You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
127 lines
4.5 KiB
127 lines
4.5 KiB
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
/* |
|
simple electric motor simulator class |
|
*/ |
|
|
|
#include "SIM_Motor.h" |
|
#include <AP_Motors/AP_Motors.h> |
|
|
|
using namespace SITL; |
|
|
|
// calculate rotational accel and thrust for a motor |
|
void Motor::calculate_forces(const struct sitl_input &input, |
|
const float thrust_scale, |
|
uint8_t motor_offset, |
|
Vector3f &rot_accel, |
|
Vector3f &thrust) |
|
{ |
|
// fudge factors |
|
const float arm_scale = radians(5000); |
|
const float yaw_scale = radians(400); |
|
|
|
// get motor speed from 0 to 1 |
|
float motor_speed = constrain_float((input.servos[motor_offset+servo]-1100)/900.0, 0, 1); |
|
|
|
// the yaw torque of the motor |
|
Vector3f rotor_torque(0, 0, yaw_factor * motor_speed * yaw_scale); |
|
|
|
// get thrust for untilted motor |
|
thrust(0, 0, -motor_speed); |
|
|
|
// define the arm position relative to center of mass |
|
Vector3f arm(arm_scale * cosf(radians(angle)), arm_scale * sinf(radians(angle)), 0); |
|
|
|
// work out roll and pitch of motor relative to it pointing straight up |
|
float roll = 0, pitch = 0; |
|
|
|
uint64_t now = AP_HAL::micros64(); |
|
|
|
// possibly roll and/or pitch the motor |
|
if (roll_servo >= 0) { |
|
uint16_t servoval = update_servo(input.servos[roll_servo+motor_offset], now, last_roll_value); |
|
if (roll_min < roll_max) { |
|
roll = constrain_float(roll_min + (servoval-1000)*0.001*(roll_max-roll_min), roll_min, roll_max); |
|
} else { |
|
roll = constrain_float(roll_max + (2000-servoval)*0.001*(roll_min-roll_max), roll_max, roll_min); |
|
} |
|
} |
|
if (pitch_servo >= 0) { |
|
uint16_t servoval = update_servo(input.servos[pitch_servo+motor_offset], now, last_pitch_value); |
|
if (pitch_min < pitch_max) { |
|
pitch = constrain_float(pitch_min + (servoval-1000)*0.001*(pitch_max-pitch_min), pitch_min, pitch_max); |
|
} else { |
|
pitch = constrain_float(pitch_max + (2000-servoval)*0.001*(pitch_min-pitch_max), pitch_max, pitch_min); |
|
} |
|
} |
|
last_change_usec = now; |
|
|
|
// possibly rotate the thrust vector and the rotor torque |
|
if (!is_zero(roll) || !is_zero(pitch)) { |
|
Matrix3f rotation; |
|
rotation.from_euler(radians(roll), radians(pitch), 0); |
|
thrust = rotation * thrust; |
|
rotor_torque = rotation * rotor_torque; |
|
} |
|
|
|
// calculate total rotational acceleration |
|
rot_accel = (arm % thrust) + rotor_torque; |
|
|
|
// scale the thrust |
|
thrust = thrust * thrust_scale; |
|
} |
|
|
|
/* |
|
update and return current value of a servo. Calculated as 1000..2000 |
|
*/ |
|
uint16_t Motor::update_servo(uint16_t demand, uint64_t time_usec, float &last_value) |
|
{ |
|
if (servo_rate <= 0) { |
|
return demand; |
|
} |
|
if (servo_type == SERVO_RETRACT) { |
|
// handle retract servos |
|
if (demand > 1700) { |
|
demand = 2000; |
|
} else if (demand < 1300) { |
|
demand = 1000; |
|
} else { |
|
demand = last_value; |
|
} |
|
} |
|
demand = constrain_int16(demand, 1000, 2000); |
|
float dt = (time_usec - last_change_usec) * 1.0e-6f; |
|
// assume servo moves through 90 degrees over 1000 to 2000 |
|
float max_change = 1000 * (dt / servo_rate) * 60.0f / 90.0f; |
|
last_value = constrain_float(demand, last_value-max_change, last_value+max_change); |
|
return uint16_t(last_value+0.5); |
|
} |
|
|
|
|
|
// calculate current and voltage |
|
void Motor::current_and_voltage(const struct sitl_input &input, float &voltage, float ¤t, |
|
uint8_t motor_offset) |
|
{ |
|
// get motor speed from 0 to 1 |
|
float motor_speed = constrain_float((input.servos[motor_offset+servo]-1100)/900.0, 0, 1); |
|
|
|
// assume 10A per motor at full speed |
|
current = 10 * motor_speed; |
|
|
|
// assume 3S, and full throttle drops voltage by 0.7V |
|
if (AP::sitl()) { |
|
voltage = AP::sitl()->batt_voltage - motor_speed * 0.7; |
|
} |
|
}
|
|
|