You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
655 lines
19 KiB
655 lines
19 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
/***************************************************************************** |
|
* The init_ardupilot function processes everything we need for an in - air restart |
|
* We will determine later if we are actually on the ground and process a |
|
* ground start in that case. |
|
* |
|
*****************************************************************************/ |
|
|
|
#if CLI_ENABLED == ENABLED |
|
|
|
// Functions called from the top-level menu |
|
static int8_t process_logs(uint8_t argc, const Menu::arg *argv); // in Log.pde |
|
static int8_t setup_mode(uint8_t argc, const Menu::arg *argv); // in setup.pde |
|
static int8_t test_mode(uint8_t argc, const Menu::arg *argv); // in test.cpp |
|
static int8_t reboot_board(uint8_t argc, const Menu::arg *argv); |
|
|
|
// This is the help function |
|
// PSTR is an AVR macro to read strings from flash memory |
|
// printf_P is a version of print_f that reads from flash memory |
|
static int8_t main_menu_help(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
cliSerial->printf_P(PSTR("Commands:\n" |
|
" logs log readback/setup mode\n" |
|
" setup setup mode\n" |
|
" test test mode\n" |
|
" reboot reboot to flight mode\n" |
|
"\n")); |
|
return(0); |
|
} |
|
|
|
// Command/function table for the top-level menu. |
|
static const struct Menu::command main_menu_commands[] PROGMEM = { |
|
// command function called |
|
// ======= =============== |
|
{"logs", process_logs}, |
|
{"setup", setup_mode}, |
|
{"test", test_mode}, |
|
{"reboot", reboot_board}, |
|
{"help", main_menu_help}, |
|
}; |
|
|
|
// Create the top-level menu object. |
|
MENU(main_menu, THISFIRMWARE, main_menu_commands); |
|
|
|
static int8_t reboot_board(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
reboot_apm(); |
|
return 0; |
|
} |
|
|
|
// the user wants the CLI. It never exits |
|
static void run_cli(AP_HAL::UARTDriver *port) |
|
{ |
|
// disable the failsafe code in the CLI |
|
hal.scheduler->register_timer_failsafe(NULL,1); |
|
|
|
// disable the mavlink delay callback |
|
hal.scheduler->register_delay_callback(NULL, 5); |
|
|
|
cliSerial = port; |
|
Menu::set_port(port); |
|
port->set_blocking_writes(true); |
|
|
|
while (1) { |
|
main_menu.run(); |
|
} |
|
} |
|
|
|
#endif // CLI_ENABLED |
|
|
|
static void init_ardupilot() |
|
{ |
|
#if USB_MUX_PIN > 0 |
|
// on the APM2 board we have a mux thet switches UART0 between |
|
// USB and the board header. If the right ArduPPM firmware is |
|
// installed we can detect if USB is connected using the |
|
// USB_MUX_PIN |
|
pinMode(USB_MUX_PIN, INPUT); |
|
|
|
usb_connected = !digitalRead(USB_MUX_PIN); |
|
if (!usb_connected) { |
|
// USB is not connected, this means UART0 may be a Xbee, with |
|
// its darned bricking problem. We can't write to it for at |
|
// least one second after powering up. Simplest solution for |
|
// now is to delay for 1 second. Something more elegant may be |
|
// added later |
|
delay(1000); |
|
} |
|
#endif |
|
|
|
// Console serial port |
|
// |
|
// The console port buffers are defined to be sufficiently large to support |
|
// the MAVLink protocol efficiently |
|
// |
|
hal.uartA->begin(SERIAL0_BAUD, 128, SERIAL_BUFSIZE); |
|
|
|
// GPS serial port. |
|
// |
|
// standard gps running |
|
hal.uartB->begin(38400, 256, 16); |
|
|
|
cliSerial->printf_P(PSTR("\n\nInit " THISFIRMWARE |
|
"\n\nFree RAM: %u\n"), |
|
memcheck_available_memory()); |
|
|
|
|
|
// |
|
// Check the EEPROM format version before loading any parameters from EEPROM |
|
// |
|
load_parameters(); |
|
|
|
// reset the uartA baud rate after parameter load |
|
hal.uartA->begin(map_baudrate(g.serial0_baud, SERIAL0_BAUD)); |
|
|
|
// keep a record of how many resets have happened. This can be |
|
// used to detect in-flight resets |
|
g.num_resets.set_and_save(g.num_resets+1); |
|
|
|
// init the GCS |
|
gcs0.init(hal.uartA); |
|
// Register mavlink_delay_cb, which will run anytime you have |
|
// more than 5ms remaining in your call to hal.scheduler->delay |
|
hal.scheduler->register_delay_callback(mavlink_delay_cb, 5); |
|
|
|
#if USB_MUX_PIN > 0 |
|
if (!usb_connected) { |
|
// we are not connected via USB, re-init UART0 with right |
|
// baud rate |
|
hal.uartA->begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD)); |
|
} |
|
#else |
|
// we have a 2nd serial port for telemetry |
|
hal.uartC->begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD), |
|
128, SERIAL_BUFSIZE); |
|
gcs3.init(hal.uartC); |
|
#endif |
|
|
|
mavlink_system.sysid = g.sysid_this_mav; |
|
|
|
#if LOGGING_ENABLED == ENABLED |
|
DataFlash.Init(); |
|
if (!DataFlash.CardInserted()) { |
|
gcs_send_text_P(SEVERITY_LOW, PSTR("No dataflash card inserted")); |
|
g.log_bitmask.set(0); |
|
} else if (DataFlash.NeedErase()) { |
|
gcs_send_text_P(SEVERITY_LOW, PSTR("ERASING LOGS")); |
|
do_erase_logs(); |
|
gcs0.reset_cli_timeout(); |
|
} |
|
if (g.log_bitmask != 0) { |
|
start_logging(); |
|
} |
|
#endif |
|
|
|
#if CONFIG_ADC == ENABLED |
|
adc.Init(); // APM ADC library initialization |
|
#endif |
|
|
|
barometer.init(); |
|
|
|
if (g.compass_enabled==true) { |
|
compass.set_orientation(MAG_ORIENTATION); // set compass's orientation on aircraft |
|
if (!compass.init() || !compass.read()) { |
|
cliSerial->println_P(PSTR("Compass initialisation failed!")); |
|
g.compass_enabled = false; |
|
} else { |
|
ahrs.set_compass(&compass); |
|
} |
|
} |
|
|
|
// give AHRS the airspeed sensor |
|
ahrs.set_airspeed(&airspeed); |
|
|
|
#if APM_CONTROL == ENABLED |
|
// the axis controllers need access to the AHRS system |
|
g.rollController.set_ahrs(&ahrs); |
|
g.pitchController.set_ahrs(&ahrs); |
|
g.yawController.set_ahrs(&ahrs); |
|
#endif |
|
|
|
// Do GPS init |
|
g_gps = &g_gps_driver; |
|
// GPS Initialization |
|
g_gps->init(hal.uartB, GPS::GPS_ENGINE_AIRBORNE_4G); |
|
|
|
//mavlink_system.sysid = MAV_SYSTEM_ID; // Using g.sysid_this_mav |
|
mavlink_system.compid = 1; //MAV_COMP_ID_IMU; // We do not check for comp id |
|
mavlink_system.type = MAV_TYPE_FIXED_WING; |
|
|
|
init_rc_in(); // sets up rc channels from radio |
|
init_rc_out(); // sets up the timer libs |
|
|
|
pinMode(C_LED_PIN, OUTPUT); // GPS status LED |
|
pinMode(A_LED_PIN, OUTPUT); // GPS status LED |
|
pinMode(B_LED_PIN, OUTPUT); // GPS status LED |
|
relay.init(); |
|
|
|
#if FENCE_TRIGGERED_PIN > 0 |
|
pinMode(FENCE_TRIGGERED_PIN, OUTPUT); |
|
digitalWrite(FENCE_TRIGGERED_PIN, LOW); |
|
#endif |
|
|
|
/* |
|
* setup the 'main loop is dead' check. Note that this relies on |
|
* the RC library being initialised. |
|
*/ |
|
hal.scheduler->register_timer_failsafe(failsafe_check, 1000); |
|
|
|
const prog_char_t *msg = PSTR("\nPress ENTER 3 times to start interactive setup\n"); |
|
cliSerial->println_P(msg); |
|
#if USB_MUX_PIN == 0 |
|
hal.uartC->println_P(msg); |
|
#endif |
|
|
|
if (ENABLE_AIR_START == 1) { |
|
// Perform an air start and get back to flying |
|
gcs_send_text_P(SEVERITY_LOW,PSTR("<init_ardupilot> AIR START")); |
|
|
|
// Get necessary data from EEPROM |
|
//---------------- |
|
//read_EEPROM_airstart_critical(); |
|
ahrs.init(); |
|
ahrs.set_fly_forward(true); |
|
|
|
ins.init(AP_InertialSensor::WARM_START, |
|
ins_sample_rate, |
|
flash_leds); |
|
|
|
// This delay is important for the APM_RC library to work. |
|
// We need some time for the comm between the 328 and 1280 to be established. |
|
int old_pulse = 0; |
|
while (millis()<=1000 |
|
&& (abs(old_pulse - hal.rcin->read(g.flight_mode_channel)) > 5 |
|
|| hal.rcin->read(g.flight_mode_channel) == 1000 |
|
|| hal.rcin->read(g.flight_mode_channel) == 1200)) |
|
{ |
|
old_pulse = hal.rcin->read(g.flight_mode_channel); |
|
delay(25); |
|
} |
|
g_gps->update(); |
|
|
|
if (g.log_bitmask & MASK_LOG_CMD) |
|
Log_Write_Startup(TYPE_AIRSTART_MSG); |
|
reload_commands_airstart(); // Get set to resume AUTO from where we left off |
|
|
|
}else { |
|
startup_ground(); |
|
if (g.log_bitmask & MASK_LOG_CMD) |
|
Log_Write_Startup(TYPE_GROUNDSTART_MSG); |
|
} |
|
|
|
// choose the nav controller |
|
set_nav_controller(); |
|
|
|
set_mode(MANUAL); |
|
|
|
// set the correct flight mode |
|
// --------------------------- |
|
reset_control_switch(); |
|
} |
|
|
|
//******************************************************************************** |
|
//This function does all the calibrations, etc. that we need during a ground start |
|
//******************************************************************************** |
|
static void startup_ground(void) |
|
{ |
|
set_mode(INITIALISING); |
|
|
|
gcs_send_text_P(SEVERITY_LOW,PSTR("<startup_ground> GROUND START")); |
|
|
|
#if (GROUND_START_DELAY > 0) |
|
gcs_send_text_P(SEVERITY_LOW,PSTR("<startup_ground> With Delay")); |
|
delay(GROUND_START_DELAY * 1000); |
|
#endif |
|
|
|
// Makes the servos wiggle |
|
// step 1 = 1 wiggle |
|
// ----------------------- |
|
demo_servos(1); |
|
|
|
//INS ground start |
|
//------------------------ |
|
// |
|
startup_INS_ground(false); |
|
|
|
// read the radio to set trims |
|
// --------------------------- |
|
trim_radio(); // This was commented out as a HACK. Why? I don't find a problem. |
|
|
|
// Save the settings for in-air restart |
|
// ------------------------------------ |
|
//save_EEPROM_groundstart(); |
|
|
|
// initialize commands |
|
// ------------------- |
|
init_commands(); |
|
|
|
// Makes the servos wiggle - 3 times signals ready to fly |
|
// ----------------------- |
|
demo_servos(3); |
|
|
|
// reset last heartbeat time, so we don't trigger failsafe on slow |
|
// startup |
|
last_heartbeat_ms = millis(); |
|
|
|
// we don't want writes to the serial port to cause us to pause |
|
// mid-flight, so set the serial ports non-blocking once we are |
|
// ready to fly |
|
hal.uartC->set_blocking_writes(false); |
|
if (gcs3.initialised) { |
|
hal.uartC->set_blocking_writes(false); |
|
} |
|
|
|
gcs_send_text_P(SEVERITY_LOW,PSTR("\n\n Ready to FLY.")); |
|
} |
|
|
|
static void set_mode(enum FlightMode mode) |
|
{ |
|
if(control_mode == mode) { |
|
// don't switch modes if we are already in the correct mode. |
|
return; |
|
} |
|
if(g.auto_trim > 0 && control_mode == MANUAL) |
|
trim_control_surfaces(); |
|
|
|
control_mode = mode; |
|
crash_timer = 0; |
|
|
|
switch(control_mode) |
|
{ |
|
case INITIALISING: |
|
case MANUAL: |
|
case STABILIZE: |
|
case TRAINING: |
|
case FLY_BY_WIRE_A: |
|
break; |
|
|
|
case FLY_BY_WIRE_B: |
|
target_altitude_cm = current_loc.alt; |
|
break; |
|
|
|
case CIRCLE: |
|
// the altitude to circle at is taken from the current altitude |
|
next_WP.alt = current_loc.alt; |
|
break; |
|
|
|
case AUTO: |
|
prev_WP = current_loc; |
|
update_auto(); |
|
break; |
|
|
|
case RTL: |
|
prev_WP = current_loc; |
|
do_RTL(); |
|
break; |
|
|
|
case LOITER: |
|
do_loiter_at_location(); |
|
break; |
|
|
|
case GUIDED: |
|
set_guided_WP(); |
|
break; |
|
|
|
default: |
|
prev_WP = current_loc; |
|
do_RTL(); |
|
break; |
|
} |
|
|
|
// if in an auto-throttle mode, start with throttle suppressed for |
|
// safety. suppress_throttle() will unsupress it when appropriate |
|
if (control_mode == CIRCLE || control_mode >= FLY_BY_WIRE_B) { |
|
throttle_suppressed = true; |
|
} |
|
|
|
if (g.log_bitmask & MASK_LOG_MODE) |
|
Log_Write_Mode(control_mode); |
|
} |
|
|
|
static void check_long_failsafe() |
|
{ |
|
uint32_t tnow = millis(); |
|
// only act on changes |
|
// ------------------- |
|
if(failsafe != FAILSAFE_LONG && failsafe != FAILSAFE_GCS) { |
|
if (rc_override_active && tnow - last_heartbeat_ms > FAILSAFE_LONG_TIME) { |
|
failsafe_long_on_event(FAILSAFE_LONG); |
|
} |
|
if(!rc_override_active && failsafe == FAILSAFE_SHORT && |
|
(tnow - ch3_failsafe_timer) > FAILSAFE_LONG_TIME) { |
|
failsafe_long_on_event(FAILSAFE_LONG); |
|
} |
|
if (g.gcs_heartbeat_fs_enabled && |
|
last_heartbeat_ms != 0 && |
|
(tnow - last_heartbeat_ms) > FAILSAFE_LONG_TIME) { |
|
failsafe_long_on_event(FAILSAFE_GCS); |
|
} |
|
} else { |
|
// We do not change state but allow for user to change mode |
|
if (failsafe == FAILSAFE_GCS && |
|
(tnow - last_heartbeat_ms) < FAILSAFE_SHORT_TIME) |
|
failsafe = FAILSAFE_NONE; |
|
if (failsafe == FAILSAFE_LONG && rc_override_active && |
|
(tnow - last_heartbeat_ms) < FAILSAFE_SHORT_TIME) |
|
failsafe = FAILSAFE_NONE; |
|
if (failsafe == FAILSAFE_LONG && !rc_override_active && !ch3_failsafe) |
|
failsafe = FAILSAFE_NONE; |
|
} |
|
} |
|
|
|
static void check_short_failsafe() |
|
{ |
|
// only act on changes |
|
// ------------------- |
|
if(failsafe == FAILSAFE_NONE) { |
|
if(ch3_failsafe) { // The condition is checked and the flag ch3_failsafe is set in radio.pde |
|
failsafe_short_on_event(FAILSAFE_SHORT); |
|
} |
|
} |
|
|
|
if(failsafe == FAILSAFE_SHORT) { |
|
if(!ch3_failsafe) { |
|
failsafe_short_off_event(); |
|
} |
|
} |
|
} |
|
|
|
|
|
static void startup_INS_ground(bool force_accel_level) |
|
{ |
|
#if HIL_MODE != HIL_MODE_DISABLED |
|
while (!barometer.healthy) { |
|
// the barometer becomes healthy when we get the first |
|
// HIL_STATE message |
|
gcs_send_text_P(SEVERITY_LOW, PSTR("Waiting for first HIL_STATE message")); |
|
delay(1000); |
|
} |
|
#endif |
|
|
|
gcs_send_text_P(SEVERITY_MEDIUM, PSTR("Warming up ADC...")); |
|
mavlink_delay(500); |
|
|
|
// Makes the servos wiggle twice - about to begin INS calibration - HOLD LEVEL AND STILL!! |
|
// ----------------------- |
|
demo_servos(2); |
|
gcs_send_text_P(SEVERITY_MEDIUM, PSTR("Beginning INS calibration; do not move plane")); |
|
mavlink_delay(1000); |
|
|
|
ahrs.init(); |
|
ahrs.set_fly_forward(true); |
|
|
|
ins.init(AP_InertialSensor::COLD_START, |
|
ins_sample_rate, |
|
flash_leds); |
|
#if HIL_MODE == HIL_MODE_DISABLED |
|
if (force_accel_level || g.manual_level == 0) { |
|
// when MANUAL_LEVEL is set to 1 we don't do accelerometer |
|
// levelling on each boot, and instead rely on the user to do |
|
// it once via the ground station |
|
ins.init_accel(flash_leds); |
|
ahrs.set_trim(Vector3f(0, 0, 0)); |
|
} |
|
#endif |
|
ahrs.reset(); |
|
|
|
// read Baro pressure at ground |
|
//----------------------------- |
|
init_barometer(); |
|
|
|
if (airspeed.enabled()) { |
|
// initialize airspeed sensor |
|
// -------------------------- |
|
zero_airspeed(); |
|
} else { |
|
gcs_send_text_P(SEVERITY_LOW,PSTR("NO airspeed")); |
|
} |
|
|
|
digitalWrite(B_LED_PIN, LED_ON); // Set LED B high to indicate INS ready |
|
digitalWrite(A_LED_PIN, LED_OFF); |
|
digitalWrite(C_LED_PIN, LED_OFF); |
|
} |
|
|
|
|
|
static void update_GPS_light(void) |
|
{ |
|
// GPS LED on if we have a fix or Blink GPS LED if we are receiving data |
|
// --------------------------------------------------------------------- |
|
switch (g_gps->status()) { |
|
case GPS::NO_FIX: |
|
case GPS::GPS_OK_FIX_2D: |
|
// check if we've blinked since the last gps update |
|
if (g_gps->valid_read) { |
|
g_gps->valid_read = false; |
|
GPS_light = !GPS_light; // Toggle light on and off to indicate gps messages being received, but no GPS fix lock |
|
if (GPS_light) { |
|
digitalWrite(C_LED_PIN, LED_OFF); |
|
}else{ |
|
digitalWrite(C_LED_PIN, LED_ON); |
|
} |
|
} |
|
break; |
|
|
|
case GPS::GPS_OK_FIX_3D: |
|
digitalWrite(C_LED_PIN, LED_ON); //Turn LED C on when gps has valid fix AND home is set. |
|
break; |
|
|
|
default: |
|
digitalWrite(C_LED_PIN, LED_OFF); |
|
break; |
|
} |
|
} |
|
|
|
|
|
static void resetPerfData(void) { |
|
mainLoop_count = 0; |
|
G_Dt_max = 0; |
|
ahrs.renorm_range_count = 0; |
|
ahrs.renorm_blowup_count = 0; |
|
gps_fix_count = 0; |
|
pmTest1 = 0; |
|
perf_mon_timer = millis(); |
|
} |
|
|
|
|
|
/* |
|
* map from a 8 bit EEPROM baud rate to a real baud rate |
|
*/ |
|
static uint32_t map_baudrate(int8_t rate, uint32_t default_baud) |
|
{ |
|
switch (rate) { |
|
case 1: return 1200; |
|
case 2: return 2400; |
|
case 4: return 4800; |
|
case 9: return 9600; |
|
case 19: return 19200; |
|
case 38: return 38400; |
|
case 57: return 57600; |
|
case 111: return 111100; |
|
case 115: return 115200; |
|
} |
|
cliSerial->println_P(PSTR("Invalid SERIAL3_BAUD")); |
|
return default_baud; |
|
} |
|
|
|
|
|
static void check_usb_mux(void) |
|
{ |
|
#if USB_MUX_PIN > 0 |
|
bool usb_check = !digitalRead(USB_MUX_PIN); |
|
if (usb_check == usb_connected) { |
|
return; |
|
} |
|
|
|
// the user has switched to/from the telemetry port |
|
usb_connected = usb_check; |
|
if (usb_connected) { |
|
hal.uartA->begin(SERIAL0_BAUD); |
|
} else { |
|
hal.uartA->begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD)); |
|
} |
|
#endif |
|
} |
|
|
|
|
|
/* |
|
* called by gyro/accel init to flash LEDs so user |
|
* has some mesmerising lights to watch while waiting |
|
*/ |
|
void flash_leds(bool on) |
|
{ |
|
digitalWrite(A_LED_PIN, on ? LED_OFF : LED_ON); |
|
digitalWrite(C_LED_PIN, on ? LED_ON : LED_OFF); |
|
} |
|
|
|
/* |
|
* Read Vcc vs 1.1v internal reference |
|
*/ |
|
uint16_t board_voltage(void) |
|
{ |
|
return vcc_pin->read_latest(); |
|
} |
|
|
|
|
|
/* |
|
force a software reset of the APM |
|
*/ |
|
static void reboot_apm(void) |
|
{ |
|
hal.scheduler->reboot(); |
|
while (1); |
|
} |
|
|
|
|
|
static void |
|
print_flight_mode(AP_HAL::BetterStream *port, uint8_t mode) |
|
{ |
|
switch (mode) { |
|
case MANUAL: |
|
port->print_P(PSTR("Manual")); |
|
break; |
|
case CIRCLE: |
|
port->print_P(PSTR("Circle")); |
|
break; |
|
case STABILIZE: |
|
port->print_P(PSTR("Stabilize")); |
|
break; |
|
case TRAINING: |
|
port->print_P(PSTR("Training")); |
|
break; |
|
case FLY_BY_WIRE_A: |
|
port->print_P(PSTR("FBW_A")); |
|
break; |
|
case FLY_BY_WIRE_B: |
|
port->print_P(PSTR("FBW_B")); |
|
break; |
|
case AUTO: |
|
port->print_P(PSTR("AUTO")); |
|
break; |
|
case RTL: |
|
port->print_P(PSTR("RTL")); |
|
break; |
|
case LOITER: |
|
port->print_P(PSTR("Loiter")); |
|
break; |
|
default: |
|
port->printf_P(PSTR("Mode(%u)"), (unsigned)mode); |
|
break; |
|
} |
|
} |
|
|
|
static void print_comma(void) |
|
{ |
|
cliSerial->print_P(PSTR(",")); |
|
} |
|
|
|
|
|
/* |
|
write to a servo |
|
*/ |
|
static void servo_write(uint8_t ch, uint16_t pwm) |
|
{ |
|
#if HIL_MODE != HIL_MODE_DISABLED |
|
if (!g.hil_servos) { |
|
extern RC_Channel *rc_ch[8]; |
|
if (ch < 8) { |
|
rc_ch[ch]->radio_out = pwm; |
|
} |
|
return; |
|
} |
|
#endif |
|
hal.rcout->enable_ch(ch); |
|
hal.rcout->write(ch, pwm); |
|
}
|
|
|