=PGM_UINT8(&group_info[i].type)) != AP_PARAM_NONE; |
|
i++) { |
|
#ifdef AP_NESTED_GROUPS_ENABLED |
|
if (type == AP_PARAM_GROUP) { |
|
// a nested group |
|
if (group_shift + _group_level_shift >= _group_bits) { |
|
// too deeply nested - this should have been caught by |
|
// setup() ! |
|
return NULL; |
|
} |
|
const struct GroupInfo *ginfo = (const struct GroupInfo *)PGM_POINTER(&group_info[i].group_info); |
|
const struct AP_Param::Info *ret = find_by_header_group(phdr, ptr, vindex, ginfo, |
|
GROUP_ID(group_info, group_base, i, group_shift), |
|
group_shift + _group_level_shift); |
|
if (ret != NULL) { |
|
return ret; |
|
} |
|
continue; |
|
} |
|
#endif // AP_NESTED_GROUPS_ENABLED |
|
if (GROUP_ID(group_info, group_base, i, group_shift) == phdr.group_element) { |
|
// found a group element |
|
*ptr = (void*)(PGM_POINTER(&_var_info[vindex].ptr) + PGM_UINT16(&group_info[i].offset)); |
|
return &_var_info[vindex]; |
|
} |
|
} |
|
return NULL; |
|
} |
|
|
|
// find the info structure given a header |
|
// return the Info structure and a pointer to the variables storage |
|
const struct AP_Param::Info *AP_Param::find_by_header(struct Param_header phdr, void **ptr) |
|
{ |
|
// loop over all named variables |
|
for (uint8_t i=0; i<_num_vars; i++) { |
|
uint8_t type = PGM_UINT8(&_var_info[i].type); |
|
uint8_t key = PGM_UINT8(&_var_info[i].key); |
|
if (key != phdr.key) { |
|
// not the right key |
|
continue; |
|
} |
|
if (type != AP_PARAM_GROUP) { |
|
// if its not a group then we are done |
|
*ptr = (void*)PGM_POINTER(&_var_info[i].ptr); |
|
return &_var_info[i]; |
|
} |
|
|
|
const struct GroupInfo *group_info = (const struct GroupInfo *)PGM_POINTER(&_var_info[i].group_info); |
|
return find_by_header_group(phdr, ptr, i, group_info, 0, 0); |
|
} |
|
return NULL; |
|
} |
|
|
|
// find the info structure for a variable in a group |
|
const struct AP_Param::Info *AP_Param::find_var_info_group(const struct GroupInfo * group_info, |
|
uint8_t vindex, |
|
uint8_t group_base, |
|
uint8_t group_shift, |
|
uint32_t * group_element, |
|
const struct GroupInfo **group_ret, |
|
uint8_t * idx) const |
|
{ |
|
uintptr_t base = PGM_POINTER(&_var_info[vindex].ptr); |
|
uint8_t type; |
|
for (uint8_t i=0; |
|
(type=PGM_UINT8(&group_info[i].type)) != AP_PARAM_NONE; |
|
i++) { |
|
uintptr_t ofs = PGM_POINTER(&group_info[i].offset); |
|
#ifdef AP_NESTED_GROUPS_ENABLED |
|
if (type == AP_PARAM_GROUP) { |
|
const struct GroupInfo *ginfo = (const struct GroupInfo *)PGM_POINTER(&group_info[i].group_info); |
|
// a nested group |
|
if (group_shift + _group_level_shift >= _group_bits) { |
|
// too deeply nested - this should have been caught by |
|
// setup() ! |
|
return NULL; |
|
} |
|
const struct AP_Param::Info *info; |
|
info = find_var_info_group(ginfo, vindex, |
|
GROUP_ID(group_info, group_base, i, group_shift), |
|
group_shift + _group_level_shift, |
|
group_element, |
|
group_ret, |
|
idx); |
|
if (info != NULL) { |
|
return info; |
|
} |
|
} else // Forgive the poor formatting - if continues below. |
|
#endif // AP_NESTED_GROUPS_ENABLED |
|
if ((uintptr_t) this == base + ofs) { |
|
*group_element = GROUP_ID(group_info, group_base, i, group_shift); |
|
*group_ret = &group_info[i]; |
|
*idx = 0; |
|
return &_var_info[vindex]; |
|
} else if (type == AP_PARAM_VECTOR3F && |
|
(base+ofs+sizeof(float) == (uintptr_t) this || |
|
base+ofs+2*sizeof(float) == (uintptr_t) this)) { |
|
// we are inside a Vector3f. We need to work out which |
|
// element of the vector the current object refers to. |
|
*idx = (((uintptr_t) this) - (base+ofs))/sizeof(float); |
|
*group_element = GROUP_ID(group_info, group_base, i, group_shift); |
|
*group_ret = &group_info[i]; |
|
return &_var_info[vindex]; |
|
} |
|
} |
|
return NULL; |
|
} |
|
|
|
// find the info structure for a variable |
|
const struct AP_Param::Info *AP_Param::find_var_info(uint32_t * group_element, |
|
const struct GroupInfo ** group_ret, |
|
uint8_t * idx) |
|
{ |
|
for (uint8_t i=0; i<_num_vars; i++) { |
|
uint8_t type = PGM_UINT8(&_var_info[i].type); |
|
uintptr_t base = PGM_POINTER(&_var_info[i].ptr); |
|
if (type == AP_PARAM_GROUP) { |
|
const struct GroupInfo *group_info = (const struct GroupInfo *)PGM_POINTER(&_var_info[i].group_info); |
|
const struct AP_Param::Info *info; |
|
info = find_var_info_group(group_info, i, 0, 0, group_element, group_ret, idx); |
|
if (info != NULL) { |
|
return info; |
|
} |
|
} else if (base == (uintptr_t) this) { |
|
*group_element = 0; |
|
*group_ret = NULL; |
|
*idx = 0; |
|
return &_var_info[i]; |
|
} else if (type == AP_PARAM_VECTOR3F && |
|
(base+sizeof(float) == (uintptr_t) this || |
|
base+2*sizeof(float) == (uintptr_t) this)) { |
|
// we are inside a Vector3f. Work out which element we are |
|
// referring to. |
|
*idx = (((uintptr_t) this) - base)/sizeof(float); |
|
*group_element = 0; |
|
*group_ret = NULL; |
|
return &_var_info[i]; |
|
} |
|
} |
|
return NULL; |
|
} |
|
|
|
|
|
// find the info structure for a variable |
|
const struct AP_Param::Info *AP_Param::find_var_info_token(const ParamToken &token, |
|
uint32_t * group_element, |
|
const struct GroupInfo ** group_ret, |
|
uint8_t * idx) const |
|
{ |
|
uint8_t i = token.key; |
|
uint8_t type = PGM_UINT8(&_var_info[i].type); |
|
uintptr_t base = PGM_POINTER(&_var_info[i].ptr); |
|
if (type == AP_PARAM_GROUP) { |
|
const struct GroupInfo *group_info = (const struct GroupInfo *)PGM_POINTER(&_var_info[i].group_info); |
|
const struct AP_Param::Info *info; |
|
info = find_var_info_group(group_info, i, 0, 0, group_element, group_ret, idx); |
|
if (info != NULL) { |
|
return info; |
|
} |
|
} else if (base == (uintptr_t) this) { |
|
*group_element = 0; |
|
*group_ret = NULL; |
|
*idx = 0; |
|
return &_var_info[i]; |
|
} else if (type == AP_PARAM_VECTOR3F && |
|
(base+sizeof(float) == (uintptr_t) this || |
|
base+2*sizeof(float) == (uintptr_t) this)) { |
|
// we are inside a Vector3f. Work out which element we are |
|
// referring to. |
|
*idx = (((uintptr_t) this) - base)/sizeof(float); |
|
*group_element = 0; |
|
*group_ret = NULL; |
|
return &_var_info[i]; |
|
} |
|
return NULL; |
|
} |
|
|
|
// return the storage size for a AP_PARAM_* type |
|
uint8_t AP_Param::type_size(enum ap_var_type type) |
|
{ |
|
switch (type) { |
|
case AP_PARAM_NONE: |
|
case AP_PARAM_GROUP: |
|
return 0; |
|
case AP_PARAM_INT8: |
|
return 1; |
|
case AP_PARAM_INT16: |
|
return 2; |
|
case AP_PARAM_INT32: |
|
return 4; |
|
case AP_PARAM_FLOAT: |
|
return 4; |
|
case AP_PARAM_VECTOR3F: |
|
return 3*4; |
|
case AP_PARAM_VECTOR6F: |
|
return 6*4; |
|
case AP_PARAM_MATRIX3F: |
|
return 3*3*4; |
|
} |
|
serialDebug("unknown type %u\n", type); |
|
return 0; |
|
} |
|
|
|
// scan the EEPROM looking for a given variable by header content |
|
// return true if found, along with the offset in the EEPROM where |
|
// the variable is stored |
|
// if not found return the offset of the sentinal, or |
|
bool AP_Param::scan(const AP_Param::Param_header *target, uint16_t *pofs) |
|
{ |
|
struct Param_header phdr; |
|
uint16_t ofs = sizeof(AP_Param::EEPROM_header); |
|
while (ofs < _eeprom_size) { |
|
hal.storage->read_block(&phdr, ofs, sizeof(phdr)); |
|
if (phdr.type == target->type && |
|
phdr.key == target->key && |
|
phdr.group_element == target->group_element) { |
|
// found it |
|
*pofs = ofs; |
|
return true; |
|
} |
|
// note that this is an ||, not an &&, as this makes us more |
|
// robust to power off while adding a variable to EEPROM |
|
if (phdr.type == _sentinal_type || |
|
phdr.key == _sentinal_key || |
|
phdr.group_element == _sentinal_group) { |
|
// we've reached the sentinal |
|
*pofs = ofs; |
|
return false; |
|
} |
|
ofs += type_size((enum ap_var_type)phdr.type) + sizeof(phdr); |
|
} |
|
*pofs = ~0; |
|
serialDebug("scan past end of eeprom"); |
|
return false; |
|
} |
|
|
|
// add a X,Y,Z suffix to the name of a Vector3f element |
|
void AP_Param::add_vector3f_suffix(char *buffer, size_t buffer_size, uint8_t idx) const |
|
{ |
|
uint8_t len = strnlen(buffer, buffer_size); |
|
if ((size_t)(len+2) > buffer_size) { |
|
// the suffix doesn't fit |
|
return; |
|
} |
|
buffer[len] = '_'; |
|
if (idx == 0) { |
|
buffer[len+1] = 'X'; |
|
} else if (idx == 1) { |
|
buffer[len+1] = 'Y'; |
|
} else if (idx == 2) { |
|
buffer[len+1] = 'Z'; |
|
} |
|
if ((size_t)(len+2) < buffer_size) { |
|
buffer[len+2] = 0; |
|
} |
|
} |
|
|
|
// Copy the variable's whole name to the supplied buffer. |
|
// |
|
// If the variable is a group member, prepend the group name. |
|
// |
|
void AP_Param::copy_name_token(const ParamToken &token, char *buffer, size_t buffer_size, bool force_scalar) const |
|
{ |
|
uint32_t group_element; |
|
const struct GroupInfo *ginfo; |
|
uint8_t idx; |
|
const struct AP_Param::Info *info = find_var_info_token(token, &group_element, &ginfo, &idx); |
|
if (info == NULL) { |
|
*buffer = 0; |
|
serialDebug("no info found"); |
|
return; |
|
} |
|
strncpy_P(buffer, info->name, buffer_size); |
|
if (ginfo != NULL) { |
|
uint8_t len = strnlen(buffer, buffer_size); |
|
if (len < buffer_size) { |
|
strncpy_P(&buffer[len], ginfo->name, buffer_size-len); |
|
} |
|
if ((force_scalar || idx != 0) && AP_PARAM_VECTOR3F == PGM_UINT8(&ginfo->type)) { |
|
// the caller wants a specific element in a Vector3f |
|
add_vector3f_suffix(buffer, buffer_size, idx); |
|
} |
|
} else if ((force_scalar || idx != 0) && AP_PARAM_VECTOR3F == PGM_UINT8(&info->type)) { |
|
add_vector3f_suffix(buffer, buffer_size, idx); |
|
} |
|
} |
|
|
|
// Find a variable by name in a group |
|
AP_Param * |
|
AP_Param::find_group(const char *name, uint8_t vindex, const struct GroupInfo *group_info, enum ap_var_type *ptype) |
|
{ |
|
uint8_t type; |
|
for (uint8_t i=0; |
|
(type=PGM_UINT8(&group_info[i].type)) != AP_PARAM_NONE; |
|
i++) { |
|
#ifdef AP_NESTED_GROUPS_ENABLED |
|
if (type == AP_PARAM_GROUP) { |
|
const struct GroupInfo *ginfo = (const struct GroupInfo *)PGM_POINTER(&group_info[i].group_info); |
|
AP_Param *ap = find_group(name, vindex, ginfo, ptype); |
|
if (ap != NULL) { |
|
return ap; |
|
} |
|
} else |
|
#endif // AP_NESTED_GROUPS_ENABLED |
|
if (strcasecmp_P(name, group_info[i].name) == 0) { |
|
uintptr_t p = PGM_POINTER(&_var_info[vindex].ptr); |
|
*ptype = (enum ap_var_type)type; |
|
return (AP_Param *)(p + PGM_POINTER(&group_info[i].offset)); |
|
} else if (type == AP_PARAM_VECTOR3F) { |
|
// special case for finding Vector3f elements |
|
uint8_t suffix_len = strnlen_P(group_info[i].name, AP_MAX_NAME_SIZE); |
|
if (strncmp_P(name, group_info[i].name, suffix_len) == 0 && |
|
name[suffix_len] == '_' && |
|
(name[suffix_len+1] == 'X' || |
|
name[suffix_len+1] == 'Y' || |
|
name[suffix_len+1] == 'Z')) { |
|
uintptr_t p = PGM_POINTER(&_var_info[vindex].ptr); |
|
AP_Float *v = (AP_Float *)(p + PGM_POINTER(&group_info[i].offset)); |
|
*ptype = AP_PARAM_FLOAT; |
|
switch (name[suffix_len+1]) { |
|
case 'X': |
|
return (AP_Float *)&v[0]; |
|
case 'Y': |
|
return (AP_Float *)&v[1]; |
|
case 'Z': |
|
return (AP_Float *)&v[2]; |
|
} |
|
} |
|
} |
|
} |
|
return NULL; |
|
} |
|
|
|
|
|
// Find a variable by name. |
|
// |
|
AP_Param * |
|
AP_Param::find(const char *name, enum ap_var_type *ptype) |
|
{ |
|
for (uint8_t i=0; i<_num_vars; i++) { |
|
uint8_t type = PGM_UINT8(&_var_info[i].type); |
|
if (type == AP_PARAM_GROUP) { |
|
uint8_t len = strnlen_P(_var_info[i].name, AP_MAX_NAME_SIZE); |
|
if (strncmp_P(name, _var_info[i].name, len) != 0) { |
|
continue; |
|
} |
|
const struct GroupInfo *group_info = (const struct GroupInfo *)PGM_POINTER(&_var_info[i].group_info); |
|
AP_Param *ap = find_group(name + len, i, group_info, ptype); |
|
if (ap != NULL) { |
|
return ap; |
|
} |
|
// we continue looking as we want to allow top level |
|
// parameter to have the same prefix name as group |
|
// parameters, for example CAM_P_G |
|
} else if (strcasecmp_P(name, _var_info[i].name) == 0) { |
|
*ptype = (enum ap_var_type)type; |
|
return (AP_Param *)PGM_POINTER(&_var_info[i].ptr); |
|
} |
|
} |
|
return NULL; |
|
} |
|
|
|
// Find a variable by index. Note that this is quite slow. |
|
// |
|
AP_Param * |
|
AP_Param::find_by_index(uint16_t idx, enum ap_var_type *ptype, ParamToken *token) |
|
{ |
|
AP_Param *ap; |
|
uint16_t count=0; |
|
for (ap=AP_Param::first(token, ptype); |
|
ap && count < idx; |
|
ap=AP_Param::next_scalar(token, ptype)) { |
|
count++; |
|
} |
|
return ap; |
|
} |
|
|
|
// Find a object by name. |
|
// |
|
AP_Param * |
|
AP_Param::find_object(const char *name) |
|
{ |
|
for (uint8_t i=0; i<_num_vars; i++) { |
|
if (strcasecmp_P(name, _var_info[i].name) == 0) { |
|
return (AP_Param *)PGM_POINTER(&_var_info[i].ptr); |
|
} |
|
} |
|
return NULL; |
|
} |
|
|
|
|
|
// Save the variable to EEPROM, if supported |
|
// |
|
bool AP_Param::save(void) |
|
{ |
|
uint32_t group_element = 0; |
|
const struct GroupInfo *ginfo; |
|
uint8_t idx; |
|
const struct AP_Param::Info *info = find_var_info(&group_element, &ginfo, &idx); |
|
const AP_Param *ap; |
|
|
|
if (info == NULL) { |
|
// we don't have any info on how to store it |
|
return false; |
|
} |
|
|
|
struct Param_header phdr; |
|
|
|
// create the header we will use to store the variable |
|
if (ginfo != NULL) { |
|
phdr.type = PGM_UINT8(&ginfo->type); |
|
} else { |
|
phdr.type = PGM_UINT8(&info->type); |
|
} |
|
phdr.key = PGM_UINT8(&info->key); |
|
phdr.group_element = group_element; |
|
|
|
ap = this; |
|
if (phdr.type != AP_PARAM_VECTOR3F && idx != 0) { |
|
// only vector3f can have non-zero idx for now |
|
return false; |
|
} |
|
if (idx != 0) { |
|
ap = (const AP_Param *)((uintptr_t)ap) - (idx*sizeof(float)); |
|
} |
|
|
|
// scan EEPROM to find the right location |
|
uint16_t ofs; |
|
if (scan(&phdr, &ofs)) { |
|
// found an existing copy of the variable |
|
eeprom_write_check(ap, ofs+sizeof(phdr), type_size((enum ap_var_type)phdr.type)); |
|
return true; |
|
} |
|
if (ofs == (uint16_t) ~0) { |
|
return false; |
|
} |
|
|
|
// if the value is the default value then don't save |
|
if (phdr.type <= AP_PARAM_FLOAT) { |
|
float v1 = cast_to_float((enum ap_var_type)phdr.type); |
|
float v2; |
|
if (ginfo != NULL) { |
|
v2 = PGM_FLOAT(&ginfo->def_value); |
|
} else { |
|
v2 = PGM_FLOAT(&info->def_value); |
|
} |
|
if (v1 == v2) { |
|
return true; |
|
} |
|
if (phdr.type != AP_PARAM_INT32 && |
|
(fabsf(v1-v2) < 0.0001f*fabsf(v1))) { |
|
// for other than 32 bit integers, we accept values within |
|
// 0.01 percent of the current value as being the same |
|
return true; |
|
} |
|
} |
|
|
|
if (ofs+type_size((enum ap_var_type)phdr.type)+2*sizeof(phdr) >= _eeprom_size) { |
|
// we are out of room for saving variables |
|
return false; |
|
} |
|
|
|
// write a new sentinal, then the data, then the header |
|
write_sentinal(ofs + sizeof(phdr) + type_size((enum ap_var_type)phdr.type)); |
|
eeprom_write_check(ap, ofs+sizeof(phdr), type_size((enum ap_var_type)phdr.type)); |
|
eeprom_write_check(&phdr, ofs, sizeof(phdr)); |
|
return true; |
|
} |
|
|
|
// Load the variable from EEPROM, if supported |
|
// |
|
bool AP_Param::load(void) |
|
{ |
|
uint32_t group_element = 0; |
|
const struct GroupInfo *ginfo; |
|
uint8_t idx; |
|
const struct AP_Param::Info *info = find_var_info(&group_element, &ginfo, &idx); |
|
if (info == NULL) { |
|
// we don't have any info on how to load it |
|
return false; |
|
} |
|
|
|
struct Param_header phdr; |
|
|
|
// create the header we will use to match the variable |
|
if (ginfo != NULL) { |
|
phdr.type = PGM_UINT8(&ginfo->type); |
|
} else { |
|
phdr.type = PGM_UINT8(&info->type); |
|
} |
|
phdr.key = PGM_UINT8(&info->key); |
|
phdr.group_element = group_element; |
|
|
|
// scan EEPROM to find the right location |
|
uint16_t ofs; |
|
if (!scan(&phdr, &ofs)) { |
|
// if the value isn't stored in EEPROM then set the default value |
|
if (ginfo != NULL) { |
|
uintptr_t base = PGM_POINTER(&info->ptr); |
|
set_value((enum ap_var_type)phdr.type, (void*)(base + PGM_UINT16(&ginfo->offset)), |
|
PGM_FLOAT(&ginfo->def_value)); |
|
} else { |
|
set_value((enum ap_var_type)phdr.type, (void*)PGM_POINTER(&info->ptr), PGM_FLOAT(&info->def_value)); |
|
} |
|
return false; |
|
} |
|
|
|
if (phdr.type != AP_PARAM_VECTOR3F && idx != 0) { |
|
// only vector3f can have non-zero idx for now |
|
return false; |
|
} |
|
|
|
AP_Param *ap; |
|
ap = this; |
|
if (idx != 0) { |
|
ap = (AP_Param *)((uintptr_t)ap) - (idx*sizeof(float)); |
|
} |
|
|
|
// found it |
|
hal.storage->read_block(ap, ofs+sizeof(phdr), type_size((enum ap_var_type)phdr.type)); |
|
return true; |
|
} |
|
|
|
// set a AP_Param variable to a specified value |
|
void AP_Param::set_value(enum ap_var_type type, void *ptr, float def_value) |
|
{ |
|
switch (type) { |
|
case AP_PARAM_INT8: |
|
((AP_Int8 *)ptr)->set(def_value); |
|
break; |
|
case AP_PARAM_INT16: |
|
((AP_Int16 *)ptr)->set(def_value); |
|
break; |
|
case AP_PARAM_INT32: |
|
((AP_Int32 *)ptr)->set(def_value); |
|
break; |
|
case AP_PARAM_FLOAT: |
|
((AP_Float *)ptr)->set(def_value); |
|
break; |
|
default: |
|
break; |
|
} |
|
} |
|
|
|
// load default values for scalars in a group. This does not recurse |
|
// into other objects. This is a static function that should be called |
|
// in the objects constructor |
|
void AP_Param::setup_object_defaults(const void *object_pointer, const struct GroupInfo *group_info) |
|
{ |
|
uintptr_t base = (uintptr_t)object_pointer; |
|
uint8_t type; |
|
for (uint8_t i=0; |
|
(type=PGM_UINT8(&group_info[i].type)) != AP_PARAM_NONE; |
|
i++) { |
|
if (type <= AP_PARAM_FLOAT) { |
|
void *ptr = (void *)(base + PGM_UINT16(&group_info[i].offset)); |
|
set_value((enum ap_var_type)type, ptr, PGM_FLOAT(&group_info[i].def_value)); |
|
} |
|
} |
|
} |
|
|
|
|
|
// load default values for all scalars in a sketch. This does not |
|
// recurse into sub-objects |
|
void AP_Param::setup_sketch_defaults(void) |
|
{ |
|
setup(); |
|
for (uint8_t i=0; i<_num_vars; i++) { |
|
uint8_t type = PGM_UINT8(&_var_info[i].type); |
|
if (type <= AP_PARAM_FLOAT) { |
|
void *ptr = (void*)PGM_POINTER(&_var_info[i].ptr); |
|
set_value((enum ap_var_type)type, ptr, PGM_FLOAT(&_var_info[i].def_value)); |
|
} |
|
} |
|
} |
|
|
|
|
|
// Load all variables from EEPROM |
|
// |
|
bool AP_Param::load_all(void) |
|
{ |
|
struct Param_header phdr; |
|
uint16_t ofs = sizeof(AP_Param::EEPROM_header); |
|
|
|
while (ofs < _eeprom_size) { |
|
hal.storage->read_block(&phdr, ofs, sizeof(phdr)); |
|
// note that this is an || not an && for robustness |
|
// against power off while adding a variable |
|
if (phdr.type == _sentinal_type || |
|
phdr.key == _sentinal_key || |
|
phdr.group_element == _sentinal_group) { |
|
// we've reached the sentinal |
|
return true; |
|
} |
|
|
|
const struct AP_Param::Info *info; |
|
void *ptr; |
|
|
|
info = find_by_header(phdr, &ptr); |
|
if (info != NULL) { |
|
hal.storage->read_block(ptr, ofs+sizeof(phdr), type_size((enum ap_var_type)phdr.type)); |
|
} |
|
|
|
ofs += type_size((enum ap_var_type)phdr.type) + sizeof(phdr); |
|
} |
|
|
|
// we didn't find the sentinal |
|
serialDebug("no sentinal in load_all"); |
|
return false; |
|
} |
|
|
|
|
|
// return the first variable in _var_info |
|
AP_Param *AP_Param::first(ParamToken *token, enum ap_var_type *ptype) |
|
{ |
|
token->key = 0; |
|
token->group_element = 0; |
|
token->idx = 0; |
|
if (_num_vars == 0) { |
|
return NULL; |
|
} |
|
if (ptype != NULL) { |
|
*ptype = (enum ap_var_type)PGM_UINT8(&_var_info[0].type); |
|
} |
|
return (AP_Param *)(PGM_POINTER(&_var_info[0].ptr)); |
|
} |
|
|
|
/// Returns the next variable in a group, recursing into groups |
|
/// as needed |
|
AP_Param *AP_Param::next_group(uint8_t vindex, const struct GroupInfo *group_info, |
|
bool *found_current, |
|
uint8_t group_base, |
|
uint8_t group_shift, |
|
ParamToken *token, |
|
enum ap_var_type *ptype) |
|
{ |
|
enum ap_var_type type; |
|
for (uint8_t i=0; |
|
(type=(enum ap_var_type)PGM_UINT8(&group_info[i].type)) != AP_PARAM_NONE; |
|
i++) { |
|
#ifdef AP_NESTED_GROUPS_ENABLED |
|
if (type == AP_PARAM_GROUP) { |
|
// a nested group |
|
const struct GroupInfo *ginfo = (const struct GroupInfo *)PGM_POINTER(&group_info[i].group_info); |
|
AP_Param *ap; |
|
ap = next_group(vindex, ginfo, found_current, GROUP_ID(group_info, group_base, i, group_shift), |
|
group_shift + _group_level_shift, token, ptype); |
|
if (ap != NULL) { |
|
return ap; |
|
} |
|
} else |
|
#endif // AP_NESTED_GROUPS_ENABLED |
|
{ |
|
if (*found_current) { |
|
// got a new one |
|
token->key = vindex; |
|
token->group_element = GROUP_ID(group_info, group_base, i, group_shift); |
|
token->idx = 0; |
|
if (ptype != NULL) { |
|
*ptype = type; |
|
} |
|
return (AP_Param*)(PGM_POINTER(&_var_info[vindex].ptr) + PGM_UINT16(&group_info[i].offset)); |
|
} |
|
if (GROUP_ID(group_info, group_base, i, group_shift) == token->group_element) { |
|
*found_current = true; |
|
if (type == AP_PARAM_VECTOR3F && token->idx < 3) { |
|
// return the next element of the vector as a |
|
// float |
|
token->idx++; |
|
if (ptype != NULL) { |
|
*ptype = AP_PARAM_FLOAT; |
|
} |
|
uintptr_t ofs = (uintptr_t)PGM_POINTER(&_var_info[vindex].ptr) + PGM_UINT16(&group_info[i].offset); |
|
ofs += sizeof(float)*(token->idx-1); |
|
return (AP_Param *)ofs; |
|
} |
|
} |
|
} |
|
} |
|
return NULL; |
|
} |
|
|
|
/// Returns the next variable in _var_info, recursing into groups |
|
/// as needed |
|
AP_Param *AP_Param::next(ParamToken *token, enum ap_var_type *ptype) |
|
{ |
|
uint8_t i = token->key; |
|
bool found_current = false; |
|
if (i >= _num_vars) { |
|
// illegal token |
|
return NULL; |
|
} |
|
enum ap_var_type type = (enum ap_var_type)PGM_UINT8(&_var_info[i].type); |
|
|
|
// allow Vector3f to be seen as 3 variables. First as a vector, |
|
// then as 3 separate floats |
|
if (type == AP_PARAM_VECTOR3F && token->idx < 3) { |
|
token->idx++; |
|
if (ptype != NULL) { |
|
*ptype = AP_PARAM_FLOAT; |
|
} |
|
return (AP_Param *)(((token->idx-1)*sizeof(float))+(uintptr_t)PGM_POINTER(&_var_info[i].ptr)); |
|
} |
|
|
|
if (type != AP_PARAM_GROUP) { |
|
i++; |
|
found_current = true; |
|
} |
|
for (; i<_num_vars; i++) { |
|
type = (enum ap_var_type)PGM_UINT8(&_var_info[i].type); |
|
if (type == AP_PARAM_GROUP) { |
|
const struct GroupInfo *group_info = (const struct GroupInfo *)PGM_POINTER(&_var_info[i].group_info); |
|
AP_Param *ap = next_group(i, group_info, &found_current, 0, 0, token, ptype); |
|
if (ap != NULL) { |
|
return ap; |
|
} |
|
} else { |
|
// found the next one |
|
token->key = i; |
|
token->group_element = 0; |
|
token->idx = 0; |
|
if (ptype != NULL) { |
|
*ptype = type; |
|
} |
|
return (AP_Param *)(PGM_POINTER(&_var_info[i].ptr)); |
|
} |
|
} |
|
return NULL; |
|
} |
|
|
|
/// Returns the next scalar in _var_info, recursing into groups |
|
/// as needed |
|
AP_Param *AP_Param::next_scalar(ParamToken *token, enum ap_var_type *ptype) |
|
{ |
|
AP_Param *ap; |
|
enum ap_var_type type; |
|
while ((ap = next(token, &type)) != NULL && type > AP_PARAM_FLOAT) ; |
|
if (ap != NULL && ptype != NULL) { |
|
*ptype = type; |
|
} |
|
return ap; |
|
} |
|
|
|
|
|
/// cast a variable to a float given its type |
|
float AP_Param::cast_to_float(enum ap_var_type type) const |
|
{ |
|
switch (type) { |
|
case AP_PARAM_INT8: |
|
return ((AP_Int8 *)this)->cast_to_float(); |
|
case AP_PARAM_INT16: |
|
return ((AP_Int16 *)this)->cast_to_float(); |
|
case AP_PARAM_INT32: |
|
return ((AP_Int32 *)this)->cast_to_float(); |
|
case AP_PARAM_FLOAT: |
|
return ((AP_Float *)this)->cast_to_float(); |
|
default: |
|
return NAN; |
|
} |
|
} |
|
|
|
|
|
// print the value of all variables |
|
void AP_Param::show(const AP_Param *ap, const char *s, |
|
enum ap_var_type type, AP_HAL::BetterStream *port) |
|
{ |
|
switch (type) { |
|
case AP_PARAM_INT8: |
|
port->printf_P(PSTR("%s: %d\n"), s, (int)((AP_Int8 *)ap)->get()); |
|
break; |
|
case AP_PARAM_INT16: |
|
port->printf_P(PSTR("%s: %d\n"), s, (int)((AP_Int16 *)ap)->get()); |
|
break; |
|
case AP_PARAM_INT32: |
|
port->printf_P(PSTR("%s: %ld\n"), s, (long)((AP_Int32 *)ap)->get()); |
|
break; |
|
case AP_PARAM_FLOAT: |
|
port->printf_P(PSTR("%s: %f\n"), s, ((AP_Float *)ap)->get()); |
|
break; |
|
default: |
|
break; |
|
} |
|
} |
|
|
|
// print the value of all variables |
|
void AP_Param::show(const AP_Param *ap, const ParamToken &token, |
|
enum ap_var_type type, AP_HAL::BetterStream *port) |
|
{ |
|
char s[AP_MAX_NAME_SIZE+1]; |
|
ap->copy_name_token(token, s, sizeof(s), true); |
|
s[AP_MAX_NAME_SIZE] = 0; |
|
show(ap, s, type, port); |
|
} |
|
|
|
// print the value of all variables |
|
void AP_Param::show_all(AP_HAL::BetterStream *port) |
|
{ |
|
ParamToken token; |
|
AP_Param *ap; |
|
enum ap_var_type type; |
|
|
|
for (ap=AP_Param::first(&token, &type); |
|
ap; |
|
ap=AP_Param::next_scalar(&token, &type)) { |
|
show(ap, token, type, port); |
|
} |
|
} |
|
|
|
|