You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
212 lines
7.5 KiB
212 lines
7.5 KiB
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
|
|
#include <stdlib.h> |
|
#include <AP_HAL/AP_HAL.h> |
|
|
|
#include "AP_MotorsHeli_RSC.h" |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
// init_servo - servo initialization on start-up |
|
void AP_MotorsHeli_RSC::init_servo() |
|
{ |
|
// setup RSC on specified channel by default |
|
SRV_Channels::set_aux_channel_default(_aux_fn, _default_channel); |
|
|
|
// set servo range |
|
SRV_Channels::set_range(SRV_Channels::get_motor_function(_aux_fn), 1000); |
|
|
|
} |
|
|
|
// set_power_output_range |
|
// TODO: Look at possibly calling this at a slower rate. Doesn't need to be called every cycle. |
|
void AP_MotorsHeli_RSC::set_throttle_curve(float thrcrv[5], uint16_t slewrate) |
|
{ |
|
|
|
// Ensure user inputs are within parameter limits |
|
for (uint8_t i = 0; i < 5; i++) { |
|
thrcrv[i] = constrain_float(thrcrv[i], 0.0f, 1.0f); |
|
} |
|
// Calculate the spline polynomials for the throttle curve |
|
splinterp5(thrcrv,_thrcrv_poly); |
|
|
|
_power_slewrate = slewrate; |
|
} |
|
|
|
// output - update value to send to ESC/Servo |
|
void AP_MotorsHeli_RSC::output(RotorControlState state) |
|
{ |
|
float dt; |
|
uint64_t now = AP_HAL::micros64(); |
|
float last_control_output = _control_output; |
|
|
|
if (_last_update_us == 0) { |
|
_last_update_us = now; |
|
dt = 0.001f; |
|
} else { |
|
dt = 1.0e-6f * (now - _last_update_us); |
|
_last_update_us = now; |
|
} |
|
|
|
switch (state){ |
|
case ROTOR_CONTROL_STOP: |
|
// set rotor ramp to decrease speed to zero, this happens instantly inside update_rotor_ramp() |
|
update_rotor_ramp(0.0f, dt); |
|
|
|
// control output forced to zero |
|
_control_output = 0.0f; |
|
break; |
|
|
|
case ROTOR_CONTROL_IDLE: |
|
// set rotor ramp to decrease speed to zero |
|
update_rotor_ramp(0.0f, dt); |
|
|
|
// set rotor control speed to idle speed parameter, this happens instantly and ignore ramping |
|
_control_output = _idle_output; |
|
break; |
|
|
|
case ROTOR_CONTROL_ACTIVE: |
|
// set main rotor ramp to increase to full speed |
|
update_rotor_ramp(1.0f, dt); |
|
|
|
if ((_control_mode == ROTOR_CONTROL_MODE_SPEED_PASSTHROUGH) || (_control_mode == ROTOR_CONTROL_MODE_SPEED_SETPOINT)) { |
|
// set control rotor speed to ramp slewed value between idle and desired speed |
|
_control_output = _idle_output + (_rotor_ramp_output * (_desired_speed - _idle_output)); |
|
} else if (_control_mode == ROTOR_CONTROL_MODE_OPEN_LOOP_POWER_OUTPUT) { |
|
// throttle output from throttle curve based on collective position |
|
float desired_throttle = calculate_desired_throttle(_collective_in); |
|
_control_output = _idle_output + (_rotor_ramp_output * (desired_throttle - _idle_output)); |
|
} |
|
break; |
|
} |
|
|
|
// update rotor speed run-up estimate |
|
update_rotor_runup(dt); |
|
|
|
if (_power_slewrate > 0) { |
|
// implement slew rate for throttle |
|
float max_delta = dt * _power_slewrate * 0.01f; |
|
_control_output = constrain_float(_control_output, last_control_output-max_delta, last_control_output+max_delta); |
|
} |
|
|
|
// output to rsc servo |
|
write_rsc(_control_output); |
|
} |
|
|
|
// update_rotor_ramp - slews rotor output scalar between 0 and 1, outputs float scalar to _rotor_ramp_output |
|
void AP_MotorsHeli_RSC::update_rotor_ramp(float rotor_ramp_input, float dt) |
|
{ |
|
// sanity check ramp time |
|
if (_ramp_time <= 0) { |
|
_ramp_time = 1; |
|
} |
|
|
|
// ramp output upwards towards target |
|
if (_rotor_ramp_output < rotor_ramp_input) { |
|
// allow control output to jump to estimated speed |
|
if (_rotor_ramp_output < _rotor_runup_output) { |
|
_rotor_ramp_output = _rotor_runup_output; |
|
} |
|
// ramp up slowly to target |
|
_rotor_ramp_output += (dt / _ramp_time); |
|
if (_rotor_ramp_output > rotor_ramp_input) { |
|
_rotor_ramp_output = rotor_ramp_input; |
|
} |
|
}else{ |
|
// ramping down happens instantly |
|
_rotor_ramp_output = rotor_ramp_input; |
|
} |
|
} |
|
|
|
// update_rotor_runup - function to slew rotor runup scalar, outputs float scalar to _rotor_runup_ouptut |
|
void AP_MotorsHeli_RSC::update_rotor_runup(float dt) |
|
{ |
|
// sanity check runup time |
|
if (_runup_time < _ramp_time) { |
|
_runup_time = _ramp_time; |
|
} |
|
if (_runup_time <= 0 ) { |
|
_runup_time = 1; |
|
} |
|
|
|
// ramp speed estimate towards control out |
|
float runup_increment = dt / _runup_time; |
|
if (_rotor_runup_output < _rotor_ramp_output) { |
|
_rotor_runup_output += runup_increment; |
|
if (_rotor_runup_output > _rotor_ramp_output) { |
|
_rotor_runup_output = _rotor_ramp_output; |
|
} |
|
}else{ |
|
_rotor_runup_output -= runup_increment; |
|
if (_rotor_runup_output < _rotor_ramp_output) { |
|
_rotor_runup_output = _rotor_ramp_output; |
|
} |
|
} |
|
|
|
// update run-up complete flag |
|
|
|
// if control mode is disabled, then run-up complete always returns true |
|
if ( _control_mode == ROTOR_CONTROL_MODE_DISABLED ){ |
|
_runup_complete = true; |
|
return; |
|
} |
|
|
|
// if rotor ramp and runup are both at full speed, then run-up has been completed |
|
if (!_runup_complete && (_rotor_ramp_output >= 1.0f) && (_rotor_runup_output >= 1.0f)) { |
|
_runup_complete = true; |
|
} |
|
// if rotor speed is less than critical speed, then run-up is not complete |
|
// this will prevent the case where the target rotor speed is less than critical speed |
|
if (_runup_complete && (get_rotor_speed() <= _critical_speed)) { |
|
_runup_complete = false; |
|
} |
|
} |
|
|
|
// get_rotor_speed - gets rotor speed either as an estimate, or (ToDO) a measured value |
|
float AP_MotorsHeli_RSC::get_rotor_speed() const |
|
{ |
|
// if no actual measured rotor speed is available, estimate speed based on rotor runup scalar. |
|
return _rotor_runup_output; |
|
} |
|
|
|
// write_rsc - outputs pwm onto output rsc channel |
|
// servo_out parameter is of the range 0 ~ 1 |
|
void AP_MotorsHeli_RSC::write_rsc(float servo_out) |
|
{ |
|
if (_control_mode == ROTOR_CONTROL_MODE_DISABLED){ |
|
// do not do servo output to avoid conflicting with other output on the channel |
|
// ToDo: We should probably use RC_Channel_Aux to avoid this problem |
|
return; |
|
} else { |
|
SRV_Channels::set_output_scaled(_aux_fn, (uint16_t) (servo_out * 1000)); |
|
} |
|
} |
|
|
|
// calculate_desired_throttle - uses throttle curve and collective input to determine throttle setting |
|
float AP_MotorsHeli_RSC::calculate_desired_throttle(float collective_in) |
|
{ |
|
|
|
const float inpt = collective_in * 4.0f + 1.0f; |
|
uint8_t idx = constrain_int16(int8_t(collective_in * 4), 0, 3); |
|
const float a = inpt - (idx + 1.0f); |
|
const float b = (idx + 1.0f) - inpt + 1.0f; |
|
float throttle = _thrcrv_poly[idx][0] * a + _thrcrv_poly[idx][1] * b + _thrcrv_poly[idx][2] * (powf(a,3.0f) - a) / 6.0f + _thrcrv_poly[idx][3] * (powf(b,3.0f) - b) / 6.0f; |
|
|
|
throttle = constrain_float(throttle, 0.0f, 1.0f); |
|
return throttle; |
|
|
|
} |
|
|
|
|