You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1214 lines
27 KiB
1214 lines
27 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
#if CLI_ENABLED == ENABLED |
|
|
|
// These are function definitions so the Menu can be constructed before the functions |
|
// are defined below. Order matters to the compiler. |
|
static int8_t test_radio_pwm(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_radio(uint8_t argc, const Menu::arg *argv); |
|
//static int8_t test_failsafe(uint8_t argc, const Menu::arg *argv); |
|
//static int8_t test_stabilize(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_gps(uint8_t argc, const Menu::arg *argv); |
|
//static int8_t test_tri(uint8_t argc, const Menu::arg *argv); |
|
//static int8_t test_adc(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_ins(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_imu(uint8_t argc, const Menu::arg *argv); |
|
//static int8_t test_dcm_eulers(uint8_t argc, const Menu::arg *argv); |
|
//static int8_t test_dcm(uint8_t argc, const Menu::arg *argv); |
|
//static int8_t test_omega(uint8_t argc, const Menu::arg *argv); |
|
//static int8_t test_stab_d(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_battery(uint8_t argc, const Menu::arg *argv); |
|
//static int8_t test_boost(uint8_t argc, const Menu::arg *argv); |
|
//static int8_t test_wp_nav(uint8_t argc, const Menu::arg *argv); |
|
//static int8_t test_reverse(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_tuning(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_relay(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_wp(uint8_t argc, const Menu::arg *argv); |
|
#if HIL_MODE != HIL_MODE_ATTITUDE |
|
static int8_t test_baro(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_sonar(uint8_t argc, const Menu::arg *argv); |
|
#endif |
|
static int8_t test_mag(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_optflow(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_logging(uint8_t argc, const Menu::arg *argv); |
|
//static int8_t test_xbee(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_eedump(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_rawgps(uint8_t argc, const Menu::arg *argv); |
|
//static int8_t test_mission(uint8_t argc, const Menu::arg *argv); |
|
|
|
// This is the help function |
|
// PSTR is an AVR macro to read strings from flash memory |
|
// printf_P is a version of printf that reads from flash memory |
|
/*static int8_t help_test(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
Serial.printf_P(PSTR("\n" |
|
"Commands:\n" |
|
" radio\n" |
|
" servos\n" |
|
" g_gps\n" |
|
" imu\n" |
|
" battery\n" |
|
"\n")); |
|
}*/ |
|
|
|
// Creates a constant array of structs representing menu options |
|
// and stores them in Flash memory, not RAM. |
|
// User enters the string in the console to call the functions on the right. |
|
// See class Menu in AP_Coommon for implementation details |
|
const struct Menu::command test_menu_commands[] PROGMEM = { |
|
{"pwm", test_radio_pwm}, |
|
{"radio", test_radio}, |
|
// {"failsafe", test_failsafe}, |
|
// {"stabilize", test_stabilize}, |
|
{"gps", test_gps}, |
|
// {"adc", test_adc}, |
|
{"ins", test_ins}, |
|
{"imu", test_imu}, |
|
// {"dcm", test_dcm_eulers}, |
|
//{"omega", test_omega}, |
|
// {"stab_d", test_stab_d}, |
|
{"battery", test_battery}, |
|
{"tune", test_tuning}, |
|
//{"tri", test_tri}, |
|
{"relay", test_relay}, |
|
{"wp", test_wp}, |
|
// {"boost", test_boost}, |
|
#if HIL_MODE != HIL_MODE_ATTITUDE |
|
{"altitude", test_baro}, |
|
{"sonar", test_sonar}, |
|
#endif |
|
{"compass", test_mag}, |
|
{"optflow", test_optflow}, |
|
//{"xbee", test_xbee}, |
|
{"eedump", test_eedump}, |
|
{"logging", test_logging}, |
|
// {"rawgps", test_rawgps}, |
|
// {"mission", test_mission}, |
|
//{"reverse", test_reverse}, |
|
//{"wp", test_wp_nav}, |
|
}; |
|
|
|
// A Macro to create the Menu |
|
MENU(test_menu, "test", test_menu_commands); |
|
|
|
static int8_t |
|
test_mode(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
//Serial.printf_P(PSTR("Test Mode\n\n")); |
|
test_menu.run(); |
|
return 0; |
|
} |
|
|
|
static int8_t |
|
test_eedump(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
int i, j; |
|
|
|
// hexdump the EEPROM |
|
for (i = 0; i < EEPROM_MAX_ADDR; i += 16) { |
|
Serial.printf_P(PSTR("%04x:"), i); |
|
for (j = 0; j < 16; j++) |
|
Serial.printf_P(PSTR(" %02x"), eeprom_read_byte((const uint8_t *)(i + j))); |
|
Serial.println(); |
|
} |
|
return(0); |
|
} |
|
|
|
|
|
static int8_t |
|
test_radio_pwm(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
#if defined( __AVR_ATmega1280__ ) // determines if optical flow code is included |
|
print_test_disabled(); |
|
return (0); |
|
#else |
|
print_hit_enter(); |
|
delay(1000); |
|
|
|
while(1){ |
|
delay(20); |
|
|
|
// Filters radio input - adjust filters in the radio.pde file |
|
// ---------------------------------------------------------- |
|
read_radio(); |
|
|
|
// servo Yaw |
|
//APM_RC.OutputCh(CH_7, g.rc_4.radio_out); |
|
|
|
Serial.printf_P(PSTR("IN: 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\t8: %d\n"), |
|
g.rc_1.radio_in, |
|
g.rc_2.radio_in, |
|
g.rc_3.radio_in, |
|
g.rc_4.radio_in, |
|
g.rc_5.radio_in, |
|
g.rc_6.radio_in, |
|
g.rc_7.radio_in, |
|
g.rc_8.radio_in); |
|
|
|
if(Serial.available() > 0){ |
|
return (0); |
|
} |
|
} |
|
#endif |
|
} |
|
|
|
/* |
|
//static int8_t |
|
//test_tri(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
print_hit_enter(); |
|
delay(1000); |
|
|
|
while(1){ |
|
delay(20); |
|
|
|
// Filters radio input - adjust filters in the radio.pde file |
|
// ---------------------------------------------------------- |
|
read_radio(); |
|
g.rc_4.servo_out = g.rc_4.control_in; |
|
g.rc_4.calc_pwm(); |
|
|
|
Serial.printf_P(PSTR("input: %d\toutput%d\n"), |
|
g.rc_4.control_in, |
|
g.rc_4.radio_out); |
|
|
|
APM_RC.OutputCh(CH_TRI_YAW, g.rc_4.radio_out); |
|
|
|
if(Serial.available() > 0){ |
|
return (0); |
|
} |
|
} |
|
}*/ |
|
|
|
/* |
|
static int8_t |
|
//test_boost(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
print_hit_enter(); |
|
delay(1000); |
|
int16_t temp = MINIMUM_THROTTLE; |
|
|
|
while(1){ |
|
delay(20); |
|
g.rc_3.control_in = temp; |
|
adjust_altitude(); |
|
Serial.printf("tmp:%d, boost: %d\n", temp, manual_boost); |
|
temp++; |
|
|
|
if(temp > MAXIMUM_THROTTLE){ |
|
return (0); |
|
} |
|
} |
|
} |
|
//*/ |
|
|
|
static int8_t |
|
test_radio(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
print_hit_enter(); |
|
delay(1000); |
|
|
|
while(1){ |
|
delay(20); |
|
read_radio(); |
|
|
|
|
|
Serial.printf_P(PSTR("IN 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\n"), |
|
g.rc_1.control_in, |
|
g.rc_2.control_in, |
|
g.rc_3.control_in, |
|
g.rc_4.control_in, |
|
g.rc_5.control_in, |
|
g.rc_6.control_in, |
|
g.rc_7.control_in); |
|
|
|
//Serial.printf_P(PSTR("OUT 1: %d\t2: %d\t3: %d\t4: %d\n"), (g.rc_1.servo_out / 100), (g.rc_2.servo_out / 100), g.rc_3.servo_out, (g.rc_4.servo_out / 100)); |
|
|
|
/*Serial.printf_P(PSTR( "min: %d" |
|
"\t in: %d" |
|
"\t pwm_in: %d" |
|
"\t sout: %d" |
|
"\t pwm_out %d\n"), |
|
g.rc_3.radio_min, |
|
g.rc_3.control_in, |
|
g.rc_3.radio_in, |
|
g.rc_3.servo_out, |
|
g.rc_3.pwm_out |
|
); |
|
*/ |
|
if(Serial.available() > 0){ |
|
return (0); |
|
} |
|
} |
|
} |
|
|
|
/* |
|
//static int8_t |
|
//test_failsafe(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
|
|
#if THROTTLE_FAILSAFE |
|
byte fail_test; |
|
print_hit_enter(); |
|
for(int i = 0; i < 50; i++){ |
|
delay(20); |
|
read_radio(); |
|
} |
|
|
|
oldSwitchPosition = readSwitch(); |
|
|
|
Serial.printf_P(PSTR("Unplug battery, throttle in neutral, turn off radio.\n")); |
|
while(g.rc_3.control_in > 0){ |
|
delay(20); |
|
read_radio(); |
|
} |
|
|
|
while(1){ |
|
delay(20); |
|
read_radio(); |
|
|
|
if(g.rc_3.control_in > 0){ |
|
Serial.printf_P(PSTR("THROTTLE CHANGED %d \n"), g.rc_3.control_in); |
|
fail_test++; |
|
} |
|
|
|
if(oldSwitchPosition != readSwitch()){ |
|
Serial.printf_P(PSTR("CONTROL MODE CHANGED: ")); |
|
Serial.println(flight_mode_strings[readSwitch()]); |
|
fail_test++; |
|
} |
|
|
|
if(g.throttle_fs_enabled && g.rc_3.get_failsafe()){ |
|
Serial.printf_P(PSTR("THROTTLE FAILSAFE ACTIVATED: %d, "), g.rc_3.radio_in); |
|
Serial.println(flight_mode_strings[readSwitch()]); |
|
fail_test++; |
|
} |
|
|
|
if(fail_test > 0){ |
|
return (0); |
|
} |
|
if(Serial.available() > 0){ |
|
Serial.printf_P(PSTR("LOS caused no change in ACM.\n")); |
|
return (0); |
|
} |
|
} |
|
#else |
|
return (0); |
|
#endif |
|
} |
|
*/ |
|
|
|
/* |
|
//static int8_t |
|
//test_stabilize(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
static byte ts_num; |
|
|
|
|
|
print_hit_enter(); |
|
delay(1000); |
|
|
|
// setup the radio |
|
// --------------- |
|
init_rc_in(); |
|
|
|
control_mode = STABILIZE; |
|
Serial.printf_P(PSTR("g.pi_stabilize_roll.kP: %4.4f\n"), g.pi_stabilize_roll.kP()); |
|
Serial.printf_P(PSTR("max_stabilize_dampener:%d\n\n "), max_stabilize_dampener); |
|
|
|
motors.auto_armed(false); |
|
motors.armed(true); |
|
|
|
while(1){ |
|
// 50 hz |
|
if (millis() - fast_loopTimer > 19) { |
|
delta_ms_fast_loop = millis() - fast_loopTimer; |
|
fast_loopTimer = millis(); |
|
G_Dt = (float)delta_ms_fast_loop / 1000.f; |
|
|
|
if(g.compass_enabled){ |
|
medium_loopCounter++; |
|
if(medium_loopCounter == 5){ |
|
Matrix3f m = dcm.get_dcm_matrix(); |
|
compass.read(); // Read magnetometer |
|
compass.calculate(m); |
|
compass.null_offsets(); |
|
medium_loopCounter = 0; |
|
} |
|
} |
|
|
|
// for trim features |
|
read_trim_switch(); |
|
|
|
// Filters radio input - adjust filters in the radio.pde file |
|
// ---------------------------------------------------------- |
|
read_radio(); |
|
|
|
// IMU |
|
// --- |
|
read_AHRS(); |
|
|
|
// allow us to zero out sensors with control switches |
|
if(g.rc_5.control_in < 600){ |
|
dcm.roll_sensor = dcm.pitch_sensor = 0; |
|
} |
|
|
|
// custom code/exceptions for flight modes |
|
// --------------------------------------- |
|
update_current_flight_mode(); |
|
|
|
// write out the servo PWM values |
|
// ------------------------------ |
|
set_servos_4(); |
|
|
|
ts_num++; |
|
if (ts_num > 10){ |
|
ts_num = 0; |
|
Serial.printf_P(PSTR("r: %d, p:%d, rc1:%d, "), |
|
(int)(dcm.roll_sensor/100), |
|
(int)(dcm.pitch_sensor/100), |
|
g.rc_1.pwm_out); |
|
|
|
print_motor_out(); |
|
} |
|
// R: 1417, L: 1453 F: 1453 B: 1417 |
|
|
|
//Serial.printf_P(PSTR("timer: %d, r: %d\tp: %d\t y: %d\n"), (int)delta_ms_fast_loop, ((int)dcm.roll_sensor/100), ((int)dcm.pitch_sensor/100), ((uint16_t)dcm.yaw_sensor/100)); |
|
//Serial.printf_P(PSTR("timer: %d, r: %d\tp: %d\t y: %d\n"), (int)delta_ms_fast_loop, ((int)dcm.roll_sensor/100), ((int)dcm.pitch_sensor/100), ((uint16_t)dcm.yaw_sensor/100)); |
|
|
|
if(Serial.available() > 0){ |
|
if(g.compass_enabled){ |
|
compass.save_offsets(); |
|
report_compass(); |
|
} |
|
return (0); |
|
} |
|
|
|
} |
|
} |
|
} |
|
*/ |
|
|
|
|
|
/* |
|
#if HIL_MODE != HIL_MODE_ATTITUDE && CONFIG_ADC == ENABLED |
|
//static int8_t |
|
//test_adc(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
print_hit_enter(); |
|
Serial.printf_P(PSTR("ADC\n")); |
|
delay(1000); |
|
|
|
adc.Init(&timer_scheduler); |
|
|
|
delay(50); |
|
|
|
while(1){ |
|
for(int i = 0; i < 9; i++){ |
|
Serial.printf_P(PSTR("%.1f,"),adc.Ch(i)); |
|
} |
|
Serial.println(); |
|
delay(20); |
|
if(Serial.available() > 0){ |
|
return (0); |
|
} |
|
} |
|
} |
|
#endif |
|
*/ |
|
|
|
static int8_t |
|
test_ins(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
#if defined( __AVR_ATmega1280__ ) // determines if optical flow code is included |
|
print_test_disabled(); |
|
return (0); |
|
#else |
|
float gyro[3], accel[3], temp; |
|
print_hit_enter(); |
|
Serial.printf_P(PSTR("InertialSensor\n")); |
|
delay(1000); |
|
|
|
ins.init(&timer_scheduler); |
|
|
|
delay(50); |
|
|
|
while(1){ |
|
ins.update(); |
|
ins.get_gyros(gyro); |
|
ins.get_accels(accel); |
|
temp = ins.temperature(); |
|
|
|
Serial.printf_P(PSTR("g")); |
|
|
|
for (int i = 0; i < 3; i++) { |
|
Serial.printf_P(PSTR(" %7.4f"), gyro[i]); |
|
} |
|
|
|
Serial.printf_P(PSTR(" a")); |
|
|
|
for (int i = 0; i < 3; i++) { |
|
Serial.printf_P(PSTR(" %7.4f"),accel[i]); |
|
} |
|
Serial.printf_P(PSTR(" t %7.4f \n"), temp); |
|
delay(40); |
|
if(Serial.available() > 0){ |
|
return (0); |
|
} |
|
} |
|
#endif |
|
} |
|
|
|
|
|
/* |
|
test the IMU interface |
|
*/ |
|
static int8_t |
|
test_imu(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
#if defined( __AVR_ATmega1280__ ) // determines if optical flow code is included |
|
print_test_disabled(); |
|
return (0); |
|
#else |
|
Vector3f gyro; |
|
Vector3f accel; |
|
|
|
imu.init(IMU::WARM_START, delay, flash_leds, &timer_scheduler); |
|
|
|
report_imu(); |
|
imu.init_gyro(delay, flash_leds); |
|
report_imu(); |
|
|
|
print_hit_enter(); |
|
delay(1000); |
|
|
|
while(1){ |
|
delay(40); |
|
|
|
imu.update(); |
|
gyro = imu.get_gyro(); |
|
accel = imu.get_accel(); |
|
|
|
Serial.printf_P(PSTR("g %8.4f %8.4f %8.4f"), gyro.x, gyro.y, gyro.z); |
|
Serial.printf_P(PSTR(" a %8.4f %8.4f %8.4f\n"), accel.x, accel.y, accel.z); |
|
|
|
if(Serial.available() > 0){ |
|
return (0); |
|
} |
|
} |
|
#endif |
|
} |
|
|
|
|
|
/* |
|
test the DCM code, printing Euler angles |
|
*/ |
|
/*static int8_t |
|
//test_dcm_eulers(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
|
|
//Serial.printf_P(PSTR("Calibrating.")); |
|
|
|
//dcm.kp_yaw(0.02); |
|
//dcm.ki_yaw(0); |
|
|
|
imu.init(IMU::WARM_START, delay, flash_leds, &timer_scheduler); |
|
|
|
report_imu(); |
|
imu.init_gyro(delay, flash_leds); |
|
report_imu(); |
|
|
|
print_hit_enter(); |
|
delay(1000); |
|
|
|
//float cos_roll, sin_roll, cos_pitch, sin_pitch, cos_yaw, sin_yaw; |
|
fast_loopTimer = millis(); |
|
|
|
while(1){ |
|
//delay(20); |
|
if (millis() - fast_loopTimer >=20) { |
|
|
|
// IMU |
|
// --- |
|
read_AHRS(); |
|
medium_loopCounter++; |
|
|
|
if(medium_loopCounter == 4){ |
|
update_trig(); |
|
} |
|
|
|
if(medium_loopCounter == 1){ |
|
medium_loopCounter = 0; |
|
Serial.printf_P(PSTR("dcm: %6.1f, %6.1f, %6.1f omega: %6.1f, %6.1f, %6.1f\n"), |
|
dcm.roll_sensor/100.0, |
|
dcm.pitch_sensor/100.0, |
|
dcm.yaw_sensor/100.0, |
|
degrees(omega.x), |
|
degrees(omega.y), |
|
degrees(omega.z)); |
|
|
|
if(g.compass_enabled){ |
|
compass.read(); // Read magnetometer |
|
Matrix3f m = dcm.get_dcm_matrix(); |
|
compass.calculate(m); |
|
compass.null_offsets(); |
|
} |
|
} |
|
fast_loopTimer = millis(); |
|
} |
|
if(Serial.available() > 0){ |
|
return (0); |
|
} |
|
} |
|
return (0); |
|
}*/ |
|
|
|
static int8_t |
|
test_gps(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
/* |
|
print_hit_enter(); |
|
delay(1000); |
|
|
|
while(1){ |
|
delay(333); |
|
|
|
// Blink GPS LED if we don't have a fix |
|
// ------------------------------------ |
|
update_GPS_light(); |
|
|
|
g_gps->update(); |
|
|
|
if (g_gps->new_data){ |
|
Serial.printf_P(PSTR("Lat: %ld, Lon %ld, Alt: %ldm, #sats: %d\n"), |
|
g_gps->latitude, |
|
g_gps->longitude, |
|
g_gps->altitude/100, |
|
g_gps->num_sats); |
|
g_gps->new_data = false; |
|
}else{ |
|
Serial.print("."); |
|
} |
|
if(Serial.available() > 0){ |
|
return (0); |
|
} |
|
} |
|
*/ |
|
return 0; |
|
} |
|
|
|
// used to test the gain scheduler for Stab_D |
|
/* |
|
static int8_t |
|
test_stab_d(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
int16_t i = 0; |
|
g.stabilize_d = 1; |
|
|
|
g.stabilize_d_schedule = 1 |
|
for (i = -4600; i < 4600; i+=10) { |
|
new_radio_frame = true; |
|
g.rc_1.control_in = i; |
|
g.rc_2.control_in = i; |
|
update_roll_pitch_mode(); |
|
Serial.printf("rin:%d, d:%1.6f \tpin:%d, d:%1.6f\n",g.rc_1.control_in, roll_scale_d, g.rc_2.control_in, pitch_scale_d); |
|
} |
|
g.stabilize_d_schedule = .5 |
|
for (i = -4600; i < 4600; i+=10) { |
|
new_radio_frame = true; |
|
g.rc_1.control_in = i; |
|
g.rc_2.control_in = i; |
|
update_roll_pitch_mode(); |
|
Serial.printf("rin:%d, d:%1.6f \tpin:%d, d:%1.6f\n",g.rc_1.control_in, roll_scale_d, g.rc_2.control_in, pitch_scale_d); |
|
} |
|
|
|
g.stabilize_d_schedule = 0 |
|
for (i = -4600; i < 4600; i+=10) { |
|
new_radio_frame = true; |
|
g.rc_1.control_in = i; |
|
g.rc_2.control_in = i; |
|
update_roll_pitch_mode(); |
|
Serial.printf("rin:%d, d:%1.6f \tpin:%d, d:%1.6f\n",g.rc_1.control_in, roll_scale_d, g.rc_2.control_in, pitch_scale_d); |
|
} |
|
|
|
}*/ |
|
|
|
/* |
|
//static int8_t |
|
//test_dcm(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
print_hit_enter(); |
|
delay(1000); |
|
Serial.printf_P(PSTR("Gyro | Accel\n")); |
|
Vector3f _cam_vector; |
|
Vector3f _out_vector; |
|
|
|
G_Dt = .02; |
|
|
|
while(1){ |
|
for(byte i = 0; i <= 50; i++){ |
|
delay(20); |
|
// IMU |
|
// --- |
|
read_AHRS(); |
|
} |
|
|
|
Matrix3f temp = dcm.get_dcm_matrix(); |
|
Matrix3f temp_t = dcm.get_dcm_transposed(); |
|
|
|
Serial.printf_P(PSTR("dcm\n" |
|
"%4.4f \t %4.4f \t %4.4f \n" |
|
"%4.4f \t %4.4f \t %4.4f \n" |
|
"%4.4f \t %4.4f \t %4.4f \n\n"), |
|
temp.a.x, temp.a.y, temp.a.z, |
|
temp.b.x, temp.b.y, temp.b.z, |
|
temp.c.x, temp.c.y, temp.c.z); |
|
|
|
int _pitch = degrees(-asin(temp.c.x)); |
|
int _roll = degrees(atan2(temp.c.y, temp.c.z)); |
|
int _yaw = degrees(atan2(temp.b.x, temp.a.x)); |
|
Serial.printf_P(PSTR( "angles\n" |
|
"%d \t %d \t %d\n\n"), |
|
_pitch, |
|
_roll, |
|
_yaw); |
|
|
|
//_out_vector = _cam_vector * temp; |
|
//Serial.printf_P(PSTR( "cam\n" |
|
// "%d \t %d \t %d\n\n"), |
|
// (int)temp.a.x * 100, (int)temp.a.y * 100, (int)temp.a.x * 100); |
|
|
|
if(Serial.available() > 0){ |
|
return (0); |
|
} |
|
} |
|
} |
|
*/ |
|
/* |
|
//static int8_t |
|
//test_dcm(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
print_hit_enter(); |
|
delay(1000); |
|
Serial.printf_P(PSTR("Gyro | Accel\n")); |
|
delay(1000); |
|
|
|
while(1){ |
|
Vector3f accels = dcm.get_accel(); |
|
Serial.print("accels.z:"); |
|
Serial.print(accels.z); |
|
Serial.print("omega.z:"); |
|
Serial.print(omega.z); |
|
delay(100); |
|
|
|
if(Serial.available() > 0){ |
|
return (0); |
|
} |
|
} |
|
} |
|
*/ |
|
|
|
/*static int8_t |
|
//test_omega(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
static byte ts_num; |
|
float old_yaw; |
|
|
|
print_hit_enter(); |
|
delay(1000); |
|
Serial.printf_P(PSTR("Omega")); |
|
delay(1000); |
|
|
|
G_Dt = .02; |
|
|
|
while(1){ |
|
delay(20); |
|
// IMU |
|
// --- |
|
read_AHRS(); |
|
|
|
float my_oz = (dcm.yaw - old_yaw) * 50; |
|
|
|
old_yaw = dcm.yaw; |
|
|
|
ts_num++; |
|
if (ts_num > 2){ |
|
ts_num = 0; |
|
//Serial.printf_P(PSTR("R: %4.4f\tP: %4.4f\tY: %4.4f\tY: %4.4f\n"), omega.x, omega.y, omega.z, my_oz); |
|
Serial.printf_P(PSTR(" Yaw: %ld\tY: %4.4f\tY: %4.4f\n"), dcm.yaw_sensor, omega.z, my_oz); |
|
} |
|
|
|
if(Serial.available() > 0){ |
|
return (0); |
|
} |
|
} |
|
return (0); |
|
} |
|
//*/ |
|
|
|
static int8_t |
|
test_tuning(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
print_hit_enter(); |
|
|
|
while(1){ |
|
delay(200); |
|
read_radio(); |
|
tuning(); |
|
Serial.printf_P(PSTR("tune: %1.3f\n"), tuning_value); |
|
|
|
if(Serial.available() > 0){ |
|
return (0); |
|
} |
|
} |
|
} |
|
|
|
static int8_t |
|
test_battery(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
#if defined( __AVR_ATmega1280__ ) // disable this test if we are using 1280 |
|
print_test_disabled(); |
|
return (0); |
|
#else |
|
Serial.printf_P(PSTR("\nCareful! Motors will spin! Press Enter to start.\n")); |
|
Serial.flush(); |
|
while(!Serial.available()){ |
|
delay(100); |
|
} |
|
Serial.flush(); |
|
print_hit_enter(); |
|
|
|
// allow motors to spin |
|
motors.enable(); |
|
motors.armed(true); |
|
|
|
while(1){ |
|
delay(100); |
|
read_radio(); |
|
read_battery(); |
|
if (g.battery_monitoring == 3){ |
|
Serial.printf_P(PSTR("V: %4.4f\n"), |
|
battery_voltage1, |
|
current_amps1, |
|
current_total1); |
|
} else { |
|
Serial.printf_P(PSTR("V: %4.4f, A: %4.4f, Ah: %4.4f\n"), |
|
battery_voltage1, |
|
current_amps1, |
|
current_total1); |
|
} |
|
motors.throttle_pass_through(); |
|
|
|
if(Serial.available() > 0){ |
|
motors.armed(false); |
|
return (0); |
|
} |
|
} |
|
motors.armed(false); |
|
return (0); |
|
#endif |
|
} |
|
|
|
static int8_t test_relay(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
#if defined( __AVR_ATmega1280__ ) // determines if optical flow code is included |
|
print_test_disabled(); |
|
return (0); |
|
#else |
|
|
|
print_hit_enter(); |
|
delay(1000); |
|
|
|
while(1){ |
|
Serial.printf_P(PSTR("Relay on\n")); |
|
relay.on(); |
|
delay(3000); |
|
if(Serial.available() > 0){ |
|
return (0); |
|
} |
|
|
|
Serial.printf_P(PSTR("Relay off\n")); |
|
relay.off(); |
|
delay(3000); |
|
if(Serial.available() > 0){ |
|
return (0); |
|
} |
|
} |
|
#endif |
|
} |
|
|
|
|
|
static int8_t |
|
test_wp(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
delay(1000); |
|
|
|
// save the alitude above home option |
|
Serial.printf_P(PSTR("Hold alt ")); |
|
if(g.RTL_altitude < 0){ |
|
Serial.printf_P(PSTR("\n")); |
|
}else{ |
|
Serial.printf_P(PSTR("of %dm\n"), (int)g.RTL_altitude / 100); |
|
} |
|
|
|
Serial.printf_P(PSTR("%d wp\n"), (int)g.command_total); |
|
Serial.printf_P(PSTR("Hit rad: %d\n"), (int)g.waypoint_radius); |
|
//Serial.printf_P(PSTR("Loiter radius: %d\n\n"), (int)g.loiter_radius); |
|
|
|
report_wp(); |
|
|
|
return (0); |
|
} |
|
|
|
//static int8_t test_rawgps(uint8_t argc, const Menu::arg *argv) { |
|
/* |
|
print_hit_enter(); |
|
delay(1000); |
|
while(1){ |
|
if (Serial3.available()){ |
|
digitalWrite(B_LED_PIN, LED_ON); // Blink Yellow LED if we are sending data to GPS |
|
Serial1.write(Serial3.read()); |
|
digitalWrite(B_LED_PIN, LED_OFF); |
|
} |
|
if (Serial1.available()){ |
|
digitalWrite(C_LED_PIN, LED_ON); // Blink Red LED if we are receiving data from GPS |
|
Serial3.write(Serial1.read()); |
|
digitalWrite(C_LED_PIN, LED_OFF); |
|
} |
|
if(Serial.available() > 0){ |
|
return (0); |
|
} |
|
} |
|
*/ |
|
//} |
|
|
|
/*static int8_t |
|
//test_xbee(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
print_hit_enter(); |
|
delay(1000); |
|
Serial.printf_P(PSTR("Begin XBee X-CTU Range and RSSI Test:\n")); |
|
|
|
while(1){ |
|
if (Serial3.available()) |
|
Serial3.write(Serial3.read()); |
|
|
|
if(Serial.available() > 0){ |
|
return (0); |
|
} |
|
} |
|
} |
|
*/ |
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE |
|
static int8_t |
|
test_baro(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
#if defined( __AVR_ATmega1280__ ) // determines if optical flow code is included |
|
print_test_disabled(); |
|
return (0); |
|
#else |
|
print_hit_enter(); |
|
init_barometer(); |
|
|
|
while(1){ |
|
delay(100); |
|
int32_t alt = read_barometer(); // calls barometer.read() |
|
|
|
int32_t pres = barometer.get_pressure(); |
|
int16_t temp = barometer.get_temperature(); |
|
int32_t raw_pres = barometer.get_raw_pressure(); |
|
int32_t raw_temp = barometer.get_raw_temp(); |
|
Serial.printf_P(PSTR("alt: %ldcm, pres: %ldmbar, temp: %d/100degC," |
|
" raw pres: %ld, raw temp: %ld\n"), |
|
alt, pres ,temp, raw_pres, raw_temp); |
|
if(Serial.available() > 0){ |
|
return (0); |
|
} |
|
} |
|
return 0; |
|
#endif |
|
} |
|
#endif |
|
|
|
|
|
static int8_t |
|
test_mag(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
#if defined( __AVR_ATmega1280__ ) // determines if optical flow code is included |
|
print_test_disabled(); |
|
return (0); |
|
#else |
|
if(g.compass_enabled) { |
|
print_hit_enter(); |
|
|
|
while(1){ |
|
delay(100); |
|
if (compass.read()) { |
|
compass.calculate(ahrs.get_dcm_matrix()); |
|
Vector3f maggy = compass.get_offsets(); |
|
Serial.printf_P(PSTR("Heading: %ld, XYZ: %d, %d, %d\n"), |
|
(wrap_360(ToDeg(compass.heading) * 100)) /100, |
|
compass.mag_x, |
|
compass.mag_y, |
|
compass.mag_z); |
|
} else { |
|
Serial.println_P(PSTR("not healthy")); |
|
} |
|
|
|
if(Serial.available() > 0){ |
|
return (0); |
|
} |
|
} |
|
} else { |
|
Serial.printf_P(PSTR("Compass: ")); |
|
print_enabled(false); |
|
return (0); |
|
} |
|
return (0); |
|
#endif |
|
} |
|
|
|
/* |
|
//static int8_t |
|
//test_reverse(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
print_hit_enter(); |
|
delay(1000); |
|
|
|
while(1){ |
|
delay(20); |
|
|
|
// Filters radio input - adjust filters in the radio.pde file |
|
// ---------------------------------------------------------- |
|
g.rc_4.set_reverse(0); |
|
g.rc_4.set_pwm(APM_RC.InputCh(CH_4)); |
|
g.rc_4.servo_out = g.rc_4.control_in; |
|
g.rc_4.calc_pwm(); |
|
Serial.printf_P(PSTR("PWM:%d input: %d\toutput%d "), |
|
APM_RC.InputCh(CH_4), |
|
g.rc_4.control_in, |
|
g.rc_4.radio_out); |
|
APM_RC.OutputCh(CH_6, g.rc_4.radio_out); |
|
|
|
|
|
g.rc_4.set_reverse(1); |
|
g.rc_4.set_pwm(APM_RC.InputCh(CH_4)); |
|
g.rc_4.servo_out = g.rc_4.control_in; |
|
g.rc_4.calc_pwm(); |
|
Serial.printf_P(PSTR("\trev input: %d\toutput%d\n"), |
|
g.rc_4.control_in, |
|
g.rc_4.radio_out); |
|
|
|
APM_RC.OutputCh(CH_7, g.rc_4.radio_out); |
|
|
|
if(Serial.available() > 0){ |
|
g.rc_4.set_reverse(0); |
|
return (0); |
|
} |
|
} |
|
}*/ |
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE |
|
/* |
|
test the sonar |
|
*/ |
|
static int8_t |
|
test_sonar(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
if(g.sonar_enabled == false){ |
|
Serial.printf_P(PSTR("Sonar disabled\n")); |
|
return (0); |
|
} |
|
|
|
// make sure sonar is initialised |
|
init_sonar(); |
|
|
|
print_hit_enter(); |
|
while(1) { |
|
delay(100); |
|
|
|
Serial.printf_P(PSTR("Sonar: %d cm\n"), sonar.read()); |
|
//Serial.printf_P(PSTR("Sonar, %d, %d\n"), sonar.read(), sonar.raw_value); |
|
|
|
if(Serial.available() > 0){ |
|
return (0); |
|
} |
|
} |
|
|
|
return (0); |
|
} |
|
#endif |
|
|
|
|
|
static int8_t |
|
test_optflow(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
#ifdef OPTFLOW_ENABLED |
|
if(g.optflow_enabled) { |
|
Serial.printf_P(PSTR("man id: %d\t"),optflow.read_register(ADNS3080_PRODUCT_ID)); |
|
print_hit_enter(); |
|
|
|
while(1){ |
|
delay(200); |
|
optflow.update(); |
|
Log_Write_Optflow(); |
|
Serial.printf_P(PSTR("x/dx: %d/%d\t y/dy %d/%d\t squal:%d\n"), |
|
optflow.x, |
|
optflow.dx, |
|
optflow.y, |
|
optflow.dy, |
|
optflow.surface_quality); |
|
|
|
if(Serial.available() > 0){ |
|
return (0); |
|
} |
|
} |
|
} else { |
|
Serial.printf_P(PSTR("OptFlow: ")); |
|
print_enabled(false); |
|
} |
|
return (0); |
|
|
|
#else |
|
print_test_disabled(); |
|
return (0); |
|
#endif |
|
} |
|
|
|
|
|
/* |
|
test the dataflash is working |
|
*/ |
|
|
|
static int8_t |
|
test_logging(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
#if defined( __AVR_ATmega1280__ ) // determines if optical flow code is included |
|
print_test_disabled(); |
|
return (0); |
|
#else |
|
Serial.println_P(PSTR("Testing dataflash logging")); |
|
if (!DataFlash.CardInserted()) { |
|
Serial.println_P(PSTR("ERR: No dataflash inserted")); |
|
return 0; |
|
} |
|
DataFlash.ReadManufacturerID(); |
|
Serial.printf_P(PSTR("Manufacturer: 0x%02x Device: 0x%04x\n"), |
|
(unsigned)DataFlash.df_manufacturer, |
|
(unsigned)DataFlash.df_device); |
|
Serial.printf_P(PSTR("NumPages: %u PageSize: %u\n"), |
|
(unsigned)DataFlash.df_NumPages+1, |
|
(unsigned)DataFlash.df_PageSize); |
|
DataFlash.StartRead(DataFlash.df_NumPages+1); |
|
Serial.printf_P(PSTR("Format version: %lx Expected format version: %lx\n"), |
|
(unsigned long)DataFlash.ReadLong(), (unsigned long)DF_LOGGING_FORMAT); |
|
return 0; |
|
#endif |
|
} |
|
|
|
|
|
/* |
|
static int8_t |
|
//test_mission(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
//write out a basic mission to the EEPROM |
|
|
|
//{ |
|
// uint8_t id; ///< command id |
|
// uint8_t options; ///< options bitmask (1<<0 = relative altitude) |
|
// uint8_t p1; ///< param 1 |
|
// int32_t alt; ///< param 2 - Altitude in centimeters (meters * 100) |
|
// int32_t lat; ///< param 3 - Lattitude * 10**7 |
|
// int32_t lng; ///< param 4 - Longitude * 10**7 |
|
//} |
|
|
|
// clear home |
|
{Location t = {0, 0, 0, 0, 0, 0}; |
|
set_cmd_with_index(t,0);} |
|
|
|
// CMD opt pitch alt/cm |
|
{Location t = {MAV_CMD_NAV_TAKEOFF, WP_OPTION_RELATIVE, 0, 100, 0, 0}; |
|
set_cmd_with_index(t,1);} |
|
|
|
if (!strcmp_P(argv[1].str, PSTR("wp"))) { |
|
|
|
// CMD opt |
|
{Location t = {MAV_CMD_NAV_WAYPOINT, WP_OPTION_RELATIVE, 15, 0, 0, 0}; |
|
set_cmd_with_index(t,2);} |
|
// CMD opt |
|
{Location t = {MAV_CMD_NAV_RETURN_TO_LAUNCH, WP_OPTION_YAW, 0, 0, 0, 0}; |
|
set_cmd_with_index(t,3);} |
|
|
|
// CMD opt |
|
{Location t = {MAV_CMD_NAV_LAND, 0, 0, 0, 0, 0}; |
|
set_cmd_with_index(t,4);} |
|
|
|
} else { |
|
//2250 = 25 meteres |
|
// CMD opt p1 //alt //NS //WE |
|
{Location t = {MAV_CMD_NAV_LOITER_TIME, 0, 10, 0, 0, 0}; // 19 |
|
set_cmd_with_index(t,2);} |
|
|
|
// CMD opt dir angle/deg deg/s relative |
|
{Location t = {MAV_CMD_CONDITION_YAW, 0, 1, 360, 60, 1}; |
|
set_cmd_with_index(t,3);} |
|
|
|
// CMD opt |
|
{Location t = {MAV_CMD_NAV_LAND, 0, 0, 0, 0, 0}; |
|
set_cmd_with_index(t,4);} |
|
|
|
} |
|
|
|
g.RTL_altitude.set_and_save(300); |
|
g.command_total.set_and_save(4); |
|
g.waypoint_radius.set_and_save(3); |
|
|
|
test_wp(NULL, NULL); |
|
return (0); |
|
} |
|
*/ |
|
|
|
static void print_hit_enter() |
|
{ |
|
Serial.printf_P(PSTR("Hit Enter to exit.\n\n")); |
|
} |
|
|
|
static void print_test_disabled() |
|
{ |
|
Serial.printf_P(PSTR("Sorry, not 1280 compat.\n")); |
|
} |
|
|
|
/* |
|
//static void fake_out_gps() |
|
{ |
|
static float rads; |
|
g_gps->new_data = true; |
|
g_gps->fix = true; |
|
|
|
//int length = g.rc_6.control_in; |
|
rads += .05; |
|
|
|
if (rads > 6.28){ |
|
rads = 0; |
|
} |
|
|
|
g_gps->latitude = 377696000; // Y |
|
g_gps->longitude = -1224319000; // X |
|
g_gps->altitude = 9000; // meters * 100 |
|
|
|
//next_WP.lng = home.lng - length * sin(rads); // X |
|
//next_WP.lat = home.lat + length * cos(rads); // Y |
|
} |
|
|
|
*/ |
|
/* |
|
//static void print_motor_out(){ |
|
Serial.printf("out: R: %d, L: %d F: %d B: %d\n", |
|
(motor_out[CH_1] - g.rc_3.radio_min), |
|
(motor_out[CH_2] - g.rc_3.radio_min), |
|
(motor_out[CH_3] - g.rc_3.radio_min), |
|
(motor_out[CH_4] - g.rc_3.radio_min)); |
|
} |
|
*/ |
|
#endif // CLI_ENABLED
|
|
|