You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1116 lines
48 KiB
1116 lines
48 KiB
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
|
|
#include "AC_Avoid.h" |
|
#include <AP_AHRS/AP_AHRS.h> // AHRS library |
|
#include <AC_Fence/AC_Fence.h> // Failsafe fence library |
|
#include <AP_Proximity/AP_Proximity.h> |
|
#include <AP_Beacon/AP_Beacon.h> |
|
#include <AP_Logger/AP_Logger.h> |
|
#include <stdio.h> |
|
|
|
#if APM_BUILD_TYPE(APM_BUILD_Rover) |
|
# define AP_AVOID_BEHAVE_DEFAULT AC_Avoid::BehaviourType::BEHAVIOR_STOP |
|
#else |
|
# define AP_AVOID_BEHAVE_DEFAULT AC_Avoid::BehaviourType::BEHAVIOR_SLIDE |
|
#endif |
|
|
|
const AP_Param::GroupInfo AC_Avoid::var_info[] = { |
|
|
|
// @Param: ENABLE |
|
// @DisplayName: Avoidance control enable/disable |
|
// @Description: Enabled/disable avoidance input sources |
|
// @Values: 0:None,1:UseFence,2:UseProximitySensor,3:UseFence and UseProximitySensor,4:UseBeaconFence,7:All |
|
// @Bitmask: 0:UseFence,1:UseProximitySensor,2:UseBeaconFence |
|
// @User: Standard |
|
AP_GROUPINFO_FLAGS("ENABLE", 1, AC_Avoid, _enabled, AC_AVOID_DEFAULT, AP_PARAM_FLAG_ENABLE), |
|
|
|
// @Param{Copter}: ANGLE_MAX |
|
// @DisplayName: Avoidance max lean angle in non-GPS flight modes |
|
// @Description: Max lean angle used to avoid obstacles while in non-GPS modes |
|
// @Units: cdeg |
|
// @Range: 0 4500 |
|
// @User: Standard |
|
AP_GROUPINFO_FRAME("ANGLE_MAX", 2, AC_Avoid, _angle_max, 1000, AP_PARAM_FRAME_COPTER | AP_PARAM_FRAME_HELI | AP_PARAM_FRAME_TRICOPTER), |
|
|
|
// @Param{Copter}: DIST_MAX |
|
// @DisplayName: Avoidance distance maximum in non-GPS flight modes |
|
// @Description: Distance from object at which obstacle avoidance will begin in non-GPS modes |
|
// @Units: m |
|
// @Range: 1 30 |
|
// @User: Standard |
|
AP_GROUPINFO_FRAME("DIST_MAX", 3, AC_Avoid, _dist_max, AC_AVOID_NONGPS_DIST_MAX_DEFAULT, AP_PARAM_FRAME_COPTER | AP_PARAM_FRAME_HELI | AP_PARAM_FRAME_TRICOPTER), |
|
|
|
// @Param: MARGIN |
|
// @DisplayName: Avoidance distance margin in GPS modes |
|
// @Description: Vehicle will attempt to stay at least this distance (in meters) from objects while in GPS modes |
|
// @Units: m |
|
// @Range: 1 10 |
|
// @User: Standard |
|
AP_GROUPINFO("MARGIN", 4, AC_Avoid, _margin, 2.0f), |
|
|
|
// @Param{Copter}: BEHAVE |
|
// @DisplayName: Avoidance behaviour |
|
// @Description: Avoidance behaviour (slide or stop) |
|
// @Values: 0:Slide,1:Stop |
|
// @User: Standard |
|
AP_GROUPINFO_FRAME("BEHAVE", 5, AC_Avoid, _behavior, AP_AVOID_BEHAVE_DEFAULT, AP_PARAM_FRAME_COPTER | AP_PARAM_FRAME_HELI | AP_PARAM_FRAME_TRICOPTER), |
|
|
|
// @Param: BACKUP_SPD |
|
// @DisplayName: Avoidance maximum backup speed |
|
// @Description: Maximum speed that will be used to back away from obstacles in GPS modes (m/s). Set zero to disable |
|
// @Units: m/s |
|
// @Range: 0 2 |
|
// @User: Standard |
|
AP_GROUPINFO("BACKUP_SPD", 6, AC_Avoid, _backup_speed_max, 0.5f), |
|
|
|
AP_GROUPEND |
|
}; |
|
|
|
/// Constructor |
|
AC_Avoid::AC_Avoid() |
|
{ |
|
_singleton = this; |
|
|
|
AP_Param::setup_object_defaults(this, var_info); |
|
} |
|
|
|
void AC_Avoid::adjust_velocity(float kP, float accel_cmss, Vector2f &desired_vel_cms, bool &backing_up,float dt) |
|
{ |
|
// exit immediately if disabled |
|
if (_enabled == AC_AVOID_DISABLED) { |
|
return; |
|
} |
|
|
|
// limit acceleration |
|
const float accel_cmss_limited = MIN(accel_cmss, AC_AVOID_ACCEL_CMSS_MAX); |
|
// make a copy of desired velocity since the one that is passed will be modified |
|
const Vector2f desired_vel_orig = desired_vel_cms; |
|
|
|
// maximum component of desired backup velocity in each quadrant |
|
Vector2f quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel; |
|
|
|
if ((_enabled & AC_AVOID_STOP_AT_FENCE) > 0) { |
|
// Store velocity needed to back away from fence |
|
Vector2f backup_vel_fence; |
|
|
|
adjust_velocity_circle_fence(kP, accel_cmss_limited, desired_vel_cms, backup_vel_fence, dt); |
|
find_max_quadrant_velocity(backup_vel_fence, quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel); |
|
|
|
// backup_vel_fence is set to zero after each fence incase the velocity is unset from previous methods |
|
backup_vel_fence.zero(); |
|
adjust_velocity_inclusion_and_exclusion_polygons(kP, accel_cmss_limited, desired_vel_cms, backup_vel_fence, dt); |
|
find_max_quadrant_velocity(backup_vel_fence, quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel); |
|
|
|
backup_vel_fence.zero(); |
|
adjust_velocity_inclusion_circles(kP, accel_cmss_limited, desired_vel_cms, backup_vel_fence, dt); |
|
find_max_quadrant_velocity(backup_vel_fence, quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel); |
|
|
|
backup_vel_fence.zero(); |
|
adjust_velocity_exclusion_circles(kP, accel_cmss_limited, desired_vel_cms, backup_vel_fence, dt); |
|
find_max_quadrant_velocity(backup_vel_fence, quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel); |
|
} |
|
|
|
if ((_enabled & AC_AVOID_STOP_AT_BEACON_FENCE) > 0) { |
|
// Store velocity needed to back away from beacon fence |
|
Vector2f backup_vel_beacon; |
|
adjust_velocity_beacon_fence(kP, accel_cmss_limited, desired_vel_cms, backup_vel_beacon, dt); |
|
find_max_quadrant_velocity(backup_vel_beacon, quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel); |
|
} |
|
|
|
if ((_enabled & AC_AVOID_USE_PROXIMITY_SENSOR) > 0 && _proximity_enabled) { |
|
// Store velocity needed to back away from physical obstacles |
|
Vector2f backup_vel_proximity; |
|
adjust_velocity_proximity(kP, accel_cmss_limited, desired_vel_cms, backup_vel_proximity, dt); |
|
find_max_quadrant_velocity(backup_vel_proximity, quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel); |
|
} |
|
|
|
// Desired backup velocity is sum of maximum velocity component in each quadrant |
|
Vector2f desired_backup_vel = quad_1_back_vel + quad_2_back_vel + quad_3_back_vel + quad_4_back_vel; |
|
|
|
const float max_back_spd_cms = _backup_speed_max * 100.0f; |
|
if (!desired_backup_vel.is_zero() && is_positive(max_back_spd_cms)) { |
|
backing_up = true; |
|
// Constrain backing away speed |
|
if (desired_backup_vel.length() > max_back_spd_cms) { |
|
desired_backup_vel = desired_backup_vel.normalized() * max_back_spd_cms; |
|
} |
|
if ((AC_Avoid::BehaviourType)_behavior.get() == BEHAVIOR_SLIDE) { |
|
// project desired velocity towards backup velocity |
|
Vector2f projected_vel = desired_vel_cms.projected(desired_backup_vel); |
|
// subtract this projection since we are already going in that direction |
|
desired_vel_cms -= projected_vel; |
|
desired_vel_cms += desired_backup_vel; |
|
} else { |
|
// back away to stopping position |
|
desired_vel_cms = desired_backup_vel; |
|
} |
|
} |
|
|
|
// only log results if velocity has been modified to avoid fence/obstacle |
|
if (desired_vel_orig != desired_vel_cms) { |
|
// log at not more than 10hz (adjust_velocity method can be potentially called at 400hz!) |
|
uint32_t now = AP_HAL::millis(); |
|
if ((now - _last_log_ms) > 100) { |
|
_last_log_ms = now; |
|
AP::logger().Write_SimpleAvoidance(true, desired_vel_orig, desired_vel_cms, backing_up); |
|
} |
|
} |
|
} |
|
|
|
// convenience function to accept Vector3f. Only x and y are adjusted |
|
void AC_Avoid::adjust_velocity(float kP, float accel_cmss, Vector3f &desired_vel_cms, float dt) |
|
{ |
|
Vector2f des_vel_xy(desired_vel_cms.x, desired_vel_cms.y); |
|
adjust_velocity(kP, accel_cmss, des_vel_xy, dt); |
|
desired_vel_cms.x = des_vel_xy.x; |
|
desired_vel_cms.y = des_vel_xy.y; |
|
} |
|
|
|
// adjust desired horizontal speed so that the vehicle stops before the fence or object |
|
// accel (maximum acceleration/deceleration) is in m/s/s |
|
// heading is in radians |
|
// speed is in m/s |
|
// kP should be zero for linear response, non-zero for non-linear response |
|
void AC_Avoid::adjust_speed(float kP, float accel, float heading, float &speed, float dt) |
|
{ |
|
// convert heading and speed into velocity vector |
|
Vector2f vel_xy; |
|
vel_xy.x = cosf(heading) * speed * 100.0f; |
|
vel_xy.y = sinf(heading) * speed * 100.0f; |
|
|
|
bool backing_up = false; |
|
adjust_velocity(kP, accel * 100.0f, vel_xy, backing_up, dt); |
|
|
|
if (backing_up) { |
|
// back up |
|
if (fabsf(wrap_180(degrees(vel_xy.angle())) - degrees(heading)) > 90.0f) { |
|
// Big difference between the direction of velocity vector and actual heading therefore we need to reverse the direction |
|
speed = -vel_xy.length() * 0.01f; |
|
} else { |
|
speed = vel_xy.length() * 0.01f; |
|
} |
|
return; |
|
} |
|
|
|
// No need to back up so adjust speed towards zero if needed |
|
if (is_negative(speed)) { |
|
speed = -vel_xy.length() * 0.01f; |
|
} else { |
|
speed = vel_xy.length() * 0.01f; |
|
} |
|
} |
|
|
|
// adjust vertical climb rate so vehicle does not break the vertical fence |
|
void AC_Avoid::adjust_velocity_z(float kP, float accel_cmss, float& climb_rate_cms, float dt) |
|
{ |
|
// exit immediately if disabled |
|
if (_enabled == AC_AVOID_DISABLED) { |
|
return; |
|
} |
|
|
|
// do not adjust climb_rate if level or descending |
|
if (climb_rate_cms <= 0.0f) { |
|
return; |
|
} |
|
|
|
// limit acceleration |
|
const float accel_cmss_limited = MIN(accel_cmss, AC_AVOID_ACCEL_CMSS_MAX); |
|
|
|
bool limit_alt = false; |
|
float alt_diff = 0.0f; // distance from altitude limit to vehicle in metres (positive means vehicle is below limit) |
|
|
|
const AP_AHRS &_ahrs = AP::ahrs(); |
|
|
|
// calculate distance below fence |
|
AC_Fence *fence = AP::fence(); |
|
if ((_enabled & AC_AVOID_STOP_AT_FENCE) > 0 && fence && (fence->get_enabled_fences() & AC_FENCE_TYPE_ALT_MAX) > 0) { |
|
// calculate distance from vehicle to safe altitude |
|
float veh_alt; |
|
_ahrs.get_relative_position_D_home(veh_alt); |
|
// _fence.get_safe_alt_max() is UP, veh_alt is DOWN: |
|
alt_diff = fence->get_safe_alt_max() + veh_alt; |
|
limit_alt = true; |
|
} |
|
|
|
// calculate distance to (e.g.) optical flow altitude limit |
|
// AHRS values are always in metres |
|
float alt_limit; |
|
float curr_alt; |
|
if (_ahrs.get_hgt_ctrl_limit(alt_limit) && |
|
_ahrs.get_relative_position_D_origin(curr_alt)) { |
|
// alt_limit is UP, curr_alt is DOWN: |
|
const float ctrl_alt_diff = alt_limit + curr_alt; |
|
if (!limit_alt || ctrl_alt_diff < alt_diff) { |
|
alt_diff = ctrl_alt_diff; |
|
limit_alt = true; |
|
} |
|
} |
|
|
|
// get distance from proximity sensor |
|
float proximity_alt_diff; |
|
AP_Proximity *proximity = AP::proximity(); |
|
if (proximity && proximity->get_upward_distance(proximity_alt_diff)) { |
|
proximity_alt_diff -= _margin; |
|
if (!limit_alt || proximity_alt_diff < alt_diff) { |
|
alt_diff = proximity_alt_diff; |
|
limit_alt = true; |
|
} |
|
} |
|
|
|
// limit climb rate |
|
if (limit_alt) { |
|
// do not allow climbing if we've breached the safe altitude |
|
if (alt_diff <= 0.0f) { |
|
climb_rate_cms = MIN(climb_rate_cms, 0.0f); |
|
return; |
|
} |
|
|
|
// limit climb rate |
|
const float max_speed = get_max_speed(kP, accel_cmss_limited, alt_diff*100.0f, dt); |
|
climb_rate_cms = MIN(max_speed, climb_rate_cms); |
|
_last_limit_time = AP_HAL::millis(); |
|
} |
|
} |
|
|
|
// adjust roll-pitch to push vehicle away from objects |
|
// roll and pitch value are in centi-degrees |
|
void AC_Avoid::adjust_roll_pitch(float &roll, float &pitch, float veh_angle_max) |
|
{ |
|
// exit immediately if proximity based avoidance is disabled |
|
if ((_enabled & AC_AVOID_USE_PROXIMITY_SENSOR) == 0 || !_proximity_enabled) { |
|
return; |
|
} |
|
|
|
// exit immediately if angle max is zero |
|
if (_angle_max <= 0.0f || veh_angle_max <= 0.0f) { |
|
return; |
|
} |
|
|
|
float roll_positive = 0.0f; // maximum positive roll value |
|
float roll_negative = 0.0f; // minimum negative roll value |
|
float pitch_positive = 0.0f; // maximum positive pitch value |
|
float pitch_negative = 0.0f; // minimum negative pitch value |
|
|
|
// get maximum positive and negative roll and pitch percentages from proximity sensor |
|
get_proximity_roll_pitch_pct(roll_positive, roll_negative, pitch_positive, pitch_negative); |
|
|
|
// add maximum positive and negative percentages together for roll and pitch, convert to centi-degrees |
|
Vector2f rp_out((roll_positive + roll_negative) * 4500.0f, (pitch_positive + pitch_negative) * 4500.0f); |
|
|
|
// apply avoidance angular limits |
|
// the object avoidance lean angle is never more than 75% of the total angle-limit to allow the pilot to override |
|
const float angle_limit = constrain_float(_angle_max, 0.0f, veh_angle_max * AC_AVOID_ANGLE_MAX_PERCENT); |
|
float vec_len = rp_out.length(); |
|
if (vec_len > angle_limit) { |
|
rp_out *= (angle_limit / vec_len); |
|
} |
|
|
|
// add passed in roll, pitch angles |
|
rp_out.x += roll; |
|
rp_out.y += pitch; |
|
|
|
// apply total angular limits |
|
vec_len = rp_out.length(); |
|
if (vec_len > veh_angle_max) { |
|
rp_out *= (veh_angle_max / vec_len); |
|
} |
|
|
|
// return adjusted roll, pitch |
|
roll = rp_out.x; |
|
pitch = rp_out.y; |
|
} |
|
|
|
/* |
|
* Limits the component of desired_vel_cms in the direction of the unit vector |
|
* limit_direction to be at most the maximum speed permitted by the limit_distance_cm. |
|
* |
|
* Uses velocity adjustment idea from Randy's second email on this thread: |
|
* https://groups.google.com/forum/#!searchin/drones-discuss/obstacle/drones-discuss/QwUXz__WuqY/qo3G8iTLSJAJ |
|
*/ |
|
void AC_Avoid::limit_velocity(float kP, float accel_cmss, Vector2f &desired_vel_cms, const Vector2f& limit_direction, float limit_distance_cm, float dt) |
|
{ |
|
const float max_speed = get_max_speed(kP, accel_cmss, limit_distance_cm, dt); |
|
// project onto limit direction |
|
const float speed = desired_vel_cms * limit_direction; |
|
if (speed > max_speed) { |
|
// subtract difference between desired speed and maximum acceptable speed |
|
desired_vel_cms += limit_direction*(max_speed - speed); |
|
_last_limit_time = AP_HAL::millis(); |
|
} |
|
} |
|
|
|
/* |
|
* Compute the back away velocity required to avoid breaching margin |
|
* INPUT: This method requires the breach in margin distance (back_distance_cm), direction towards the breach (limit_direction) |
|
* It then calculates the desired backup velocity and passes it on to "find_max_quadrant_velocity" method to distribute the velocity vectors into respective quadrants |
|
* OUTPUT: The method then outputs four velocities (quad1/2/3/4_back_vel_cms), which correspond to the maximum final desired backup velocity in each quadrant |
|
*/ |
|
void AC_Avoid::calc_backup_velocity(float kP, float accel_cmss, Vector2f &quad1_back_vel_cms, Vector2f &quad2_back_vel_cms, Vector2f &quad3_back_vel_cms, Vector2f &quad4_back_vel_cms, float back_distance_cm, Vector2f limit_direction, float dt) |
|
{ |
|
if (limit_direction.is_zero()) { |
|
// protect against divide by zero |
|
return; |
|
} |
|
// speed required to move away the exact distance that we have breached the margin with |
|
const float back_speed = get_max_speed(kP, 0.4f * accel_cmss, fabsf(back_distance_cm), dt); |
|
|
|
// direction to the obstacle |
|
limit_direction.normalize(); |
|
|
|
// move in the opposite direction with the required speed |
|
Vector2f back_direction_vel = limit_direction * (-back_speed); |
|
// divide the vector into quadrants, find maximum velocity component in each quadrant |
|
find_max_quadrant_velocity(back_direction_vel, quad1_back_vel_cms, quad2_back_vel_cms, quad3_back_vel_cms, quad4_back_vel_cms); |
|
} |
|
|
|
/* |
|
* Calculate maximum velocity vector that can be formed in each quadrant |
|
* This method takes the desired backup velocity, and four other velocities corresponding to each quadrant |
|
* The desired velocity is then fit into one of the 4 quadrant velocities as per the sign of its components |
|
* This ensures that if we have multiple backup velocities, we can get the maximum of all of those velocities in each quadrant |
|
*/ |
|
void AC_Avoid::find_max_quadrant_velocity(Vector2f &desired_vel, Vector2f &quad1_vel, Vector2f &quad2_vel, Vector2f &quad3_vel, Vector2f &quad4_vel) |
|
{ |
|
if (desired_vel.is_zero()) { |
|
return; |
|
} |
|
// first quadrant: +ve x, +ve y direction |
|
if (is_positive(desired_vel.x) && is_positive(desired_vel.y)) { |
|
quad1_vel = Vector2f{MAX(quad1_vel.x, desired_vel.x), MAX(quad1_vel.y,desired_vel.y)}; |
|
} |
|
// second quadrant: -ve x, +ve y direction |
|
if (is_negative(desired_vel.x) && is_positive(desired_vel.y)) { |
|
quad2_vel = Vector2f{MIN(quad2_vel.x, desired_vel.x), MAX(quad2_vel.y,desired_vel.y)}; |
|
} |
|
// third quadrant: -ve x, -ve y direction |
|
if (is_negative(desired_vel.x) && is_negative(desired_vel.y)) { |
|
quad3_vel = Vector2f{MIN(quad3_vel.x, desired_vel.x), MIN(quad3_vel.y,desired_vel.y)}; |
|
} |
|
// fourth quadrant: +ve x, -ve y direction |
|
if (is_positive(desired_vel.x) && is_negative(desired_vel.y)) { |
|
quad4_vel = Vector2f{MAX(quad4_vel.x, desired_vel.x), MIN(quad4_vel.y,desired_vel.y)}; |
|
} |
|
} |
|
|
|
/* |
|
* Computes the speed such that the stopping distance |
|
* of the vehicle will be exactly the input distance. |
|
*/ |
|
float AC_Avoid::get_max_speed(float kP, float accel_cmss, float distance_cm, float dt) const |
|
{ |
|
if (is_zero(kP)) { |
|
return safe_sqrt(2.0f * distance_cm * accel_cmss); |
|
} else { |
|
return AC_AttitudeControl::sqrt_controller(distance_cm, kP, accel_cmss, dt); |
|
} |
|
} |
|
|
|
/* |
|
* Adjusts the desired velocity for the circular fence. |
|
*/ |
|
void AC_Avoid::adjust_velocity_circle_fence(float kP, float accel_cmss, Vector2f &desired_vel_cms, Vector2f &backup_vel, float dt) |
|
{ |
|
AC_Fence *fence = AP::fence(); |
|
if (fence == nullptr) { |
|
return; |
|
} |
|
|
|
AC_Fence &_fence = *fence; |
|
|
|
// exit if circular fence is not enabled |
|
if ((_fence.get_enabled_fences() & AC_FENCE_TYPE_CIRCLE) == 0) { |
|
return; |
|
} |
|
|
|
// exit if the circular fence has already been breached |
|
if ((_fence.get_breaches() & AC_FENCE_TYPE_CIRCLE) != 0) { |
|
return; |
|
} |
|
|
|
// get desired speed |
|
const float desired_speed = desired_vel_cms.length(); |
|
if (is_zero(desired_speed)) { |
|
// no avoidance necessary when desired speed is zero |
|
return; |
|
} |
|
|
|
const AP_AHRS &_ahrs = AP::ahrs(); |
|
|
|
// get position as a 2D offset from ahrs home |
|
Vector2f position_xy; |
|
if (!_ahrs.get_relative_position_NE_home(position_xy)) { |
|
// we have no idea where we are.... |
|
return; |
|
} |
|
position_xy *= 100.0f; // m -> cm |
|
|
|
// get the fence radius in cm |
|
const float fence_radius = _fence.get_radius() * 100.0f; |
|
// get the margin to the fence in cm |
|
const float margin_cm = _fence.get_margin() * 100.0f; |
|
|
|
if (margin_cm > fence_radius) { |
|
return; |
|
} |
|
|
|
// get vehicle distance from home |
|
const float dist_from_home = position_xy.length(); |
|
if (dist_from_home > fence_radius) { |
|
// outside of circular fence, no velocity adjustments |
|
return; |
|
} |
|
const float distance_to_boundary = fence_radius - dist_from_home; |
|
|
|
// for backing away |
|
Vector2f quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel; |
|
|
|
// back away if vehicle has breached margin |
|
if (is_negative(distance_to_boundary - margin_cm)) { |
|
calc_backup_velocity(kP, accel_cmss, quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel, margin_cm - distance_to_boundary, position_xy, dt); |
|
} |
|
// desired backup velocity is sum of maximum velocity component in each quadrant |
|
backup_vel = quad_1_back_vel + quad_2_back_vel + quad_3_back_vel + quad_4_back_vel; |
|
|
|
// vehicle is inside the circular fence |
|
if ((AC_Avoid::BehaviourType)_behavior.get() == BEHAVIOR_SLIDE) { |
|
// implement sliding behaviour |
|
const Vector2f stopping_point = position_xy + desired_vel_cms*(get_stopping_distance(kP, accel_cmss, desired_speed)/desired_speed); |
|
const float stopping_point_dist_from_home = stopping_point.length(); |
|
if (stopping_point_dist_from_home <= fence_radius - margin_cm) { |
|
// stopping before before fence so no need to adjust |
|
return; |
|
} |
|
// unsafe desired velocity - will not be able to stop before reaching margin from fence |
|
// Project stopping point radially onto fence boundary |
|
// Adjusted velocity will point towards this projected point at a safe speed |
|
const Vector2f target_offset = stopping_point * ((fence_radius - margin_cm) / stopping_point_dist_from_home); |
|
const Vector2f target_direction = target_offset - position_xy; |
|
const float distance_to_target = target_direction.length(); |
|
if (is_positive(distance_to_target)) { |
|
const float max_speed = get_max_speed(kP, accel_cmss, distance_to_target, dt); |
|
desired_vel_cms = target_direction * (MIN(desired_speed,max_speed) / distance_to_target); |
|
_last_limit_time = AP_HAL::millis(); |
|
} |
|
} else { |
|
// implement stopping behaviour |
|
// calculate stopping point plus a margin so we look forward far enough to intersect with circular fence |
|
const Vector2f stopping_point_plus_margin = position_xy + desired_vel_cms*((2.0f + margin_cm + get_stopping_distance(kP, accel_cmss, desired_speed))/desired_speed); |
|
const float stopping_point_plus_margin_dist_from_home = stopping_point_plus_margin.length(); |
|
if (dist_from_home >= fence_radius - margin_cm) { |
|
// vehicle has already breached margin around fence |
|
// if stopping point is even further from home (i.e. in wrong direction) then adjust speed to zero |
|
// otherwise user is backing away from fence so do not apply limits |
|
if (stopping_point_plus_margin_dist_from_home >= dist_from_home) { |
|
desired_vel_cms.zero(); |
|
_last_limit_time = AP_HAL::millis(); |
|
} |
|
} else { |
|
// shorten vector without adjusting its direction |
|
Vector2f intersection; |
|
if (Vector2f::circle_segment_intersection(position_xy, stopping_point_plus_margin, Vector2f(0.0f,0.0f), fence_radius - margin_cm, intersection)) { |
|
const float distance_to_target = (intersection - position_xy).length(); |
|
const float max_speed = get_max_speed(kP, accel_cmss, distance_to_target, dt); |
|
if (max_speed < desired_speed) { |
|
desired_vel_cms *= MAX(max_speed, 0.0f) / desired_speed; |
|
_last_limit_time = AP_HAL::millis(); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* |
|
* Adjusts the desired velocity for the exclusion polygons |
|
*/ |
|
void AC_Avoid::adjust_velocity_inclusion_and_exclusion_polygons(float kP, float accel_cmss, Vector2f &desired_vel_cms, Vector2f &backup_vel, float dt) |
|
{ |
|
const AC_Fence *fence = AP::fence(); |
|
if (fence == nullptr) { |
|
return; |
|
} |
|
|
|
// exit if polygon fences are not enabled |
|
if ((fence->get_enabled_fences() & AC_FENCE_TYPE_POLYGON) == 0) { |
|
return; |
|
} |
|
|
|
// for backing away |
|
Vector2f quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel; |
|
|
|
// iterate through inclusion polygons |
|
const uint8_t num_inclusion_polygons = fence->polyfence().get_inclusion_polygon_count(); |
|
for (uint8_t i = 0; i < num_inclusion_polygons; i++) { |
|
uint16_t num_points; |
|
const Vector2f* boundary = fence->polyfence().get_inclusion_polygon(i, num_points); |
|
Vector2f backup_vel_inc; |
|
// adjust velocity |
|
adjust_velocity_polygon(kP, accel_cmss, desired_vel_cms, backup_vel_inc, boundary, num_points, true, fence->get_margin(), dt, true); |
|
find_max_quadrant_velocity(backup_vel_inc, quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel); |
|
} |
|
|
|
// iterate through exclusion polygons |
|
const uint8_t num_exclusion_polygons = fence->polyfence().get_exclusion_polygon_count(); |
|
for (uint8_t i = 0; i < num_exclusion_polygons; i++) { |
|
uint16_t num_points; |
|
const Vector2f* boundary = fence->polyfence().get_exclusion_polygon(i, num_points); |
|
Vector2f backup_vel_exc; |
|
// adjust velocity |
|
adjust_velocity_polygon(kP, accel_cmss, desired_vel_cms, backup_vel_exc, boundary, num_points, true, fence->get_margin(), dt, false); |
|
find_max_quadrant_velocity(backup_vel_exc, quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel); |
|
} |
|
// desired backup velocity is sum of maximum velocity component in each quadrant |
|
backup_vel = quad_1_back_vel + quad_2_back_vel + quad_3_back_vel + quad_4_back_vel; |
|
} |
|
|
|
/* |
|
* Adjusts the desired velocity for the inclusion circles |
|
*/ |
|
void AC_Avoid::adjust_velocity_inclusion_circles(float kP, float accel_cmss, Vector2f &desired_vel_cms, Vector2f &backup_vel, float dt) |
|
{ |
|
const AC_Fence *fence = AP::fence(); |
|
if (fence == nullptr) { |
|
return; |
|
} |
|
|
|
// return immediately if no inclusion circles |
|
const uint8_t num_circles = fence->polyfence().get_inclusion_circle_count(); |
|
if (num_circles == 0) { |
|
return; |
|
} |
|
|
|
// exit if polygon fences are not enabled |
|
if ((fence->get_enabled_fences() & AC_FENCE_TYPE_POLYGON) == 0) { |
|
return; |
|
} |
|
|
|
// get vehicle position |
|
Vector2f position_NE; |
|
if (!AP::ahrs().get_relative_position_NE_origin(position_NE)) { |
|
// do not limit velocity if we don't have a position estimate |
|
return; |
|
} |
|
position_NE = position_NE * 100.0f; // m to cm |
|
|
|
// get the margin to the fence in cm |
|
const float margin_cm = fence->get_margin() * 100.0f; |
|
|
|
// get desired speed |
|
const float desired_speed = desired_vel_cms.length(); |
|
|
|
// get stopping distance as an offset from the vehicle |
|
Vector2f stopping_offset; |
|
if (!is_zero(desired_speed)) { |
|
switch ((AC_Avoid::BehaviourType)_behavior.get()) { |
|
case BEHAVIOR_SLIDE: |
|
stopping_offset = desired_vel_cms*(get_stopping_distance(kP, accel_cmss, desired_speed)/desired_speed); |
|
break; |
|
case BEHAVIOR_STOP: |
|
// calculate stopping point plus a margin so we look forward far enough to intersect with circular fence |
|
stopping_offset = desired_vel_cms*((2.0f + margin_cm + get_stopping_distance(kP, accel_cmss, desired_speed))/desired_speed); |
|
break; |
|
} |
|
} |
|
|
|
// for backing away |
|
Vector2f quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel; |
|
|
|
// iterate through inclusion circles |
|
for (uint8_t i = 0; i < num_circles; i++) { |
|
Vector2f center_pos_cm; |
|
float radius; |
|
if (fence->polyfence().get_inclusion_circle(i, center_pos_cm, radius)) { |
|
// get position relative to circle's center |
|
const Vector2f position_NE_rel = (position_NE - center_pos_cm); |
|
|
|
// if we are outside this circle do not limit velocity for this circle |
|
const float dist_sq_cm = position_NE_rel.length_squared(); |
|
const float radius_cm = (radius * 100.0f); |
|
if (dist_sq_cm > sq(radius_cm)) { |
|
continue; |
|
} |
|
|
|
const float radius_with_margin = radius_cm - margin_cm; |
|
if (is_negative(radius_with_margin)) { |
|
return; |
|
} |
|
|
|
const float margin_breach = radius_with_margin - safe_sqrt(dist_sq_cm); |
|
// back away if vehicle has breached margin |
|
if (is_negative(margin_breach)) { |
|
calc_backup_velocity(kP, accel_cmss, quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel, margin_breach, position_NE_rel, dt); |
|
} |
|
if (is_zero(desired_speed)) { |
|
// no avoidance necessary when desired speed is zero |
|
continue; |
|
} |
|
|
|
switch ((AC_Avoid::BehaviourType)_behavior.get()) { |
|
case BEHAVIOR_SLIDE: { |
|
// implement sliding behaviour |
|
const Vector2f stopping_point = position_NE_rel + stopping_offset; |
|
const float stopping_point_dist = stopping_point.length(); |
|
if (is_zero(stopping_point_dist) || (stopping_point_dist <= (radius_cm - margin_cm))) { |
|
// stopping before before fence so no need to adjust for this circle |
|
continue; |
|
} |
|
// unsafe desired velocity - will not be able to stop before reaching margin from fence |
|
// project stopping point radially onto fence boundary |
|
// adjusted velocity will point towards this projected point at a safe speed |
|
const Vector2f target_offset = stopping_point * ((radius_cm - margin_cm) / stopping_point_dist); |
|
const Vector2f target_direction = target_offset - position_NE_rel; |
|
const float distance_to_target = target_direction.length(); |
|
if (is_positive(distance_to_target)) { |
|
const float max_speed = get_max_speed(kP, accel_cmss, distance_to_target, dt); |
|
desired_vel_cms = target_direction * (MIN(desired_speed,max_speed) / distance_to_target); |
|
} |
|
} |
|
break; |
|
case BEHAVIOR_STOP: { |
|
// implement stopping behaviour |
|
const Vector2f stopping_point_plus_margin = position_NE_rel + stopping_offset; |
|
const float dist_cm = safe_sqrt(dist_sq_cm); |
|
if (dist_cm >= radius_cm - margin_cm) { |
|
// vehicle has already breached margin around fence |
|
// if stopping point is even further from center (i.e. in wrong direction) then adjust speed to zero |
|
// otherwise user is backing away from fence so do not apply limits |
|
if (stopping_point_plus_margin.length() >= dist_cm) { |
|
desired_vel_cms.zero(); |
|
// desired backup velocity is sum of maximum velocity component in each quadrant |
|
backup_vel = quad_1_back_vel + quad_2_back_vel + quad_3_back_vel + quad_4_back_vel; |
|
return; |
|
} |
|
} else { |
|
// shorten vector without adjusting its direction |
|
Vector2f intersection; |
|
if (Vector2f::circle_segment_intersection(position_NE_rel, stopping_point_plus_margin, Vector2f(0.0f,0.0f), radius_cm - margin_cm, intersection)) { |
|
const float distance_to_target = (intersection - position_NE_rel).length(); |
|
const float max_speed = get_max_speed(kP, accel_cmss, distance_to_target, dt); |
|
if (max_speed < desired_speed) { |
|
desired_vel_cms *= MAX(max_speed, 0.0f) / desired_speed; |
|
} |
|
} |
|
} |
|
} |
|
break; |
|
} |
|
} |
|
} |
|
// desired backup velocity is sum of maximum velocity component in each quadrant |
|
backup_vel = quad_1_back_vel + quad_2_back_vel + quad_3_back_vel + quad_4_back_vel; |
|
} |
|
|
|
/* |
|
* Adjusts the desired velocity for the exclusion circles |
|
*/ |
|
void AC_Avoid::adjust_velocity_exclusion_circles(float kP, float accel_cmss, Vector2f &desired_vel_cms, Vector2f &backup_vel, float dt) |
|
{ |
|
const AC_Fence *fence = AP::fence(); |
|
if (fence == nullptr) { |
|
return; |
|
} |
|
|
|
// return immediately if no inclusion circles |
|
const uint8_t num_circles = fence->polyfence().get_exclusion_circle_count(); |
|
if (num_circles == 0) { |
|
return; |
|
} |
|
|
|
// exit if polygon fences are not enabled |
|
if ((fence->get_enabled_fences() & AC_FENCE_TYPE_POLYGON) == 0) { |
|
return; |
|
} |
|
|
|
// get vehicle position |
|
Vector2f position_NE; |
|
if (!AP::ahrs().get_relative_position_NE_origin(position_NE)) { |
|
// do not limit velocity if we don't have a position estimate |
|
return; |
|
} |
|
position_NE = position_NE * 100.0f; // m to cm |
|
|
|
// get the margin to the fence in cm |
|
const float margin_cm = fence->get_margin() * 100.0f; |
|
|
|
// for backing away |
|
Vector2f quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel; |
|
|
|
// get desired speed |
|
const float desired_speed = desired_vel_cms.length(); |
|
|
|
// calculate stopping distance as an offset from the vehicle (only used for BEHAVIOR_STOP) |
|
// add a margin so we look forward far enough to intersect with circular fence |
|
Vector2f stopping_offset; |
|
if (!is_zero(desired_speed)) { |
|
if ((AC_Avoid::BehaviourType)_behavior.get() == BEHAVIOR_STOP) { |
|
stopping_offset = desired_vel_cms*((2.0f + margin_cm + get_stopping_distance(kP, accel_cmss, desired_speed))/desired_speed); |
|
} |
|
} |
|
// iterate through exclusion circles |
|
for (uint8_t i = 0; i < num_circles; i++) { |
|
Vector2f center_pos_cm; |
|
float radius; |
|
if (fence->polyfence().get_exclusion_circle(i, center_pos_cm, radius)) { |
|
// get position relative to circle's center |
|
const Vector2f position_NE_rel = (position_NE - center_pos_cm); |
|
|
|
// if we are inside this circle do not limit velocity for this circle |
|
const float dist_sq_cm = position_NE_rel.length_squared(); |
|
const float radius_cm = (radius * 100.0f); |
|
if (radius_cm < margin_cm) { |
|
return; |
|
} |
|
if (dist_sq_cm < sq(radius_cm)) { |
|
continue; |
|
} |
|
|
|
const Vector2f vector_to_center = center_pos_cm - position_NE; |
|
const float dist_to_boundary = vector_to_center.length() - radius_cm; |
|
// back away if vehicle has breached margin |
|
if (is_negative(dist_to_boundary - margin_cm)) { |
|
calc_backup_velocity(kP, accel_cmss, quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel, margin_cm - dist_to_boundary, vector_to_center, dt); |
|
} |
|
if (is_zero(desired_speed)) { |
|
// no avoidance necessary when desired speed is zero |
|
continue; |
|
} |
|
|
|
switch ((AC_Avoid::BehaviourType)_behavior.get()) { |
|
case BEHAVIOR_SLIDE: { |
|
// vector from current position to circle's center |
|
Vector2f limit_direction = vector_to_center; |
|
if (limit_direction.is_zero()) { |
|
// vehicle is exactly on circle center so do not limit velocity |
|
continue; |
|
} |
|
// calculate distance to edge of circle |
|
const float limit_distance_cm = limit_direction.length() - radius_cm; |
|
if (!is_positive(limit_distance_cm)) { |
|
// vehicle is within circle so do not limit velocity |
|
continue; |
|
} |
|
// vehicle is outside the circle, adjust velocity to stay outside |
|
limit_direction.normalize(); |
|
limit_velocity(kP, accel_cmss, desired_vel_cms, limit_direction, MAX(limit_distance_cm - margin_cm, 0.0f), dt); |
|
} |
|
break; |
|
case BEHAVIOR_STOP: { |
|
// implement stopping behaviour |
|
const Vector2f stopping_point_plus_margin = position_NE_rel + stopping_offset; |
|
const float dist_cm = safe_sqrt(dist_sq_cm); |
|
if (dist_cm < radius_cm + margin_cm) { |
|
// vehicle has already breached margin around fence |
|
// if stopping point is closer to center (i.e. in wrong direction) then adjust speed to zero |
|
// otherwise user is backing away from fence so do not apply limits |
|
if (stopping_point_plus_margin.length() <= dist_cm) { |
|
desired_vel_cms.zero(); |
|
backup_vel = quad_1_back_vel + quad_2_back_vel + quad_3_back_vel + quad_4_back_vel; |
|
return; |
|
} |
|
} else { |
|
// shorten vector without adjusting its direction |
|
Vector2f intersection; |
|
if (Vector2f::circle_segment_intersection(position_NE_rel, stopping_point_plus_margin, Vector2f(0.0f,0.0f), radius_cm + margin_cm, intersection)) { |
|
const float distance_to_target = (intersection - position_NE_rel).length(); |
|
const float max_speed = get_max_speed(kP, accel_cmss, distance_to_target, dt); |
|
if (max_speed < desired_speed) { |
|
desired_vel_cms *= MAX(max_speed, 0.0f) / desired_speed; |
|
} |
|
} |
|
} |
|
} |
|
break; |
|
} |
|
} |
|
} |
|
// desired backup velocity is sum of maximum velocity component in each quadrant |
|
backup_vel = quad_1_back_vel + quad_2_back_vel + quad_3_back_vel + quad_4_back_vel; |
|
} |
|
|
|
/* |
|
* Adjusts the desired velocity for the beacon fence. |
|
*/ |
|
void AC_Avoid::adjust_velocity_beacon_fence(float kP, float accel_cmss, Vector2f &desired_vel_cms, Vector2f &backup_vel, float dt) |
|
{ |
|
AP_Beacon *_beacon = AP::beacon(); |
|
|
|
// exit if the beacon is not present |
|
if (_beacon == nullptr) { |
|
return; |
|
} |
|
|
|
// get boundary from beacons |
|
uint16_t num_points = 0; |
|
const Vector2f* boundary = _beacon->get_boundary_points(num_points); |
|
if ((boundary == nullptr) || (num_points == 0)) { |
|
return; |
|
} |
|
|
|
// adjust velocity using beacon |
|
float margin = 0; |
|
if (AP::fence()) { |
|
margin = AP::fence()->get_margin(); |
|
} |
|
adjust_velocity_polygon(kP, accel_cmss, desired_vel_cms, backup_vel, boundary, num_points, true, margin, dt, true); |
|
} |
|
|
|
/* |
|
* Adjusts the desired velocity based on output from the proximity sensor |
|
*/ |
|
void AC_Avoid::adjust_velocity_proximity(float kP, float accel_cmss, Vector2f &desired_vel_cms, Vector2f &backup_vel, float dt) |
|
{ |
|
// exit immediately if proximity sensor is not present |
|
AP_Proximity *proximity = AP::proximity(); |
|
if (!proximity) { |
|
return; |
|
} |
|
|
|
AP_Proximity &_proximity = *proximity; |
|
|
|
if (_proximity.get_status() != AP_Proximity::Status::Good) { |
|
return; |
|
} |
|
|
|
// get boundary from proximity sensor |
|
uint16_t num_points = 0; |
|
const Vector2f *boundary = _proximity.get_boundary_points(num_points); |
|
adjust_velocity_polygon(kP, accel_cmss, desired_vel_cms, backup_vel, boundary, num_points, false, _margin, dt, true); |
|
} |
|
|
|
/* |
|
* Adjusts the desired velocity for the polygon fence. |
|
*/ |
|
void AC_Avoid::adjust_velocity_polygon(float kP, float accel_cmss, Vector2f &desired_vel_cms, Vector2f &backup_vel, const Vector2f* boundary, uint16_t num_points, bool earth_frame, float margin, float dt, bool stay_inside) |
|
{ |
|
// exit if there are no points |
|
if (boundary == nullptr || num_points == 0) { |
|
return; |
|
} |
|
|
|
const AP_AHRS &_ahrs = AP::ahrs(); |
|
|
|
// do not adjust velocity if vehicle is outside the polygon fence |
|
Vector2f position_xy; |
|
if (earth_frame) { |
|
if (!_ahrs.get_relative_position_NE_origin(position_xy)) { |
|
// boundary is in earth frame but we have no idea |
|
// where we are |
|
return; |
|
} |
|
position_xy = position_xy * 100.0f; // m to cm |
|
} |
|
|
|
// return if we have already breached polygon |
|
const bool inside_polygon = !Polygon_outside(position_xy, boundary, num_points); |
|
if (inside_polygon != stay_inside) { |
|
return; |
|
} |
|
|
|
// Safe_vel will be adjusted to remain within fence. |
|
// We need a separate vector in case adjustment fails, |
|
// e.g. if we are exactly on the boundary. |
|
Vector2f safe_vel(desired_vel_cms); |
|
Vector2f desired_back_vel_cms; |
|
|
|
// if boundary points are in body-frame, rotate velocity vector from earth frame to body-frame |
|
if (!earth_frame) { |
|
safe_vel.x = desired_vel_cms.y * _ahrs.sin_yaw() + desired_vel_cms.x * _ahrs.cos_yaw(); // right |
|
safe_vel.y = desired_vel_cms.y * _ahrs.cos_yaw() - desired_vel_cms.x * _ahrs.sin_yaw(); // forward |
|
} |
|
|
|
// calc margin in cm |
|
const float margin_cm = MAX(margin * 100.0f, 0.0f); |
|
|
|
// for stopping |
|
const float speed = safe_vel.length(); |
|
Vector2f stopping_point_plus_margin; |
|
if (!desired_vel_cms.is_zero()) { |
|
stopping_point_plus_margin = position_xy + safe_vel*((2.0f + margin_cm + get_stopping_distance(kP, accel_cmss, speed))/speed); |
|
} |
|
|
|
// for backing away |
|
Vector2f quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel; |
|
|
|
for (uint16_t i=0; i<num_points; i++) { |
|
uint16_t j = i+1; |
|
if (j >= num_points) { |
|
j = 0; |
|
} |
|
// end points of current edge |
|
Vector2f start = boundary[j]; |
|
Vector2f end = boundary[i]; |
|
Vector2f vector_to_boundary = Vector2f::closest_point(position_xy, start, end) - position_xy; |
|
// back away if vehicle has breached margin |
|
if (is_negative(vector_to_boundary.length() - margin_cm)) { |
|
calc_backup_velocity(kP, accel_cmss, quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel, margin_cm-vector_to_boundary.length(), vector_to_boundary, dt); |
|
} |
|
|
|
// exit immediately if no desired velocity |
|
if (desired_vel_cms.is_zero()) { |
|
continue; |
|
} |
|
|
|
if ((AC_Avoid::BehaviourType)_behavior.get() == BEHAVIOR_SLIDE) { |
|
// vector from current position to closest point on current edge |
|
Vector2f limit_direction = vector_to_boundary; |
|
// distance to closest point |
|
const float limit_distance_cm = limit_direction.length(); |
|
if (!is_zero(limit_distance_cm)) { |
|
// We are strictly inside the given edge. |
|
// Adjust velocity to not violate this edge. |
|
limit_direction /= limit_distance_cm; |
|
limit_velocity(kP, accel_cmss, safe_vel, limit_direction, MAX(limit_distance_cm - margin_cm, 0.0f), dt); |
|
} else { |
|
// We are exactly on the edge - treat this as a fence breach. |
|
// i.e. do not adjust velocity. |
|
return; |
|
} |
|
} else { |
|
// find intersection with line segment |
|
Vector2f intersection; |
|
if (Vector2f::segment_intersection(position_xy, stopping_point_plus_margin, start, end, intersection)) { |
|
// vector from current position to point on current edge |
|
Vector2f limit_direction = intersection - position_xy; |
|
const float limit_distance_cm = limit_direction.length(); |
|
if (!is_zero(limit_distance_cm)) { |
|
if (limit_distance_cm <= margin_cm) { |
|
// we are within the margin so stop vehicle |
|
safe_vel.zero(); |
|
} else { |
|
// vehicle inside the given edge, adjust velocity to not violate this edge |
|
limit_direction /= limit_distance_cm; |
|
limit_velocity(kP, accel_cmss, safe_vel, limit_direction, MAX(limit_distance_cm - margin_cm, 0.0f), dt); |
|
} |
|
} else { |
|
// We are exactly on the edge - treat this as a fence breach. |
|
// i.e. do not adjust velocity. |
|
return; |
|
} |
|
} |
|
} |
|
} |
|
// desired backup velocity is sum of maximum velocity component in each quadrant |
|
desired_back_vel_cms = quad_1_back_vel + quad_2_back_vel + quad_3_back_vel + quad_4_back_vel; |
|
|
|
// set modified desired velocity vector or back away velocity vector |
|
if (earth_frame) { |
|
desired_vel_cms = safe_vel; |
|
backup_vel = desired_back_vel_cms; |
|
} else { |
|
// if points were in body-frame, rotate resulting vector back to earth-frame |
|
desired_vel_cms.x = safe_vel.x * _ahrs.cos_yaw() - safe_vel.y * _ahrs.sin_yaw(); |
|
desired_vel_cms.y = safe_vel.x * _ahrs.sin_yaw() + safe_vel.y * _ahrs.cos_yaw(); |
|
backup_vel.x = desired_back_vel_cms.x * _ahrs.cos_yaw() - desired_back_vel_cms.y * _ahrs.sin_yaw(); |
|
backup_vel.y = desired_back_vel_cms.x * _ahrs.sin_yaw() + desired_back_vel_cms.y * _ahrs.cos_yaw(); |
|
} |
|
} |
|
|
|
/* |
|
* Computes distance required to stop, given current speed. |
|
* |
|
* Implementation copied from AC_PosControl. |
|
*/ |
|
float AC_Avoid::get_stopping_distance(float kP, float accel_cmss, float speed_cms) const |
|
{ |
|
// avoid divide by zero by using current position if the velocity is below 10cm/s, kP is very low or acceleration is zero |
|
if (accel_cmss <= 0.0f || is_zero(speed_cms)) { |
|
return 0.0f; |
|
} |
|
|
|
// handle linear deceleration |
|
if (kP <= 0.0f) { |
|
return 0.5f * sq(speed_cms) / accel_cmss; |
|
} |
|
|
|
// calculate distance within which we can stop |
|
// accel_cmss/kP is the point at which velocity switches from linear to sqrt |
|
if (speed_cms < accel_cmss/kP) { |
|
return speed_cms/kP; |
|
} else { |
|
// accel_cmss/(2.0f*kP*kP) is the distance at which we switch from linear to sqrt response |
|
return accel_cmss/(2.0f*kP*kP) + (speed_cms*speed_cms)/(2.0f*accel_cmss); |
|
} |
|
} |
|
|
|
// convert distance (in meters) to a lean percentage (in 0~1 range) for use in manual flight modes |
|
float AC_Avoid::distance_to_lean_pct(float dist_m) |
|
{ |
|
// ignore objects beyond DIST_MAX |
|
if (dist_m < 0.0f || dist_m >= _dist_max || _dist_max <= 0.0f) { |
|
return 0.0f; |
|
} |
|
// inverted but linear response |
|
return 1.0f - (dist_m / _dist_max); |
|
} |
|
|
|
// returns the maximum positive and negative roll and pitch percentages (in -1 ~ +1 range) based on the proximity sensor |
|
void AC_Avoid::get_proximity_roll_pitch_pct(float &roll_positive, float &roll_negative, float &pitch_positive, float &pitch_negative) |
|
{ |
|
AP_Proximity *proximity = AP::proximity(); |
|
if (proximity == nullptr) { |
|
return; |
|
} |
|
AP_Proximity &_proximity = *proximity; |
|
|
|
// exit immediately if proximity sensor is not present |
|
if (_proximity.get_status() != AP_Proximity::Status::Good) { |
|
return; |
|
} |
|
|
|
const uint8_t obj_count = _proximity.get_object_count(); |
|
|
|
// if no objects return |
|
if (obj_count == 0) { |
|
return; |
|
} |
|
|
|
// calculate maximum roll, pitch values from objects |
|
for (uint8_t i=0; i<obj_count; i++) { |
|
float ang_deg, dist_m; |
|
if (_proximity.get_object_angle_and_distance(i, ang_deg, dist_m)) { |
|
if (dist_m < _dist_max) { |
|
// convert distance to lean angle (in 0 to 1 range) |
|
const float lean_pct = distance_to_lean_pct(dist_m); |
|
// convert angle to roll and pitch lean percentages |
|
const float angle_rad = radians(ang_deg); |
|
const float roll_pct = -sinf(angle_rad) * lean_pct; |
|
const float pitch_pct = cosf(angle_rad) * lean_pct; |
|
// update roll, pitch maximums |
|
if (roll_pct > 0.0f) { |
|
roll_positive = MAX(roll_positive, roll_pct); |
|
} else if (roll_pct < 0.0f) { |
|
roll_negative = MIN(roll_negative, roll_pct); |
|
} |
|
if (pitch_pct > 0.0f) { |
|
pitch_positive = MAX(pitch_positive, pitch_pct); |
|
} else if (pitch_pct < 0.0f) { |
|
pitch_negative = MIN(pitch_negative, pitch_pct); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
// singleton instance |
|
AC_Avoid *AC_Avoid::_singleton; |
|
|
|
namespace AP { |
|
|
|
AC_Avoid *ac_avoid() |
|
{ |
|
return AC_Avoid::get_singleton(); |
|
} |
|
|
|
}
|
|
|