You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
225 lines
9.9 KiB
225 lines
9.9 KiB
/// @file AP_MotorsHeli.h |
|
/// @brief Motor control class for Traditional Heli |
|
#pragma once |
|
|
|
#include <inttypes.h> |
|
|
|
#include <AP_Common/AP_Common.h> |
|
#include <AP_Math/AP_Math.h> // ArduPilot Mega Vector/Matrix math Library |
|
#include <RC_Channel/RC_Channel.h> |
|
#include <SRV_Channel/SRV_Channel.h> |
|
#include "AP_Motors_Class.h" |
|
#include "AP_MotorsHeli_RSC.h" |
|
|
|
// servo output rates |
|
#define AP_MOTORS_HELI_SPEED_DEFAULT 125 // default servo update rate for helicopters |
|
|
|
// default swash min and max angles and positions |
|
#define AP_MOTORS_HELI_SWASH_CYCLIC_MAX 2500 |
|
#define AP_MOTORS_HELI_COLLECTIVE_MIN 1250 |
|
#define AP_MOTORS_HELI_COLLECTIVE_MAX 1750 |
|
#define AP_MOTORS_HELI_COLLECTIVE_MID 1500 |
|
|
|
// swash min while landed or landing (as a number from 0 ~ 1000 |
|
#define AP_MOTORS_HELI_LAND_COLLECTIVE_MIN 0 |
|
|
|
// default main rotor speed (ch8 out) as a number from 0 ~ 1000 |
|
#define AP_MOTORS_HELI_RSC_SETPOINT 700 |
|
|
|
// default main rotor critical speed |
|
#define AP_MOTORS_HELI_RSC_CRITICAL 500 |
|
|
|
// RSC output defaults |
|
#define AP_MOTORS_HELI_RSC_IDLE_DEFAULT 0 |
|
#define AP_MOTORS_HELI_RSC_THRCRV_0_DEFAULT 250 |
|
#define AP_MOTORS_HELI_RSC_THRCRV_25_DEFAULT 320 |
|
#define AP_MOTORS_HELI_RSC_THRCRV_50_DEFAULT 380 |
|
#define AP_MOTORS_HELI_RSC_THRCRV_75_DEFAULT 500 |
|
#define AP_MOTORS_HELI_RSC_THRCRV_100_DEFAULT 1000 |
|
|
|
// default main rotor ramp up time in seconds |
|
#define AP_MOTORS_HELI_RSC_RAMP_TIME 1 // 1 second to ramp output to main rotor ESC to setpoint |
|
#define AP_MOTORS_HELI_RSC_RUNUP_TIME 10 // 10 seconds for rotor to reach full speed |
|
|
|
// flybar types |
|
#define AP_MOTORS_HELI_NOFLYBAR 0 |
|
|
|
class AP_HeliControls; |
|
|
|
/// @class AP_MotorsHeli |
|
class AP_MotorsHeli : public AP_Motors { |
|
public: |
|
|
|
/// Constructor |
|
AP_MotorsHeli( uint16_t loop_rate, |
|
uint16_t speed_hz = AP_MOTORS_HELI_SPEED_DEFAULT) : |
|
AP_Motors(loop_rate, speed_hz) |
|
{ |
|
AP_Param::setup_object_defaults(this, var_info); |
|
}; |
|
|
|
// init |
|
void init(motor_frame_class frame_class, motor_frame_type frame_type) override; |
|
|
|
// set frame class (i.e. quad, hexa, heli) and type (i.e. x, plus) |
|
void set_frame_class_and_type(motor_frame_class frame_class, motor_frame_type frame_type) override; |
|
|
|
// set update rate to motors - a value in hertz |
|
virtual void set_update_rate( uint16_t speed_hz ) override = 0; |
|
|
|
// output_min - sets servos to neutral point with motors stopped |
|
void output_min() override; |
|
|
|
// output_test_seq - spin a motor at the pwm value specified |
|
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame |
|
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000 |
|
virtual void output_test_seq(uint8_t motor_seq, int16_t pwm) override = 0; |
|
|
|
// |
|
// heli specific methods |
|
// |
|
|
|
// parameter_check - returns true if helicopter specific parameters are sensible, used for pre-arm check |
|
virtual bool parameter_check(bool display_msg) const; |
|
|
|
// has_flybar - returns true if we have a mechical flybar |
|
virtual bool has_flybar() const { return AP_MOTORS_HELI_NOFLYBAR; } |
|
|
|
// set_collective_for_landing - limits collective from going too low if we know we are landed |
|
void set_collective_for_landing(bool landing) { _heliflags.landing_collective = landing; } |
|
|
|
// set_inverted_flight - enables/disables inverted flight |
|
void set_inverted_flight(bool inverted) { _heliflags.inverted_flight = inverted; } |
|
|
|
// get_rsc_mode - gets the rotor speed control method (AP_MOTORS_HELI_RSC_MODE_CH8_PASSTHROUGH or AP_MOTORS_HELI_RSC_MODE_SETPOINT) |
|
uint8_t get_rsc_mode() const { return _rsc_mode; } |
|
|
|
// get_rsc_setpoint - gets contents of _rsc_setpoint parameter (0~1) |
|
float get_rsc_setpoint() const { return _rsc_setpoint * 0.001f; } |
|
|
|
// set_desired_rotor_speed - sets target rotor speed as a number from 0 ~ 1 |
|
virtual void set_desired_rotor_speed(float desired_speed) = 0; |
|
|
|
// get_desired_rotor_speed - gets target rotor speed as a number from 0 ~ 1 |
|
virtual float get_desired_rotor_speed() const = 0; |
|
|
|
// get_main_rotor_speed - gets estimated or measured main rotor speed |
|
virtual float get_main_rotor_speed() const = 0; |
|
|
|
// return true if the main rotor is up to speed |
|
bool rotor_runup_complete() const { return _heliflags.rotor_runup_complete; } |
|
|
|
// rotor_speed_above_critical - return true if rotor speed is above that critical for flight |
|
virtual bool rotor_speed_above_critical() const = 0; |
|
|
|
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used) |
|
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict |
|
virtual uint16_t get_motor_mask() override = 0; |
|
|
|
virtual void set_acro_tail(bool set) {} |
|
|
|
// ext_gyro_gain - set external gyro gain in range 0 ~ 1 |
|
virtual void ext_gyro_gain(float gain) {} |
|
|
|
// output - sends commands to the motors |
|
void output() override; |
|
|
|
// supports_yaw_passthrough |
|
virtual bool supports_yaw_passthrough() const { return false; } |
|
|
|
float get_throttle_hover() const override { return 0.5f; } |
|
|
|
// support passing init_targets_on_arming flag to greater code |
|
bool init_targets_on_arming() const { return _heliflags.init_targets_on_arming; } |
|
|
|
// var_info for holding Parameter information |
|
static const struct AP_Param::GroupInfo var_info[]; |
|
|
|
protected: |
|
|
|
// manual servo modes (used for setup) |
|
enum ServoControlModes { |
|
SERVO_CONTROL_MODE_AUTOMATED = 0, |
|
SERVO_CONTROL_MODE_MANUAL_PASSTHROUGH, |
|
SERVO_CONTROL_MODE_MANUAL_MAX, |
|
SERVO_CONTROL_MODE_MANUAL_CENTER, |
|
SERVO_CONTROL_MODE_MANUAL_MIN, |
|
SERVO_CONTROL_MODE_MANUAL_OSCILLATE, |
|
}; |
|
|
|
// output - sends commands to the motors |
|
void output_armed_stabilizing() override; |
|
void output_armed_zero_throttle(); |
|
void output_disarmed(); |
|
|
|
// update_motor_controls - sends commands to motor controllers |
|
virtual void update_motor_control(RotorControlState state) = 0; |
|
|
|
// run spool logic |
|
void output_logic(); |
|
|
|
// output_to_motors - sends commands to the motors |
|
virtual void output_to_motors() = 0; |
|
|
|
// reset_flight_controls - resets all controls and scalars to flight status |
|
void reset_flight_controls(); |
|
|
|
// update the throttle input filter |
|
void update_throttle_filter() override; |
|
|
|
// move_actuators - moves swash plate and tail rotor |
|
virtual void move_actuators(float roll_out, float pitch_out, float coll_in, float yaw_out) = 0; |
|
|
|
// reset_swash_servo - free up swash servo for maximum movement |
|
void reset_swash_servo(SRV_Channel::Aux_servo_function_t function); |
|
|
|
// init_outputs - initialise Servo/PWM ranges and endpoints |
|
virtual bool init_outputs() = 0; |
|
|
|
// calculate_armed_scalars - must be implemented by child classes |
|
virtual void calculate_armed_scalars() = 0; |
|
|
|
// calculate_scalars - must be implemented by child classes |
|
virtual void calculate_scalars() = 0; |
|
|
|
// calculate_roll_pitch_collective_factors - calculate factors based on swash type and servo position |
|
virtual void calculate_roll_pitch_collective_factors() = 0; |
|
|
|
// servo_test - move servos through full range of movement |
|
// to be overloaded by child classes, different vehicle types would have different movement patterns |
|
virtual void servo_test() = 0; |
|
|
|
// write to a swash servo. output value is pwm |
|
void rc_write_swash(uint8_t chan, float swash_in); |
|
|
|
// flags bitmask |
|
struct heliflags_type { |
|
uint8_t landing_collective : 1; // true if collective is setup for landing which has much higher minimum |
|
uint8_t rotor_runup_complete : 1; // true if the rotors have had enough time to wind up |
|
uint8_t inverted_flight : 1; // true for inverted flight |
|
uint8_t init_targets_on_arming : 1; // 0 if targets were initialized, 1 if targets were not initialized after arming |
|
} _heliflags; |
|
|
|
// parameters |
|
AP_Int16 _cyclic_max; // Maximum cyclic angle of the swash plate in centi-degrees |
|
AP_Int16 _collective_min; // Lowest possible servo position for the swashplate |
|
AP_Int16 _collective_max; // Highest possible servo position for the swashplate |
|
AP_Int16 _collective_mid; // Swash servo position corresponding to zero collective pitch (or zero lift for Asymmetrical blades) |
|
AP_Int8 _servo_mode; // Pass radio inputs directly to servos during set-up through mission planner |
|
AP_Int16 _rsc_setpoint; // rotor speed when RSC mode is set to is enabledv |
|
AP_Int8 _rsc_mode; // Which main rotor ESC control mode is active |
|
AP_Int8 _rsc_ramp_time; // Time in seconds for the output to the main rotor's ESC to reach setpoint |
|
AP_Int8 _rsc_runup_time; // Time in seconds for the main rotor to reach full speed. Must be longer than _rsc_ramp_time |
|
AP_Int16 _land_collective_min; // Minimum collective when landed or landing |
|
AP_Int16 _rsc_critical; // Rotor speed below which flight is not possible |
|
AP_Int16 _rsc_idle_output; // Rotor control output while at idle |
|
AP_Int16 _rsc_thrcrv[5]; // throttle value sent to throttle servo at 0, 25, 50, 75 and 100 percent collective |
|
AP_Int16 _rsc_slewrate; // throttle slew rate (percentage per second) |
|
AP_Int8 _servo_test; // sets number of cycles to test servo movement on bootup |
|
|
|
// internal variables |
|
float _collective_mid_pct = 0.0f; // collective mid parameter value converted to 0 ~ 1 range |
|
uint8_t _servo_test_cycle_counter = 0; // number of test cycles left to run after bootup |
|
|
|
motor_frame_type _frame_type; |
|
};
|
|
|