You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
624 lines
20 KiB
624 lines
20 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
// update_navigation - invokes navigation routines |
|
// called at 10hz |
|
static void update_navigation() |
|
{ |
|
static uint32_t nav_last_update = 0; // the system time of the last time nav was run update |
|
|
|
// check for inertial nav updates |
|
if( inertial_nav.position_ok() ) { |
|
|
|
// calculate time since nav controllers last ran |
|
dTnav = (float)(millis() - nav_last_update)/ 1000.0f; |
|
nav_last_update = millis(); |
|
|
|
// prevent runnup in dTnav value |
|
dTnav = min(dTnav, 1.0f); |
|
|
|
// run the navigation controllers |
|
update_nav_mode(); |
|
|
|
// update log |
|
if (g.log_bitmask & MASK_LOG_NTUN && motors.armed()) { |
|
Log_Write_Nav_Tuning(); |
|
} |
|
} |
|
} |
|
|
|
// run_nav_updates - top level call for the autopilot |
|
// ensures calculations such as "distance to waypoint" are calculated before autopilot makes decisions |
|
// To-Do - rename and move this function to make it's purpose more clear |
|
static void run_nav_updates(void) |
|
{ |
|
// fetch position from inertial navigation |
|
calc_position(); |
|
|
|
// check altitude vs target |
|
verify_altitude(); |
|
|
|
// calculate distance and bearing for reporting and autopilot decisions |
|
calc_distance_and_bearing(); |
|
|
|
// run autopilot to make high level decisions about control modes |
|
run_autopilot(); |
|
} |
|
|
|
// calc_position - get lat and lon positions from inertial nav library |
|
static void calc_position(){ |
|
if( inertial_nav.position_ok() ) { |
|
// pull position from interial nav library |
|
current_loc.lng = inertial_nav.get_longitude(); |
|
current_loc.lat = inertial_nav.get_latitude(); |
|
} |
|
} |
|
|
|
// calc_distance_and_bearing - calculate distance and direction to waypoints for reporting and autopilot decisions |
|
static void calc_distance_and_bearing() |
|
{ |
|
// get current position |
|
Vector2f curr_pos(inertial_nav.get_latitude_diff(), inertial_nav.get_longitude_diff()); |
|
Vector2f dest; |
|
|
|
// get target from loiter or wpinav controller |
|
if( nav_mode == NAV_LOITER || nav_mode == NAV_CIRCLE ) { |
|
dest.x = loiter_lat_from_home_cm; |
|
dest.y = loiter_lon_from_home_cm; |
|
}else if( nav_mode == NAV_WP ) { |
|
dest.x = wpinav_destination.x; |
|
dest.y = wpinav_destination.y; |
|
}else{ |
|
dest = curr_pos; |
|
} |
|
|
|
// calculate distance to target |
|
lat_error = dest.x - curr_pos.x; |
|
lon_error = dest.y - curr_pos.y; |
|
wp_distance = safe_sqrt(lat_error*lat_error+lon_error*lon_error); |
|
|
|
// calculate waypoint bearing |
|
// To-Do: change this to more efficient calculation |
|
if( waypoint_valid(next_WP) ) { |
|
wp_bearing = get_bearing_cd(¤t_loc, &next_WP); |
|
}else{ |
|
wp_bearing = 0; |
|
} |
|
|
|
// calculate home distance and bearing |
|
if( ap.home_is_set ) { |
|
home_distance = safe_sqrt(curr_pos.x*curr_pos.x + curr_pos.y*curr_pos.y); |
|
// To-Do: change this to more efficient calculation |
|
home_bearing = get_bearing_cd(¤t_loc, &home); |
|
|
|
// update super simple bearing (if required) because it relies on home_bearing |
|
update_super_simple_bearing(); |
|
}else{ |
|
home_distance = 0; |
|
home_bearing = 0; |
|
} |
|
|
|
// calculate bearing to target (used when yaw_mode = YAW_LOOK_AT_LOCATION) |
|
// To-Do: move this to the look-at-waypoint yaw controller |
|
if( waypoint_valid(yaw_look_at_WP) ) { |
|
yaw_look_at_WP_bearing = get_bearing_cd(¤t_loc, &yaw_look_at_WP); |
|
} |
|
} |
|
|
|
// run_autopilot - highest level call to process mission commands |
|
static void run_autopilot() |
|
{ |
|
switch( control_mode ) { |
|
case AUTO: |
|
// majority of command logic is in commands_logic.pde |
|
verify_commands(); |
|
break; |
|
case GUIDED: |
|
// switch to loiter once we've reached the target location and altitude |
|
// To-Do: this incorrectly checks verify_nav_wp even though the nav mode may be NAV_LOITER |
|
if(verify_nav_wp()) { |
|
set_nav_mode(NAV_LOITER); |
|
} |
|
case RTL: |
|
verify_RTL(); |
|
break; |
|
} |
|
} |
|
|
|
// set_nav_mode - update nav mode and initialise any variables as required |
|
static bool set_nav_mode(uint8_t new_nav_mode) |
|
{ |
|
// boolean to ensure proper initialisation of nav modes |
|
bool nav_initialised = false; |
|
|
|
// return immediately if no change |
|
if( new_nav_mode == nav_mode ) { |
|
return true; |
|
} |
|
|
|
switch( new_nav_mode ) { |
|
|
|
case NAV_NONE: |
|
nav_initialised = true; |
|
break; |
|
|
|
case NAV_CIRCLE: |
|
// set center of circle to current position |
|
circle_set_center(Vector2f(inertial_nav.get_latitude_diff(), inertial_nav.get_longitude_diff()), ahrs.yaw); |
|
nav_initialised = true; |
|
break; |
|
|
|
case NAV_LOITER: |
|
// set target to current position |
|
loiter_set_target(inertial_nav.get_latitude_diff(), inertial_nav.get_longitude_diff()); |
|
nav_initialised = true; |
|
break; |
|
|
|
case NAV_WP: |
|
nav_initialised = true; |
|
break; |
|
} |
|
|
|
// if initialisation has been successful update the yaw mode |
|
if( nav_initialised ) { |
|
nav_mode = new_nav_mode; |
|
} |
|
|
|
// return success or failure |
|
return nav_initialised; |
|
} |
|
|
|
// update_nav_mode - run navigation controller based on nav_mode |
|
static void update_nav_mode() |
|
{ |
|
switch( nav_mode ) { |
|
|
|
case NAV_NONE: |
|
// do nothing |
|
break; |
|
|
|
case NAV_CIRCLE: |
|
// call circle controller which in turn calls loiter controller |
|
circle_get_pos(dTnav); |
|
break; |
|
|
|
case NAV_LOITER: |
|
get_loiter_pos_lat_lon(loiter_lat_from_home_cm, loiter_lon_from_home_cm, 0.1f); |
|
break; |
|
|
|
case NAV_WP: |
|
// move forward on the waypoint |
|
// To-Do: slew up the speed to the max waypoint speed instead of immediately jumping to max |
|
wpinav_advance_track_desired(g.waypoint_speed_max, dTnav); |
|
// run the navigation controller |
|
get_wpinav_pos(dTnav); |
|
break; |
|
} |
|
|
|
/* |
|
// To-Do: check that we haven't broken toy mode |
|
case TOY_A: |
|
case TOY_M: |
|
set_nav_mode(NAV_NONE); |
|
update_nav_wp(); |
|
break; |
|
} |
|
*/ |
|
} |
|
|
|
static bool check_missed_wp() |
|
{ |
|
int32_t temp; |
|
temp = wp_bearing - original_wp_bearing; |
|
temp = wrap_180(temp); |
|
return (labs(temp) > 9000); // we passed the waypoint by 90 degrees |
|
} |
|
|
|
static void force_new_altitude(int32_t new_alt) |
|
{ |
|
next_WP.alt = new_alt; |
|
set_alt_change(REACHED_ALT); |
|
} |
|
|
|
static void set_new_altitude(int32_t new_alt) |
|
{ |
|
// if no change exit immediately |
|
if(new_alt == next_WP.alt) { |
|
return; |
|
} |
|
|
|
// update new target altitude |
|
next_WP.alt = new_alt; |
|
|
|
if(next_WP.alt > (current_loc.alt + 80)) { |
|
// we are below, going up |
|
set_alt_change(ASCENDING); |
|
|
|
}else if(next_WP.alt < (current_loc.alt - 80)) { |
|
// we are above, going down |
|
set_alt_change(DESCENDING); |
|
|
|
}else{ |
|
// No Change |
|
set_alt_change(REACHED_ALT); |
|
} |
|
} |
|
|
|
// verify_altitude - check if we have reached the target altitude |
|
static void verify_altitude() |
|
{ |
|
if(alt_change_flag == ASCENDING) { |
|
// we are below, going up |
|
if(current_loc.alt > next_WP.alt - 50) { |
|
set_alt_change(REACHED_ALT); |
|
} |
|
}else if (alt_change_flag == DESCENDING) { |
|
// we are above, going down |
|
if(current_loc.alt <= next_WP.alt + 50){ |
|
set_alt_change(REACHED_ALT); |
|
} |
|
} |
|
} |
|
|
|
// Keeps old data out of our calculation / logs |
|
static void reset_nav_params(void) |
|
{ |
|
// Will be set by new command |
|
wp_bearing = 0; |
|
|
|
// Will be set by new command |
|
wp_distance = 0; |
|
|
|
// Will be set by nav or loiter controllers |
|
lon_error = 0; |
|
lat_error = 0; |
|
nav_lon = 0; |
|
nav_lat = 0; |
|
nav_roll = 0; |
|
nav_pitch = 0; |
|
auto_roll = 0; |
|
auto_pitch = 0; |
|
} |
|
|
|
static int32_t wrap_360(int32_t error) |
|
{ |
|
if (error > 36000) error -= 36000; |
|
if (error < 0) error += 36000; |
|
return error; |
|
} |
|
|
|
static int32_t wrap_180(int32_t error) |
|
{ |
|
if (error > 18000) error -= 36000; |
|
if (error < -18000) error += 36000; |
|
return error; |
|
} |
|
|
|
// get_yaw_slew - reduces rate of change of yaw to a maximum |
|
// assumes it is called at 100hz so centi-degrees and update rate cancel each other out |
|
static int32_t get_yaw_slew(int32_t current_yaw, int32_t desired_yaw, int16_t deg_per_sec) |
|
{ |
|
return wrap_360(current_yaw + constrain(wrap_180(desired_yaw - current_yaw), -deg_per_sec, deg_per_sec)); |
|
} |
|
|
|
// valid_waypoint - checks if a waypoint has been initialised or not |
|
static bool waypoint_valid(Location &wp) |
|
{ |
|
if( wp.lat != 0 || wp.lng != 0 ) { |
|
return true; |
|
}else{ |
|
return false; |
|
} |
|
} |
|
|
|
//////////////////////////////////////////////////// |
|
// Loiter controller using inertial nav |
|
//////////////////////////////////////////////////// |
|
|
|
// get_loiter_accel - loiter acceration controllers with desired accelerations provided in forward/right directions in cm/s/s |
|
static void |
|
get_loiter_accel(int16_t accel_req_forward, int16_t accel_req_right) |
|
{ |
|
float z_accel_meas = -AP_INTERTIALNAV_GRAVITY * 100; // gravity in cm/s/s |
|
|
|
// update angle targets that will be passed to stabilize controller |
|
auto_roll = constrain((accel_req_right/(-z_accel_meas))*(18000/M_PI), -4500, 4500); |
|
auto_pitch = constrain((-accel_req_forward/(-z_accel_meas*cos_roll_x))*(18000/M_PI), -4500, 4500); |
|
} |
|
|
|
|
|
// get_loiter_accel_lat_lon - loiter acceration controller with desired accelerations provided in lat/lon directions in cm/s/s |
|
static void |
|
get_loiter_accel_lat_lon(int16_t accel_lat, int16_t accel_lon) |
|
{ |
|
float accel_forward; |
|
float accel_right; |
|
|
|
accel_forward = accel_lat*cos_yaw + accel_lon*sin_yaw; |
|
accel_right = -accel_lat*sin_yaw + accel_lon*cos_yaw; |
|
|
|
get_loiter_accel(accel_forward, accel_right); |
|
} |
|
|
|
|
|
// get_loiter_vel_lat_lon - loiter velocity controller with desired velocity provided in lat/lon directions in cm/s |
|
#define MAX_LOITER_VEL_ACCEL 400 // should be 1.5 times larger than MAX_LOITER_POS_ACCEL |
|
static void |
|
get_loiter_vel_lat_lon(int16_t vel_lat, int16_t vel_lon, float dt) |
|
{ |
|
float speed_error_lat = 0; // The velocity in cm/s. |
|
float speed_error_lon = 0; // The velocity in cm/s. |
|
|
|
float speed_lat = inertial_nav.get_latitude_velocity(); |
|
float speed_lon = inertial_nav.get_longitude_velocity(); |
|
|
|
int32_t accel_lat; |
|
int32_t accel_lon; |
|
int32_t accel_total; |
|
|
|
int16_t lat_p,lat_i,lat_d; |
|
int16_t lon_p,lon_i,lon_d; |
|
|
|
// calculate vel error |
|
speed_error_lat = vel_lat - speed_lat; |
|
speed_error_lon = vel_lon - speed_lon; |
|
|
|
lat_p = g.pid_loiter_rate_lat.get_p(speed_error_lat); |
|
lat_i = g.pid_loiter_rate_lat.get_i(speed_error_lat, dt); |
|
lat_d = g.pid_loiter_rate_lat.get_d(speed_error_lat, dt); |
|
|
|
lon_p = g.pid_loiter_rate_lon.get_p(speed_error_lon); |
|
lon_i = g.pid_loiter_rate_lon.get_i(speed_error_lon, dt); |
|
lon_d = g.pid_loiter_rate_lon.get_d(speed_error_lon, dt); |
|
|
|
accel_lat = (lat_p+lat_i+lat_d); |
|
accel_lon = (lon_p+lon_i+lon_d); |
|
|
|
accel_total = safe_sqrt(accel_lat*accel_lat + accel_lon*accel_lon); |
|
|
|
if( accel_total > MAX_LOITER_VEL_ACCEL ) { |
|
accel_lat = MAX_LOITER_VEL_ACCEL * accel_lat/accel_total; |
|
accel_lon = MAX_LOITER_VEL_ACCEL * accel_lon/accel_total; |
|
} |
|
|
|
get_loiter_accel_lat_lon(accel_lat, accel_lon); |
|
} |
|
|
|
// get_loiter_pos_lat_lon - loiter position controller with desired position provided as distance from home in lat/lon directions in cm |
|
#define MAX_LOITER_POS_VELOCITY 750 // should be 1.5 ~ 2.0 times the pilot input's max velocity |
|
#define MAX_LOITER_POS_ACCEL 250 |
|
static void |
|
get_loiter_pos_lat_lon(int32_t target_lat_from_home, int32_t target_lon_from_home, float dt) |
|
{ |
|
float dist_error_lat; |
|
int32_t desired_vel_lat; |
|
|
|
float dist_error_lon; |
|
int32_t desired_vel_lon; |
|
|
|
int32_t dist_error_total; |
|
|
|
int16_t vel_sqrt; |
|
int32_t vel_total; |
|
|
|
int16_t linear_distance; // the distace we swap between linear and sqrt. |
|
|
|
// calculate distance error |
|
dist_error_lat = target_lat_from_home - inertial_nav.get_latitude_diff(); |
|
dist_error_lon = target_lon_from_home - inertial_nav.get_longitude_diff(); |
|
|
|
linear_distance = MAX_LOITER_POS_ACCEL/(2*g.pi_loiter_lat.kP()*g.pi_loiter_lat.kP()); |
|
|
|
dist_error_total = safe_sqrt(dist_error_lat*dist_error_lat + dist_error_lon*dist_error_lon); |
|
if( dist_error_total > 2*linear_distance ) { |
|
vel_sqrt = constrain(safe_sqrt(2*MAX_LOITER_POS_ACCEL*(dist_error_total-linear_distance)),0,1000); |
|
desired_vel_lat = vel_sqrt * dist_error_lat/dist_error_total; |
|
desired_vel_lon = vel_sqrt * dist_error_lon/dist_error_total; |
|
}else{ |
|
desired_vel_lat = g.pi_loiter_lat.get_p(dist_error_lat); |
|
desired_vel_lon = g.pi_loiter_lon.get_p(dist_error_lon); |
|
} |
|
|
|
vel_total = safe_sqrt(desired_vel_lat*desired_vel_lat + desired_vel_lon*desired_vel_lon); |
|
if( vel_total > MAX_LOITER_POS_VELOCITY ) { |
|
desired_vel_lat = MAX_LOITER_POS_VELOCITY * desired_vel_lat/vel_total; |
|
desired_vel_lon = MAX_LOITER_POS_VELOCITY * desired_vel_lon/vel_total; |
|
} |
|
|
|
get_loiter_vel_lat_lon(desired_vel_lat, desired_vel_lon, dt); |
|
} |
|
|
|
|
|
#define MAX_LOITER_POS_VEL_VELOCITY 1000 |
|
// loiter_set_pos_from_velocity - loiter velocity controller with desired velocity provided in front/right directions in cm/s |
|
static void |
|
loiter_set_pos_from_velocity(int16_t vel_forward_cms, int16_t vel_right_cms, float dt) |
|
{ |
|
int32_t vel_lat; |
|
int32_t vel_lon; |
|
int32_t vel_total; |
|
|
|
vel_lat = vel_forward_cms*cos_yaw - vel_right_cms*sin_yaw; |
|
vel_lon = vel_forward_cms*sin_yaw + vel_right_cms*cos_yaw; |
|
|
|
// constrain the velocity vector and scale if necessary |
|
vel_total = safe_sqrt(vel_lat*vel_lat + vel_lon*vel_lon); |
|
if( vel_total > MAX_LOITER_POS_VEL_VELOCITY ) { |
|
vel_lat = MAX_LOITER_POS_VEL_VELOCITY * vel_lat/vel_total; |
|
vel_lon = MAX_LOITER_POS_VEL_VELOCITY * vel_lon/vel_total; |
|
} |
|
|
|
// update loiter target position |
|
loiter_lat_from_home_cm += vel_lat * dt; |
|
loiter_lon_from_home_cm += vel_lon * dt; |
|
|
|
// update next_WP location for reporting purposes |
|
set_next_WP_latlon( |
|
home.lat + loiter_lat_from_home_cm / LATLON_TO_CM, |
|
home.lng + loiter_lat_from_home_cm / LATLON_TO_CM * scaleLongUp); |
|
} |
|
|
|
// loiter_set_target - set loiter's target position from home in cm |
|
// To-Do: change this function to accept a target in lat/lon format (and remove setting of next_WP?) |
|
static void |
|
loiter_set_target(float lat_from_home_cm, float lon_from_home_cm) |
|
{ |
|
loiter_lat_from_home_cm = lat_from_home_cm; |
|
loiter_lon_from_home_cm = lon_from_home_cm; |
|
|
|
// update next_WP location for reporting purposes |
|
set_next_WP_latlon( |
|
home.lat + loiter_lat_from_home_cm / LATLON_TO_CM, |
|
home.lng + loiter_lat_from_home_cm / LATLON_TO_CM * scaleLongUp); |
|
} |
|
|
|
////////////////////////////////////////////////////////// |
|
// waypoint inertial navigation controller |
|
////////////////////////////////////////////////////////// |
|
// Waypoint navigation is accomplished by moving the target location up to a maximum of 10m from the current location |
|
|
|
// get_wpinav_pos - wpinav position controller with desired position held in wpinav_destination |
|
static void |
|
get_wpinav_pos(float dt) |
|
{ |
|
// re-use loiter position controller |
|
get_loiter_pos_lat_lon(wpinav_target.x, wpinav_target.y, dt); |
|
} |
|
|
|
// wpinav_set_destination - set destination using lat/lon coordinates |
|
void wpinav_set_destination(const Location& destination) |
|
{ |
|
wpinav_set_origin_and_destination(current_loc, destination); |
|
} |
|
|
|
// wpinav_set_origin_and_destination - set origin and destination using lat/lon coordinates |
|
void wpinav_set_origin_and_destination(const Location& origin, const Location& destination) |
|
{ |
|
wpinav_origin.x = (origin.lat-home.lat) * LATLON_TO_CM; |
|
wpinav_origin.y = (origin.lng-home.lng) * LATLON_TO_CM * scaleLongDown; |
|
wpinav_destination.x = (destination.lat-home.lat) * LATLON_TO_CM; |
|
wpinav_destination.y = (destination.lng-home.lng) * LATLON_TO_CM * scaleLongDown; |
|
wpinav_pos_delta = wpinav_destination - wpinav_origin; |
|
wpinav_track_length = wpinav_pos_delta.length(); |
|
wpinav_track_desired = 0; |
|
|
|
// set next_WP, prev_WP for reporting purposes |
|
// To-Do: move calcs below to a function |
|
set_next_WP_latlon( |
|
home.lat + wpinav_destination.x / LATLON_TO_CM, |
|
home.lng + wpinav_destination.y / LATLON_TO_CM * scaleLongUp); |
|
} |
|
|
|
#define WPINAV_MAX_POS_ERROR 2000.0f // maximum distance (in cm) that the desired track can stray from our current location. |
|
void |
|
wpinav_advance_track_desired(float velocity_cms, float dt) |
|
{ |
|
float cross_track_dist; |
|
float track_covered; |
|
float track_desired_max; |
|
float line_a, line_b, line_c, line_m; |
|
|
|
// get current location |
|
Vector2f curr(inertial_nav.get_latitude_diff(), inertial_nav.get_longitude_diff()); |
|
|
|
// check for zero length segment |
|
if( wpinav_pos_delta.x == 0 && wpinav_pos_delta.y == 0) { |
|
wpinav_target = wpinav_destination; |
|
return; |
|
} |
|
|
|
if( wpinav_pos_delta.x == 0 ) { |
|
// x is zero |
|
cross_track_dist = fabs(curr.x - wpinav_destination.x); |
|
track_covered = fabs(curr.y - wpinav_origin.y); |
|
}else if(wpinav_pos_delta.y == 0) { |
|
// y is zero |
|
cross_track_dist = fabs(curr.y - wpinav_destination.y); |
|
track_covered = fabs(curr.x - wpinav_origin.x); |
|
}else{ |
|
// both x and y non zero |
|
line_a = wpinav_pos_delta.y; |
|
line_b = -wpinav_pos_delta.x; |
|
line_c = wpinav_pos_delta.x * wpinav_origin.y - wpinav_pos_delta.y * wpinav_origin.x; |
|
line_m = line_a / line_b; |
|
cross_track_dist = abs(line_a * curr.x + line_b * curr.y + line_c ) / wpinav_track_length; |
|
|
|
line_m = 1/line_m; |
|
line_a = line_m; |
|
line_b = -1; |
|
line_c = curr.y - line_m * curr.x; |
|
|
|
// calculate the distance to the closest point along the track and it's distance from the origin |
|
track_covered = abs(line_a*wpinav_origin.x + line_b*wpinav_origin.y + line_c) / safe_sqrt(line_a*line_a+line_b*line_b); |
|
} |
|
|
|
// maximum distance along the track that we will allow (stops target point from getting too far from the current position) |
|
track_desired_max = track_covered + safe_sqrt(WPINAV_MAX_POS_ERROR*WPINAV_MAX_POS_ERROR-cross_track_dist*cross_track_dist); |
|
|
|
// advance the current target |
|
wpinav_track_desired += velocity_cms * dt; |
|
|
|
// constrain the target from moving too far |
|
if( wpinav_track_desired > track_desired_max ) { |
|
wpinav_track_desired = track_desired_max; |
|
} |
|
if( wpinav_track_desired > wpinav_track_length ) { |
|
wpinav_track_desired = wpinav_track_length; |
|
} |
|
|
|
// recalculate the desired position |
|
float track_length_pct = wpinav_track_desired/wpinav_track_length; |
|
wpinav_target.x = wpinav_origin.x + wpinav_pos_delta.x * track_length_pct; |
|
wpinav_target.y = wpinav_origin.y + wpinav_pos_delta.y * track_length_pct; |
|
} |
|
|
|
////////////////////////////////////////////////////////// |
|
// circle navigation controller |
|
////////////////////////////////////////////////////////// |
|
|
|
// circle_set_center -- set circle controller's center position and starting angle |
|
static void |
|
circle_set_center(const Vector2f pos_vec, float heading_in_radians) |
|
{ |
|
// set circle center |
|
circle_center = pos_vec; |
|
|
|
// set starting angle to current heading - 180 degrees |
|
circle_angle = heading_in_radians-ToRad(180); |
|
if( circle_angle > 180 ) { |
|
circle_angle -= 180; |
|
} |
|
if( circle_angle < -180 ) { |
|
circle_angle -= 180; |
|
} |
|
|
|
// initialise other variables |
|
circle_angle_total = 0; |
|
} |
|
|
|
// circle_get_pos - circle position controller's main call which in turn calls loiter controller with updated target position |
|
static void |
|
circle_get_pos(float dt) |
|
{ |
|
float angle_delta = circle_rate * dt; |
|
float cir_radius = g.circle_radius * 100; |
|
Vector2f circle_target; |
|
|
|
// update the target angle |
|
circle_angle += angle_delta; |
|
if( circle_angle > 180 ) { |
|
circle_angle -= 360; |
|
} |
|
if( circle_angle <= -180 ) { |
|
circle_angle += 360; |
|
} |
|
|
|
// update the total angle travelled |
|
circle_angle_total += angle_delta; |
|
|
|
// calculate target position |
|
circle_target.x = circle_center.x + cir_radius * sinf(1.57f - circle_angle); |
|
circle_target.y = circle_center.y + cir_radius * cosf(1.57f - circle_angle); |
|
|
|
// re-use loiter position controller |
|
get_loiter_pos_lat_lon(circle_target.x, circle_target.y, dt); |
|
} |