You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
418 lines
14 KiB
418 lines
14 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
|
|
/* |
|
* APM_Baro.cpp - barometer driver |
|
* |
|
*/ |
|
|
|
#include <AP_Math/AP_Math.h> |
|
#include <AP_Common/AP_Common.h> |
|
#include "AP_Baro.h" |
|
#include <AP_HAL/AP_HAL.h> |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
// table of user settable parameters |
|
const AP_Param::GroupInfo AP_Baro::var_info[] = { |
|
// NOTE: Index numbers 0 and 1 were for the old integer |
|
// ground temperature and pressure |
|
|
|
// @Param: ABS_PRESS |
|
// @DisplayName: Absolute Pressure |
|
// @Description: calibrated ground pressure in Pascals |
|
// @Units: pascals |
|
// @Increment: 1 |
|
AP_GROUPINFO("ABS_PRESS", 2, AP_Baro, sensors[0].ground_pressure, 0), |
|
|
|
// @Param: TEMP |
|
// @DisplayName: ground temperature |
|
// @Description: calibrated ground temperature in degrees Celsius |
|
// @Units: degrees celsius |
|
// @Increment: 1 |
|
AP_GROUPINFO("TEMP", 3, AP_Baro, sensors[0].ground_temperature, 0), |
|
|
|
// index 4 reserved for old AP_Int8 version in legacy FRAM |
|
//AP_GROUPINFO("ALT_OFFSET", 4, AP_Baro, _alt_offset, 0), |
|
|
|
// @Param: ALT_OFFSET |
|
// @DisplayName: altitude offset |
|
// @Description: altitude offset in meters added to barometric altitude. This is used to allow for automatic adjustment of the base barometric altitude by a ground station equipped with a barometer. The value is added to the barometric altitude read by the aircraft. It is automatically reset to 0 when the barometer is calibrated on each reboot or when a preflight calibration is performed. |
|
// @Units: meters |
|
// @Increment: 0.1 |
|
AP_GROUPINFO("ALT_OFFSET", 5, AP_Baro, _alt_offset, 0), |
|
|
|
// @Param: PRIMARY |
|
// @DisplayName: Primary barometer |
|
// @Description: This selects which barometer will be the primary if multiple barometers are found |
|
// @Values: 0:FirstBaro,1:2ndBaro,2:3rdBaro |
|
AP_GROUPINFO("PRIMARY", 6, AP_Baro, _primary_baro, 0), |
|
|
|
AP_GROUPEND |
|
}; |
|
|
|
/* |
|
AP_Baro constructor |
|
*/ |
|
AP_Baro::AP_Baro() : |
|
_num_drivers(0), |
|
_num_sensors(0), |
|
_primary(0), |
|
_last_altitude_EAS2TAS(0.0f), |
|
_EAS2TAS(0.0f), |
|
_external_temperature(0.0f), |
|
_last_external_temperature_ms(0), |
|
_hil_mode(false) |
|
{ |
|
memset(sensors, 0, sizeof(sensors)); |
|
|
|
AP_Param::setup_object_defaults(this, var_info); |
|
} |
|
|
|
// calibrate the barometer. This must be called at least once before |
|
// the altitude() or climb_rate() interfaces can be used |
|
void AP_Baro::calibrate() |
|
{ |
|
// reset the altitude offset when we calibrate. The altitude |
|
// offset is supposed to be for within a flight |
|
_alt_offset.set_and_save(0); |
|
|
|
// start by assuming all sensors are calibrated (for healthy() test) |
|
for (uint8_t i=0; i<_num_sensors; i++) { |
|
sensors[i].calibrated = true; |
|
sensors[i].alt_ok = true; |
|
} |
|
|
|
// let the barometer settle for a full second after startup |
|
// the MS5611 reads quite a long way off for the first second, |
|
// leading to about 1m of error if we don't wait |
|
for (uint8_t i = 0; i < 10; i++) { |
|
uint32_t tstart = AP_HAL::millis(); |
|
do { |
|
update(); |
|
if (AP_HAL::millis() - tstart > 500) { |
|
AP_HAL::panic("PANIC: AP_Baro::read unsuccessful " |
|
"for more than 500ms in AP_Baro::calibrate [2]\r\n"); |
|
} |
|
hal.scheduler->delay(10); |
|
} while (!healthy()); |
|
hal.scheduler->delay(100); |
|
} |
|
|
|
// now average over 5 values for the ground pressure and |
|
// temperature settings |
|
float sum_pressure[BARO_MAX_INSTANCES] = {0}; |
|
float sum_temperature[BARO_MAX_INSTANCES] = {0}; |
|
uint8_t count[BARO_MAX_INSTANCES] = {0}; |
|
const uint8_t num_samples = 5; |
|
|
|
for (uint8_t c = 0; c < num_samples; c++) { |
|
uint32_t tstart = AP_HAL::millis(); |
|
do { |
|
update(); |
|
if (AP_HAL::millis() - tstart > 500) { |
|
AP_HAL::panic("PANIC: AP_Baro::read unsuccessful " |
|
"for more than 500ms in AP_Baro::calibrate [3]\r\n"); |
|
} |
|
} while (!healthy()); |
|
for (uint8_t i=0; i<_num_sensors; i++) { |
|
if (healthy(i)) { |
|
sum_pressure[i] += sensors[i].pressure; |
|
sum_temperature[i] += sensors[i].temperature; |
|
count[i] += 1; |
|
} |
|
} |
|
hal.scheduler->delay(100); |
|
} |
|
for (uint8_t i=0; i<_num_sensors; i++) { |
|
if (count[i] == 0) { |
|
sensors[i].calibrated = false; |
|
} else { |
|
sensors[i].ground_pressure.set_and_save(sum_pressure[i] / count[i]); |
|
sensors[i].ground_temperature.set_and_save(sum_temperature[i] / count[i]); |
|
} |
|
} |
|
|
|
// panic if all sensors are not calibrated |
|
for (uint8_t i=0; i<_num_sensors; i++) { |
|
if (sensors[i].calibrated) { |
|
return; |
|
} |
|
} |
|
AP_HAL::panic("AP_Baro: all sensors uncalibrated"); |
|
} |
|
|
|
/* |
|
update the barometer calibration |
|
this updates the baro ground calibration to the current values. It |
|
can be used before arming to keep the baro well calibrated |
|
*/ |
|
void AP_Baro::update_calibration() |
|
{ |
|
for (uint8_t i=0; i<_num_sensors; i++) { |
|
if (healthy(i)) { |
|
sensors[i].ground_pressure.set(get_pressure(i)); |
|
} |
|
float last_temperature = sensors[i].ground_temperature; |
|
sensors[i].ground_temperature.set(get_calibration_temperature(i)); |
|
|
|
// don't notify the GCS too rapidly or we flood the link |
|
uint32_t now = AP_HAL::millis(); |
|
if (now - _last_notify_ms > 10000) { |
|
sensors[i].ground_pressure.notify(); |
|
sensors[i].ground_temperature.notify(); |
|
_last_notify_ms = now; |
|
} |
|
if (fabsf(last_temperature - sensors[i].ground_temperature) > 3) { |
|
// reset _EAS2TAS to force it to recalculate. This happens |
|
// when a digital airspeed sensor comes online |
|
_EAS2TAS = 0; |
|
} |
|
} |
|
} |
|
|
|
// return altitude difference in meters between current pressure and a |
|
// given base_pressure in Pascal |
|
float AP_Baro::get_altitude_difference(float base_pressure, float pressure) const |
|
{ |
|
float ret; |
|
float temp = get_ground_temperature() + 273.15f; |
|
float scaling = pressure / base_pressure; |
|
|
|
// This is an exact calculation that is within +-2.5m of the standard |
|
// atmosphere tables in the troposphere (up to 11,000 m amsl). |
|
ret = 153.8462f * temp * (1.0f - expf(0.190259f * logf(scaling))); |
|
|
|
return ret; |
|
} |
|
|
|
|
|
// return current scale factor that converts from equivalent to true airspeed |
|
// valid for altitudes up to 10km AMSL |
|
// assumes standard atmosphere lapse rate |
|
float AP_Baro::get_EAS2TAS(void) |
|
{ |
|
float altitude = get_altitude(); |
|
if ((fabsf(altitude - _last_altitude_EAS2TAS) < 100.0f) && !is_zero(_EAS2TAS)) { |
|
// not enough change to require re-calculating |
|
return _EAS2TAS; |
|
} |
|
|
|
float tempK = get_calibration_temperature() + 273.15f - 0.0065f * altitude; |
|
_EAS2TAS = safe_sqrt(1.225f / ((float)get_pressure() / (287.26f * tempK))); |
|
_last_altitude_EAS2TAS = altitude; |
|
return _EAS2TAS; |
|
} |
|
|
|
// return air density / sea level density - decreases as altitude climbs |
|
float AP_Baro::get_air_density_ratio(void) |
|
{ |
|
float eas2tas = get_EAS2TAS(); |
|
if (eas2tas > 0.0f) { |
|
return 1.0f/(sq(get_EAS2TAS())); |
|
} else { |
|
return 1.0f; |
|
} |
|
} |
|
|
|
// return current climb_rate estimeate relative to time that calibrate() |
|
// was called. Returns climb rate in meters/s, positive means up |
|
// note that this relies on read() being called regularly to get new data |
|
float AP_Baro::get_climb_rate(void) |
|
{ |
|
// we use a 7 point derivative filter on the climb rate. This seems |
|
// to produce somewhat reasonable results on real hardware |
|
return _climb_rate_filter.slope() * 1.0e3f; |
|
} |
|
|
|
|
|
/* |
|
set external temperature to be used for calibration (degrees C) |
|
*/ |
|
void AP_Baro::set_external_temperature(float temperature) |
|
{ |
|
_external_temperature = temperature; |
|
_last_external_temperature_ms = AP_HAL::millis(); |
|
} |
|
|
|
/* |
|
get the temperature in degrees C to be used for calibration purposes |
|
*/ |
|
float AP_Baro::get_calibration_temperature(uint8_t instance) const |
|
{ |
|
// if we have a recent external temperature then use it |
|
if (_last_external_temperature_ms != 0 && AP_HAL::millis() - _last_external_temperature_ms < 10000) { |
|
return _external_temperature; |
|
} |
|
// if we don't have an external temperature then use the minimum |
|
// of the barometer temperature and 25 degrees C. The reason for |
|
// not just using the baro temperature is it tends to read high, |
|
// often 30 degrees above the actual temperature. That means the |
|
// EAS2TAS tends to be off by quite a large margin |
|
float ret = get_temperature(instance); |
|
if (ret > 25) { |
|
ret = 25; |
|
} |
|
return ret; |
|
} |
|
|
|
|
|
/* |
|
initialise the barometer object, loading backend drivers |
|
*/ |
|
void AP_Baro::init(void) |
|
{ |
|
if (_hil_mode) { |
|
drivers[0] = new AP_Baro_HIL(*this); |
|
_num_drivers = 1; |
|
return; |
|
} |
|
|
|
#if HAL_BARO_DEFAULT == HAL_BARO_PX4 || HAL_BARO_DEFAULT == HAL_BARO_VRBRAIN |
|
drivers[0] = new AP_Baro_PX4(*this); |
|
_num_drivers = 1; |
|
#elif HAL_BARO_DEFAULT == HAL_BARO_HIL |
|
drivers[0] = new AP_Baro_HIL(*this); |
|
_num_drivers = 1; |
|
#elif HAL_BARO_DEFAULT == HAL_BARO_BMP085 |
|
{ |
|
drivers[0] = new AP_Baro_BMP085(*this); |
|
_num_drivers = 1; |
|
} |
|
#elif HAL_BARO_DEFAULT == HAL_BARO_MS5611 && HAL_BARO_MS5611_I2C_BUS == 0 |
|
{ |
|
drivers[0] = new AP_Baro_MS5611(*this, new AP_SerialBus_I2C(hal.i2c, HAL_BARO_MS5611_I2C_ADDR), false); |
|
_num_drivers = 1; |
|
} |
|
#elif HAL_BARO_DEFAULT == HAL_BARO_MS5611 && HAL_BARO_MS5611_I2C_BUS == 1 |
|
{ |
|
drivers[0] = new AP_Baro_MS5611(*this, new AP_SerialBus_I2C(hal.i2c1, HAL_BARO_MS5611_I2C_ADDR), false); |
|
_num_drivers = 1; |
|
} |
|
#elif HAL_BARO_DEFAULT == HAL_BARO_MS5611_SPI |
|
{ |
|
drivers[0] = new AP_Baro_MS5611(*this, |
|
new AP_SerialBus_SPI(AP_HAL::SPIDevice_MS5611, |
|
AP_HAL::SPIDeviceDriver::SPI_SPEED_HIGH), |
|
true); |
|
_num_drivers = 1; |
|
} |
|
#elif HAL_BARO_DEFAULT == HAL_BARO_MS5607 && HAL_BARO_MS5607_I2C_BUS == 1 |
|
{ |
|
drivers[0] = new AP_Baro_MS5607(*this, new AP_SerialBus_I2C(hal.i2c1, HAL_BARO_MS5607_I2C_ADDR), true); |
|
_num_drivers = 1; |
|
} |
|
#elif HAL_BARO_DEFAULT == HAL_BARO_MS5637_I2C |
|
{ |
|
AP_SerialBus *bus = new AP_SerialBus_I2C(HAL_BARO_MS5611_I2C_POINTER, |
|
HAL_BARO_MS5611_I2C_ADDR); |
|
drivers[0] = new AP_Baro_MS5637(*this, bus, true); |
|
_num_drivers = 1; |
|
} |
|
#endif |
|
if (_num_drivers == 0 || _num_sensors == 0 || drivers[0] == NULL) { |
|
AP_HAL::panic("Baro: unable to initialise driver"); |
|
} |
|
} |
|
|
|
|
|
/* |
|
call update on all drivers |
|
*/ |
|
void AP_Baro::update(void) |
|
{ |
|
if (!_hil_mode) { |
|
for (uint8_t i=0; i<_num_drivers; i++) { |
|
drivers[i]->update(); |
|
} |
|
} |
|
|
|
// consider a sensor as healthy if it has had an update in the |
|
// last 0.5 seconds |
|
uint32_t now = AP_HAL::millis(); |
|
for (uint8_t i=0; i<_num_sensors; i++) { |
|
sensors[i].healthy = (now - sensors[i].last_update_ms < 500) && !is_zero(sensors[i].pressure); |
|
} |
|
|
|
for (uint8_t i=0; i<_num_sensors; i++) { |
|
if (sensors[i].healthy) { |
|
// update altitude calculation |
|
if (is_zero(sensors[i].ground_pressure)) { |
|
sensors[i].ground_pressure = sensors[i].pressure; |
|
} |
|
float altitude = get_altitude_difference(sensors[i].ground_pressure, sensors[i].pressure); |
|
// sanity check altitude |
|
sensors[i].alt_ok = !(isnan(altitude) || isinf(altitude)); |
|
if (sensors[i].alt_ok) { |
|
sensors[i].altitude = altitude + _alt_offset; |
|
} |
|
} |
|
} |
|
|
|
// ensure the climb rate filter is updated |
|
if (healthy()) { |
|
_climb_rate_filter.update(get_altitude(), get_last_update()); |
|
} |
|
|
|
// choose primary sensor |
|
if (_primary_baro >= 0 && _primary_baro < _num_sensors && healthy(_primary_baro)) { |
|
_primary = _primary_baro; |
|
} else { |
|
_primary = 0; |
|
for (uint8_t i=0; i<_num_sensors; i++) { |
|
if (healthy(i)) { |
|
_primary = i; |
|
break; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* |
|
call accumulate on all drivers |
|
*/ |
|
void AP_Baro::accumulate(void) |
|
{ |
|
for (uint8_t i=0; i<_num_drivers; i++) { |
|
drivers[i]->accumulate(); |
|
} |
|
} |
|
|
|
|
|
/* register a new sensor, claiming a sensor slot. If we are out of |
|
slots it will panic |
|
*/ |
|
uint8_t AP_Baro::register_sensor(void) |
|
{ |
|
if (_num_sensors >= BARO_MAX_INSTANCES) { |
|
AP_HAL::panic("Too many barometers"); |
|
} |
|
return _num_sensors++; |
|
} |
|
|
|
|
|
/* |
|
check if all barometers are healthy |
|
*/ |
|
bool AP_Baro::all_healthy(void) const |
|
{ |
|
for (uint8_t i=0; i<_num_sensors; i++) { |
|
if (!healthy(i)) { |
|
return false; |
|
} |
|
} |
|
return _num_sensors > 0; |
|
}
|
|
|