You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
369 lines
12 KiB
369 lines
12 KiB
#include "Plane.h" |
|
|
|
/* |
|
control code for tiltrotors and tiltwings. Enabled by setting |
|
Q_TILT_MASK to a non-zero value |
|
*/ |
|
|
|
|
|
/* |
|
calculate maximum tilt change as a proportion from 0 to 1 of tilt |
|
*/ |
|
float QuadPlane::tilt_max_change(bool up) |
|
{ |
|
float rate; |
|
if (up || tilt.max_rate_down_dps <= 0) { |
|
rate = tilt.max_rate_up_dps; |
|
} else { |
|
rate = tilt.max_rate_down_dps; |
|
} |
|
if (tilt.tilt_type != TILT_TYPE_BINARY && !up) { |
|
bool fast_tilt = false; |
|
if (plane.control_mode == &plane.mode_manual) { |
|
fast_tilt = true; |
|
} |
|
if (hal.util->get_soft_armed() && !in_vtol_mode() && !assisted_flight) { |
|
fast_tilt = true; |
|
} |
|
if (fast_tilt) { |
|
// allow a minimum of 90 DPS in manual or if we are not |
|
// stabilising, to give fast control |
|
rate = MAX(rate, 90); |
|
} |
|
} |
|
return rate * plane.G_Dt / 90.0f; |
|
} |
|
|
|
/* |
|
output a slew limited tiltrotor angle. tilt is from 0 to 1 |
|
*/ |
|
void QuadPlane::tiltrotor_slew(float newtilt) |
|
{ |
|
float max_change = tilt_max_change(newtilt<tilt.current_tilt); |
|
tilt.current_tilt = constrain_float(newtilt, tilt.current_tilt-max_change, tilt.current_tilt+max_change); |
|
|
|
// translate to 0..1000 range and output |
|
SRV_Channels::set_output_scaled(SRV_Channel::k_motor_tilt, 1000 * tilt.current_tilt); |
|
} |
|
|
|
/* |
|
update motor tilt for continuous tilt servos |
|
*/ |
|
void QuadPlane::tiltrotor_continuous_update(void) |
|
{ |
|
// default to inactive |
|
tilt.motors_active = false; |
|
|
|
// the maximum rate of throttle change |
|
float max_change; |
|
|
|
if (!in_vtol_mode() && (!hal.util->get_soft_armed() || !assisted_flight)) { |
|
// we are in pure fixed wing mode. Move the tiltable motors all the way forward and run them as |
|
// a forward motor |
|
tiltrotor_slew(1); |
|
|
|
max_change = tilt_max_change(false); |
|
|
|
float new_throttle = constrain_float(SRV_Channels::get_output_scaled(SRV_Channel::k_throttle)*0.01, 0, 1); |
|
if (tilt.current_tilt < 1) { |
|
tilt.current_throttle = constrain_float(new_throttle, |
|
tilt.current_throttle-max_change, |
|
tilt.current_throttle+max_change); |
|
} else { |
|
tilt.current_throttle = new_throttle; |
|
} |
|
if (!hal.util->get_soft_armed()) { |
|
tilt.current_throttle = 0; |
|
} else { |
|
// the motors are all the way forward, start using them for fwd thrust |
|
uint8_t mask = is_zero(tilt.current_throttle)?0:(uint8_t)tilt.tilt_mask.get(); |
|
motors->output_motor_mask(tilt.current_throttle, mask, plane.rudder_dt); |
|
// prevent motor shutdown |
|
tilt.motors_active = true; |
|
} |
|
return; |
|
} |
|
|
|
// remember the throttle level we're using for VTOL flight |
|
float motors_throttle = motors->get_throttle(); |
|
max_change = tilt_max_change(motors_throttle<tilt.current_throttle); |
|
tilt.current_throttle = constrain_float(motors_throttle, |
|
tilt.current_throttle-max_change, |
|
tilt.current_throttle+max_change); |
|
|
|
/* |
|
we are in a VTOL mode. We need to work out how much tilt is |
|
needed. There are 3 strategies we will use: |
|
|
|
1) in QSTABILIZE or QHOVER the angle will be set to zero. This |
|
enables these modes to be used as a safe recovery mode. |
|
|
|
2) in fixed wing assisted flight or velocity controlled modes we |
|
will set the angle based on the demanded forward throttle, |
|
with a maximum tilt given by Q_TILT_MAX. This relies on |
|
Q_VFWD_GAIN being set |
|
|
|
3) if we are in TRANSITION_TIMER mode then we are transitioning |
|
to forward flight and should put the rotors all the way forward |
|
*/ |
|
if (plane.control_mode == &plane.mode_qstabilize || |
|
plane.control_mode == &plane.mode_qhover || |
|
plane.control_mode == &plane.mode_qautotune) { |
|
tiltrotor_slew(0); |
|
return; |
|
} |
|
|
|
if (assisted_flight && |
|
transition_state >= TRANSITION_TIMER) { |
|
// we are transitioning to fixed wing - tilt the motors all |
|
// the way forward |
|
tiltrotor_slew(1); |
|
} else { |
|
// until we have completed the transition we limit the tilt to |
|
// Q_TILT_MAX. Anything above 50% throttle gets |
|
// Q_TILT_MAX. Below 50% throttle we decrease linearly. This |
|
// relies heavily on Q_VFWD_GAIN being set appropriately. |
|
float settilt = constrain_float(SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) / 50.0f, 0, 1); |
|
tiltrotor_slew(settilt * tilt.max_angle_deg / 90.0f); |
|
} |
|
} |
|
|
|
|
|
/* |
|
output a slew limited tiltrotor angle. tilt is 0 or 1 |
|
*/ |
|
void QuadPlane::tiltrotor_binary_slew(bool forward) |
|
{ |
|
// The servo output is binary, not slew rate limited |
|
SRV_Channels::set_output_scaled(SRV_Channel::k_motor_tilt, forward?1000:0); |
|
|
|
// rate limiting current_tilt has the effect of delaying throttle in tiltrotor_binary_update |
|
float max_change = tilt_max_change(!forward); |
|
if (forward) { |
|
tilt.current_tilt = constrain_float(tilt.current_tilt+max_change, 0, 1); |
|
} else { |
|
tilt.current_tilt = constrain_float(tilt.current_tilt-max_change, 0, 1); |
|
} |
|
} |
|
|
|
/* |
|
update motor tilt for binary tilt servos |
|
*/ |
|
void QuadPlane::tiltrotor_binary_update(void) |
|
{ |
|
// motors always active |
|
tilt.motors_active = true; |
|
|
|
if (!in_vtol_mode()) { |
|
// we are in pure fixed wing mode. Move the tiltable motors |
|
// all the way forward and run them as a forward motor |
|
tiltrotor_binary_slew(true); |
|
|
|
float new_throttle = SRV_Channels::get_output_scaled(SRV_Channel::k_throttle)*0.01f; |
|
if (tilt.current_tilt >= 1) { |
|
uint8_t mask = is_zero(new_throttle)?0:(uint8_t)tilt.tilt_mask.get(); |
|
// the motors are all the way forward, start using them for fwd thrust |
|
motors->output_motor_mask(new_throttle, mask, plane.rudder_dt); |
|
} |
|
} else { |
|
tiltrotor_binary_slew(false); |
|
} |
|
} |
|
|
|
|
|
/* |
|
update motor tilt |
|
*/ |
|
void QuadPlane::tiltrotor_update(void) |
|
{ |
|
if (tilt.tilt_mask <= 0) { |
|
// no motors to tilt |
|
return; |
|
} |
|
|
|
if (tilt.tilt_type == TILT_TYPE_BINARY) { |
|
tiltrotor_binary_update(); |
|
} else { |
|
tiltrotor_continuous_update(); |
|
} |
|
|
|
if (tilt.tilt_type == TILT_TYPE_VECTORED_YAW) { |
|
tiltrotor_vectored_yaw(); |
|
} |
|
} |
|
|
|
|
|
/* |
|
compensate for tilt in a set of motor outputs |
|
|
|
Compensation is of two forms. The first is to apply _tilt_factor, |
|
which is a compensation for the reduces vertical thrust when |
|
tilted. This is supplied by set_motor_tilt_factor(). |
|
|
|
The second compensation is to use equal thrust on all tilted motors |
|
when _tilt_equal_thrust is true. This is used when the motors are |
|
tilted by a large angle to prevent the roll and yaw controllers from |
|
causing instability. Typically this would be used when the motors |
|
are tilted beyond 45 degrees. At this angle it is assumed that roll |
|
control can be achieved using fixed wing control surfaces and yaw |
|
control with the remaining multicopter motors (eg. tricopter tail). |
|
|
|
By applying _tilt_equal_thrust the tilted motors effectively become |
|
a single pitch control motor. |
|
|
|
Note that we use a different strategy for when we are transitioning |
|
into VTOL as compared to from VTOL flight. The reason for that is |
|
we want to lean towards higher tilted motor throttle when |
|
transitioning to fixed wing flight, in order to gain airspeed, |
|
whereas when transitioning to VTOL flight we want to lean to towards |
|
lower fwd throttle. So we raise the throttle on the tilted motors |
|
when transitioning to fixed wing, and lower throttle on tilted |
|
motors when transitioning to VTOL |
|
*/ |
|
void QuadPlane::tilt_compensate_down(float *thrust, uint8_t num_motors) |
|
{ |
|
float inv_tilt_factor; |
|
if (tilt.current_tilt > 0.98f) { |
|
inv_tilt_factor = 1.0 / cosf(radians(0.98f*90)); |
|
} else { |
|
inv_tilt_factor = 1.0 / cosf(radians(tilt.current_tilt*90)); |
|
} |
|
|
|
// when we got past Q_TILT_MAX we gang the tilted motors together |
|
// to generate equal thrust. This makes them act as a single pitch |
|
// control motor while preventing them trying to do roll and yaw |
|
// control while angled over. This greatly improves the stability |
|
// of the last phase of transitions |
|
float tilt_threshold = (tilt.max_angle_deg/90.0f); |
|
bool equal_thrust = (tilt.current_tilt > tilt_threshold); |
|
|
|
float tilt_total = 0; |
|
uint8_t tilt_count = 0; |
|
|
|
// apply inv_tilt_factor first |
|
for (uint8_t i=0; i<num_motors; i++) { |
|
if (is_motor_tilting(i)) { |
|
thrust[i] *= inv_tilt_factor; |
|
tilt_total += thrust[i]; |
|
tilt_count++; |
|
} |
|
} |
|
|
|
float largest_tilted = 0; |
|
|
|
// now constrain and apply _tilt_equal_thrust if enabled |
|
for (uint8_t i=0; i<num_motors; i++) { |
|
if (is_motor_tilting(i)) { |
|
if (equal_thrust) { |
|
thrust[i] = tilt_total / tilt_count; |
|
} |
|
largest_tilted = MAX(largest_tilted, thrust[i]); |
|
} |
|
} |
|
|
|
// if we are saturating one of the tilted motors then reduce all |
|
// motors to keep them in proportion to the original thrust. This |
|
// helps maintain stability when tilted at a large angle |
|
if (largest_tilted > 1.0f) { |
|
float scale = 1.0f / largest_tilted; |
|
for (uint8_t i=0; i<num_motors; i++) { |
|
thrust[i] *= scale; |
|
} |
|
} |
|
} |
|
|
|
|
|
/* |
|
tilt compensation when transitioning to VTOL flight |
|
*/ |
|
void QuadPlane::tilt_compensate_up(float *thrust, uint8_t num_motors) |
|
{ |
|
float tilt_factor = cosf(radians(tilt.current_tilt*90)); |
|
|
|
// when we got past Q_TILT_MAX we gang the tilted motors together |
|
// to generate equal thrust. This makes them act as a single pitch |
|
// control motor while preventing them trying to do roll and yaw |
|
// control while angled over. This greatly improves the stability |
|
// of the last phase of transitions |
|
float tilt_threshold = (tilt.max_angle_deg/90.0f); |
|
bool equal_thrust = (tilt.current_tilt > tilt_threshold); |
|
|
|
float tilt_total = 0; |
|
uint8_t tilt_count = 0; |
|
|
|
// apply tilt_factor first |
|
for (uint8_t i=0; i<num_motors; i++) { |
|
if (!is_motor_tilting(i)) { |
|
thrust[i] *= tilt_factor; |
|
} else { |
|
tilt_total += thrust[i]; |
|
tilt_count++; |
|
} |
|
} |
|
|
|
// now constrain and apply _tilt_equal_thrust if enabled |
|
for (uint8_t i=0; i<num_motors; i++) { |
|
if (is_motor_tilting(i)) { |
|
if (equal_thrust) { |
|
thrust[i] = tilt_total / tilt_count; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* |
|
choose up or down tilt compensation based on flight mode When going |
|
to a fixed wing mode we use tilt_compensate_down, when going to a |
|
VTOL mode we use tilt_compensate_up |
|
*/ |
|
void QuadPlane::tilt_compensate(float *thrust, uint8_t num_motors) |
|
{ |
|
if (tilt.current_tilt <= 0) { |
|
// the motors are not tilted, no compensation needed |
|
return; |
|
} |
|
if (in_vtol_mode()) { |
|
// we are transitioning to VTOL flight |
|
tilt_compensate_up(thrust, num_motors); |
|
} else { |
|
tilt_compensate_down(thrust, num_motors); |
|
} |
|
} |
|
|
|
/* |
|
return true if the rotors are fully tilted forward |
|
*/ |
|
bool QuadPlane::tiltrotor_fully_fwd(void) |
|
{ |
|
if (tilt.tilt_mask <= 0) { |
|
return false; |
|
} |
|
return (tilt.current_tilt >= 1); |
|
} |
|
|
|
/* |
|
control vectored yaw with tilt multicopters |
|
*/ |
|
void QuadPlane::tiltrotor_vectored_yaw(void) |
|
{ |
|
// total angle the tilt can go through |
|
float total_angle = 90 + tilt.tilt_yaw_angle; |
|
// output value (0 to 1) to get motors pointed straight up |
|
float zero_out = tilt.tilt_yaw_angle / total_angle; |
|
|
|
// calculate the basic tilt amount from current_tilt |
|
float base_output = zero_out + (tilt.current_tilt * (1 - zero_out)); |
|
|
|
float tilt_threshold = (tilt.max_angle_deg/90.0f); |
|
bool no_yaw = (tilt.current_tilt > tilt_threshold); |
|
if (no_yaw) { |
|
SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorLeft, 1000 * base_output); |
|
SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorRight, 1000 * base_output); |
|
} else { |
|
float yaw_out = motors->get_yaw(); |
|
float yaw_range = zero_out; |
|
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorLeft, 1000 * (base_output + yaw_out * yaw_range)); |
|
SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorRight, 1000 * (base_output - yaw_out * yaw_range)); |
|
} |
|
}
|
|
|