You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
408 lines
12 KiB
408 lines
12 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
//**************************************************************** |
|
// Function that will calculate the desired direction to fly and distance |
|
//**************************************************************** |
|
static byte navigate() |
|
{ |
|
// waypoint distance from plane |
|
// ---------------------------- |
|
wp_distance = get_distance(¤t_loc, &next_WP); |
|
home_distance = get_distance(¤t_loc, &home); |
|
|
|
if (wp_distance < 0){ |
|
//gcs_send_text_P(SEVERITY_HIGH,PSTR("<navigate> WP error - distance < 0")); |
|
//Serial.println(wp_distance,DEC); |
|
//print_current_waypoints(); |
|
return 0; |
|
} |
|
|
|
// target_bearing is where we should be heading |
|
// -------------------------------------------- |
|
target_bearing = get_bearing(¤t_loc, &next_WP); |
|
home_to_copter_bearing = get_bearing(&home, ¤t_loc); |
|
|
|
// nav_bearing will includes xtrac correction |
|
// ------------------------------------------ |
|
nav_bearing = target_bearing; |
|
|
|
return 1; |
|
} |
|
|
|
static bool check_missed_wp() |
|
{ |
|
int32_t temp; |
|
temp = target_bearing - original_target_bearing; |
|
temp = wrap_180(temp); |
|
return (abs(temp) > 10000); //we pased the waypoint by 10 ° |
|
} |
|
|
|
// ------------------------------ |
|
|
|
static void calc_XY_velocity(){ |
|
// offset calculation of GPS speed: |
|
// used for estimations below 1.5m/s |
|
// our GPS is about 1m per |
|
static int32_t last_longitude = 0; |
|
static int32_t last_latutude = 0; |
|
|
|
// y_GPS_speed positve = Up |
|
// x_GPS_speed positve = Right |
|
|
|
// this speed is ~ in cm because we are using 10^7 numbers from GPS |
|
float tmp = 1.0/dTnav; |
|
//int8_t tmp = 5; |
|
|
|
int16_t x_diff = (g_gps->longitude - last_longitude) * tmp; |
|
int16_t y_diff = (g_gps->latitude - last_latutude) * tmp; |
|
|
|
// filter |
|
x_GPS_speed = (x_GPS_speed * 3 + x_diff) / 4; |
|
y_GPS_speed = (y_GPS_speed * 3 + y_diff) / 4; |
|
|
|
// Above simply works better than GPS groundspeed |
|
// which is proving to be problematic |
|
|
|
/*if(g_gps->ground_speed > 120){ |
|
// Derive X/Y speed from GPS |
|
// this is far more accurate when traveling about 1.5m/s |
|
float temp = g_gps->ground_course * RADX100; |
|
x_GPS_speed = sin(temp) * (float)g_gps->ground_speed; |
|
y_GPS_speed = cos(temp) * (float)g_gps->ground_speed; |
|
}*/ |
|
|
|
last_longitude = g_gps->longitude; |
|
last_latutude = g_gps->latitude; |
|
|
|
//Serial.printf("GS: %d \tx:%d \ty:%d\n", g_gps->ground_speed, x_GPS_speed, y_GPS_speed); |
|
} |
|
|
|
static void calc_location_error(struct Location *next_loc) |
|
{ |
|
/* |
|
Becuase we are using lat and lon to do our distance errors here's a quick chart: |
|
100 = 1m |
|
1000 = 11m = 36 feet |
|
1800 = 19.80m = 60 feet |
|
3000 = 33m |
|
10000 = 111m |
|
*/ |
|
|
|
// X Error |
|
long_error = (float)(next_loc->lng - current_loc.lng) * scaleLongDown; // 500 - 0 = 500 Go East |
|
|
|
// Y Error |
|
lat_error = next_loc->lat - current_loc.lat; // 500 - 0 = 500 Go North |
|
} |
|
|
|
|
|
#define NAV_ERR_MAX 800 |
|
static void calc_loiter(int x_error, int y_error) |
|
{ |
|
// East/West |
|
x_error = constrain(x_error, -NAV_ERR_MAX, NAV_ERR_MAX); //800 |
|
int16_t x_target_speed = g.pi_loiter_lon.get_p(x_error); |
|
int16_t x_iterm = g.pi_loiter_lon.get_i(x_error, dTnav); |
|
x_rate_error = x_target_speed - x_actual_speed; |
|
nav_lon_p = g.pi_nav_lon.get_p(x_rate_error); |
|
nav_lon_p = constrain(nav_lon_p, -1200, 1200); |
|
nav_lon = nav_lon_p + x_iterm; |
|
nav_lon = constrain(nav_lon, -2500, 2500); |
|
|
|
// North/South |
|
y_error = constrain(y_error, -NAV_ERR_MAX, NAV_ERR_MAX); |
|
int16_t y_target_speed = g.pi_loiter_lat.get_p(y_error); |
|
int16_t y_iterm = g.pi_loiter_lat.get_i(y_error, dTnav); |
|
y_rate_error = y_target_speed - y_actual_speed; |
|
nav_lat_p = g.pi_nav_lat.get_p(y_rate_error); |
|
nav_lat_p = constrain(nav_lat_p, -1200, 1200); |
|
nav_lat = nav_lat_p + y_iterm; |
|
nav_lat = constrain(nav_lat, -2500, 2500); |
|
|
|
/* |
|
int8_t ttt = 1.0/dTnav; |
|
int16_t t2 = g.pi_nav_lat.get_integrator(); |
|
|
|
// 1 2 3 4 5 6 7 8 9 10 |
|
Serial.printf("%d, %d, %d, %d, %d, %d, %d, %d, %d, %d\n", |
|
wp_distance, //1 |
|
y_error, //2 |
|
y_GPS_speed, //3 |
|
|
|
y_actual_speed, //4 ; |
|
y_target_speed, //5 |
|
y_rate_error, //6 |
|
nav_lat_p, //7 |
|
nav_lat, //8 |
|
y_iterm, //9 |
|
t2); //10 |
|
//*/ |
|
|
|
/* |
|
int16_t t1 = g.pi_nav_lon.get_integrator(); // X |
|
Serial.printf("%d, %1.4f, %d, %d, %d, %d, %d, %d, %d, %d\n", |
|
wp_distance, //1 |
|
dTnav, //2 |
|
x_error, //3 |
|
x_GPS_speed, //4 |
|
x_actual_speed, //5 |
|
x_target_speed, //6 |
|
x_rate_error, //7 |
|
nav_lat, //8 |
|
x_iterm, //9 |
|
t1); //10 |
|
//*/ |
|
} |
|
|
|
//wp_distance,ttt, y_error, y_GPS_speed, y_actual_speed, y_target_speed, y_rate_error, nav_lat, y_iterm, t2 |
|
|
|
|
|
#define ERR_GAIN .01 |
|
// called at 50hz |
|
static void estimate_velocity() |
|
{ |
|
// we need to extimate velocity when below GPS threshold of 1.5m/s |
|
//if(g_gps->ground_speed < 120){ |
|
// some smoothing to prevent bumpy rides |
|
x_actual_speed = (x_actual_speed * 15 + x_GPS_speed) / 16; |
|
y_actual_speed = (y_actual_speed * 15 + y_GPS_speed) / 16; |
|
|
|
// integration of nav_p angle |
|
//x_actual_speed += (nav_lon_p >>2); |
|
//y_actual_speed += (nav_lat_p >>2); |
|
|
|
// this is just what worked best in SIM |
|
//x_actual_speed = (x_actual_speed * 2 + x_GPS_speed * 1) / 4; |
|
//y_actual_speed = (y_actual_speed * 2 + y_GPS_speed * 1) / 4; |
|
|
|
//}else{ |
|
// less smoothing needed since the GPS already filters |
|
// x_actual_speed = (x_actual_speed * 3 + x_GPS_speed) / 4; |
|
// y_actual_speed = (y_actual_speed * 3 + y_GPS_speed) / 4; |
|
//} |
|
} |
|
|
|
// this calculation rotates our World frame of reference to the copter's frame of reference |
|
// We use the DCM's matrix to precalculate these trig values at 50hz |
|
static void calc_loiter_pitch_roll() |
|
{ |
|
//Serial.printf("ys %ld, cx %1.4f, _cx %1.4f | sy %1.4f, _sy %1.4f\n", dcm.yaw_sensor, cos_yaw_x, _cos_yaw_x, sin_yaw_y, _sin_yaw_y); |
|
// rotate the vector |
|
nav_roll = (float)nav_lon * sin_yaw_y - (float)nav_lat * cos_yaw_x; |
|
nav_pitch = (float)nav_lon * cos_yaw_x + (float)nav_lat * sin_yaw_y; |
|
|
|
// flip pitch because forward is negative |
|
nav_pitch = -nav_pitch; |
|
} |
|
|
|
// what's the update rate? 10hz GPS? |
|
static void calc_wind_compensation() |
|
{ |
|
// this idea is a function that converts user input into I term for position hold |
|
// the concept is simple. The iterms always act upon flight no matter what mode were in. |
|
// when our velocity is 0, we call this function to update our iterms |
|
// otherwise we slowly reduce out iterms to 0 |
|
|
|
// take the pitch and roll of the copter and, |
|
float roll = dcm.roll_sensor; |
|
float pitch = -dcm.pitch_sensor; // flip pitch to make positive pitch forward |
|
|
|
// rotate it to eliminate yaw of Copter |
|
int32_t roll_tmp = roll * sin_yaw_y - pitch * -cos_yaw_x; |
|
int32_t pitch_tmp = roll * -cos_yaw_x + pitch * sin_yaw_y; |
|
|
|
roll_tmp = constrain(roll_tmp, -2000, 2000); |
|
pitch_tmp = constrain(pitch_tmp, -2000, 2000); |
|
|
|
// filter the input and apply it to out integrator value |
|
// nav_lon and nav_lat will be applied to normal flight |
|
nav_lon = ((int32_t)g.pi_loiter_lon.get_integrator() * 15 + roll_tmp) / 16; |
|
nav_lat = ((int32_t)g.pi_loiter_lat.get_integrator() * 15 + pitch_tmp) / 16; |
|
|
|
// save smoothed input to integrator |
|
g.pi_loiter_lon.set_integrator(nav_lon); // X |
|
g.pi_loiter_lat.set_integrator(nav_lat); // Y |
|
|
|
//Serial.printf("build wind iterm X:%d Y:%d, r:%d, p:%d\n", |
|
// nav_lon, |
|
// nav_lat, |
|
// nav_roll, |
|
// nav_pitch); |
|
} |
|
|
|
static void reduce_wind_compensation() |
|
{ |
|
//slow degradation of iterms |
|
float tmp; |
|
|
|
tmp = g.pi_loiter_lon.get_integrator(); |
|
tmp *= .98; |
|
g.pi_loiter_lon.set_integrator(tmp); // X |
|
|
|
tmp = g.pi_loiter_lat.get_integrator(); |
|
tmp *= .98; |
|
g.pi_loiter_lat.set_integrator(tmp); // Y |
|
|
|
#if 0 |
|
// debug |
|
int16_t t1 = g.pi_loiter_lon.get_integrator(); |
|
int16_t t2 = g.pi_loiter_lon.get_integrator(); |
|
|
|
//Serial.printf("reduce wind iterm X:%d Y:%d \n", |
|
// t1, |
|
// t2); |
|
#endif |
|
} |
|
|
|
static int16_t calc_desired_speed(int16_t max_speed) |
|
{ |
|
/* |
|
|< WP Radius |
|
0 1 2 3 4 5 6 7 8m |
|
...|...|...|...|...|...|...|...| |
|
100 | 200 300 400cm/s |
|
| +|+ |
|
|< we should slow to 1.5 m/s as we hit the target |
|
*/ |
|
|
|
// max_speed is default 600 or 6m/s |
|
// (wp_distance * 50) = 1/2 of the distance converted to speed |
|
// wp_distance is always in m/s and not cm/s - I know it's stupid that way |
|
// for example 4m from target = 200cm/s speed |
|
// we choose the lowest speed based on disance |
|
max_speed = min(max_speed, (wp_distance * 50)); |
|
|
|
// limit the ramp up of the speed |
|
// waypoint_speed_gov is reset to 0 at each new WP command |
|
if(waypoint_speed_gov < max_speed){ |
|
waypoint_speed_gov += (int)(50.0 * dTnav); // increase at .5/ms |
|
|
|
// go at least 50cm/s |
|
max_speed = max(50, waypoint_speed_gov); |
|
// limit with governer |
|
max_speed = min(max_speed, waypoint_speed_gov); |
|
} |
|
|
|
return max_speed; |
|
} |
|
|
|
static void calc_nav_rate(int max_speed) |
|
{ |
|
// push us towards the original track |
|
update_crosstrack(); |
|
|
|
// nav_bearing includes crosstrack |
|
float temp = (9000 - nav_bearing) * RADX100; |
|
|
|
x_rate_error = (cos(temp) * max_speed) - x_actual_speed; // 413 |
|
x_rate_error = constrain(x_rate_error, -1000, 1000); |
|
int16_t x_iterm = g.pi_loiter_lon.get_i(x_rate_error, dTnav); |
|
nav_lon_p = g.pi_nav_lon.get_p(x_rate_error); |
|
nav_lon = nav_lon_p + x_iterm; |
|
nav_lon = constrain(nav_lon, -3000, 3000); |
|
|
|
|
|
y_rate_error = (sin(temp) * max_speed) - y_actual_speed; // 413 |
|
y_rate_error = constrain(y_rate_error, -1000, 1000); // added a rate error limit to keep pitching down to a minimum |
|
int16_t y_iterm = g.pi_loiter_lat.get_i(y_rate_error, dTnav); |
|
nav_lat_p = g.pi_nav_lat.get_p(y_rate_error); |
|
nav_lat = nav_lat_p + y_iterm; |
|
nav_lat = constrain(nav_lat, -3000, 3000); |
|
|
|
/* |
|
Serial.printf("max_sp %d,\t x_sp %d, y_sp %d,\t x_re: %d, y_re: %d, \tnav_lon: %d, nav_lat: %d, Xi:%d, Yi:%d, \t XE %d \n", |
|
max_speed, |
|
x_actual_speed, |
|
y_actual_speed, |
|
x_rate_error, |
|
y_rate_error, |
|
nav_lon, |
|
nav_lat, |
|
x_iterm, |
|
y_iterm, |
|
crosstrack_error); |
|
//*/ |
|
|
|
|
|
// nav_lat and nav_lon will be rotated to the angle of the quad in calc_nav_pitch_roll() |
|
|
|
/*Serial.printf("max_speed: %d, xspeed: %d, yspeed: %d, x_re: %d, y_re: %d, nav_lon: %ld, nav_lat: %ld ", |
|
max_speed, |
|
x_actual_speed, |
|
y_actual_speed, |
|
x_rate_error, |
|
y_rate_error, |
|
nav_lon, |
|
nav_lat);*/ |
|
} |
|
|
|
|
|
static void update_crosstrack(void) |
|
{ |
|
// Crosstrack Error |
|
// ---------------- |
|
if (abs(wrap_180(target_bearing - original_target_bearing)) < 4500) { // If we are too far off or too close we don't do track following |
|
float temp = (target_bearing - original_target_bearing) * RADX100; |
|
crosstrack_error = sin(temp) * (wp_distance * g.crosstrack_gain); // Meters we are off track line |
|
nav_bearing = target_bearing + constrain(crosstrack_error, -3000, 3000); |
|
nav_bearing = wrap_360(nav_bearing); |
|
}else{ |
|
nav_bearing = target_bearing; |
|
} |
|
} |
|
|
|
|
|
static int32_t get_altitude_error() |
|
{ |
|
return next_WP.alt - current_loc.alt; |
|
} |
|
|
|
static int32_t wrap_360(int32_t error) |
|
{ |
|
if (error > 36000) error -= 36000; |
|
if (error < 0) error += 36000; |
|
return error; |
|
} |
|
|
|
static int32_t wrap_180(int32_t error) |
|
{ |
|
if (error > 18000) error -= 36000; |
|
if (error < -18000) error += 36000; |
|
return error; |
|
} |
|
|
|
/* |
|
//static int32_t get_altitude_above_home(void) |
|
{ |
|
// This is the altitude above the home location |
|
// The GPS gives us altitude at Sea Level |
|
// if you slope soar, you should see a negative number sometimes |
|
// ------------------------------------------------------------- |
|
return current_loc.alt - home.alt; |
|
} |
|
*/ |
|
// distance is returned in meters |
|
static int32_t get_distance(struct Location *loc1, struct Location *loc2) |
|
{ |
|
//if(loc1->lat == 0 || loc1->lng == 0) |
|
// return -1; |
|
//if(loc2->lat == 0 || loc2->lng == 0) |
|
// return -1; |
|
float dlat = (float)(loc2->lat - loc1->lat); |
|
float dlong = ((float)(loc2->lng - loc1->lng)) * scaleLongDown; |
|
return sqrt(sq(dlat) + sq(dlong)) * .01113195; |
|
} |
|
/* |
|
//static int32_t get_alt_distance(struct Location *loc1, struct Location *loc2) |
|
{ |
|
return abs(loc1->alt - loc2->alt); |
|
} |
|
*/ |
|
static int32_t get_bearing(struct Location *loc1, struct Location *loc2) |
|
{ |
|
int32_t off_x = loc2->lng - loc1->lng; |
|
int32_t off_y = (loc2->lat - loc1->lat) * scaleLongUp; |
|
int32_t bearing = 9000 + atan2(-off_y, off_x) * 5729.57795; |
|
if (bearing < 0) bearing += 36000; |
|
return bearing; |
|
}
|
|
|