You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
599 lines
23 KiB
599 lines
23 KiB
/* |
|
* This program is free software: you can redistribute it and/or modify |
|
* it under the terms of the GNU General Public License as published by |
|
* the Free Software Foundation, either version 3 of the License, or |
|
* (at your option) any later version. |
|
* |
|
* This program is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
* GNU General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU General Public License |
|
* along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
|
|
#include <stdlib.h> |
|
#include <AP_HAL/AP_HAL.h> |
|
|
|
#include "AP_MotorsHeli_Dual.h" |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
const AP_Param::GroupInfo AP_MotorsHeli_Dual::var_info[] = { |
|
AP_NESTEDGROUPINFO(AP_MotorsHeli, 0), |
|
|
|
// @Param: SV1_POS |
|
// @DisplayName: Servo 1 Position |
|
// @Description: Angular location of swash servo #1 |
|
// @Range: -180 180 |
|
// @Units: deg |
|
// @User: Standard |
|
// @Increment: 1 |
|
AP_GROUPINFO("SV1_POS", 1, AP_MotorsHeli_Dual, _servo1_pos, AP_MOTORS_HELI_DUAL_SERVO1_POS), |
|
|
|
// @Param: SV2_POS |
|
// @DisplayName: Servo 2 Position |
|
// @Description: Angular location of swash servo #2 |
|
// @Range: -180 180 |
|
// @Units: deg |
|
// @User: Standard |
|
// @Increment: 1 |
|
AP_GROUPINFO("SV2_POS", 2, AP_MotorsHeli_Dual, _servo2_pos, AP_MOTORS_HELI_DUAL_SERVO2_POS), |
|
|
|
// @Param: SV3_POS |
|
// @DisplayName: Servo 3 Position |
|
// @Description: Angular location of swash servo #3 |
|
// @Range: -180 180 |
|
// @Units: deg |
|
// @User: Standard |
|
// @Increment: 1 |
|
AP_GROUPINFO("SV3_POS", 3, AP_MotorsHeli_Dual, _servo3_pos, AP_MOTORS_HELI_DUAL_SERVO3_POS), |
|
|
|
// @Param: SV4_POS |
|
// @DisplayName: Servo 4 Position |
|
// @Description: Angular location of swash servo #4 |
|
// @Range: -180 180 |
|
// @Units: deg |
|
// @User: Standard |
|
// @Increment: 1 |
|
AP_GROUPINFO("SV4_POS", 4, AP_MotorsHeli_Dual, _servo4_pos, AP_MOTORS_HELI_DUAL_SERVO4_POS), |
|
|
|
// @Param: SV5_POS |
|
// @DisplayName: Servo 5 Position |
|
// @Description: Angular location of swash servo #5 |
|
// @Range: -180 180 |
|
// @Units: deg |
|
// @User: Standard |
|
// @Increment: 1 |
|
AP_GROUPINFO("SV5_POS", 5, AP_MotorsHeli_Dual, _servo5_pos, AP_MOTORS_HELI_DUAL_SERVO5_POS), |
|
|
|
// @Param: SV6_POS |
|
// @DisplayName: Servo 6 Position |
|
// @Description: Angular location of swash servo #6 |
|
// @Range: -180 180 |
|
// @Units: deg |
|
// @User: Standard |
|
// @Increment: 1 |
|
AP_GROUPINFO("SV6_POS", 6, AP_MotorsHeli_Dual, _servo6_pos, AP_MOTORS_HELI_DUAL_SERVO6_POS), |
|
|
|
// @Param: PHANG1 |
|
// @DisplayName: Swashplate 1 Phase Angle Compensation |
|
// @Description: Phase angle correction for rotor head. If pitching the swash forward induces a roll, this can be correct the problem |
|
// @Range: -90 90 |
|
// @Units: deg |
|
// @User: Advanced |
|
// @Increment: 1 |
|
AP_GROUPINFO("PHANG1", 7, AP_MotorsHeli_Dual, _swash1_phase_angle, 0), |
|
|
|
// @Param: PHANG2 |
|
// @DisplayName: Swashplate 2 Phase Angle Compensation |
|
// @Description: Phase angle correction for rotor head. If pitching the swash forward induces a roll, this can be correct the problem |
|
// @Range: -90 90 |
|
// @Units: deg |
|
// @User: Advanced |
|
// @Increment: 1 |
|
AP_GROUPINFO("PHANG2", 8, AP_MotorsHeli_Dual, _swash2_phase_angle, 0), |
|
|
|
// @Param: DUAL_MODE |
|
// @DisplayName: Dual Mode |
|
// @Description: Sets the dual mode of the heli, either as tandem or as transverse. |
|
// @Values: 0:Longitudinal, 1:Transverse |
|
// @User: Standard |
|
AP_GROUPINFO("DUAL_MODE", 9, AP_MotorsHeli_Dual, _dual_mode, AP_MOTORS_HELI_DUAL_MODE_TANDEM), |
|
|
|
// @Param: DCP_SCALER |
|
// @DisplayName: Differential-Collective-Pitch Scaler |
|
// @Description: Scaling factor applied to the differential-collective-pitch |
|
// @Range: 0 1 |
|
// @User: Standard |
|
AP_GROUPINFO("DCP_SCALER", 10, AP_MotorsHeli_Dual, _dcp_scaler, AP_MOTORS_HELI_DUAL_DCP_SCALER), |
|
|
|
// @Param: DCP_YAW |
|
// @DisplayName: Differential-Collective-Pitch Yaw Mixing |
|
// @Description: Feed-forward compensation to automatically add yaw input when differential collective pitch is applied. |
|
// @Range: -10 10 |
|
// @Increment: 0.1 |
|
AP_GROUPINFO("DCP_YAW", 11, AP_MotorsHeli_Dual, _dcp_yaw_effect, 0), |
|
|
|
// @Param: YAW_SCALER |
|
// @DisplayName: Scaler for yaw mixing |
|
// @Description: Scaler for mixing yaw into roll or pitch. |
|
// @Range: -10 10 |
|
// @Increment: 0.1 |
|
AP_GROUPINFO("YAW_SCALER", 12, AP_MotorsHeli_Dual, _yaw_scaler, 1.0f), |
|
|
|
// Indices 13-15 were used by RSC_PWM_MIN, RSC_PWM_MAX and RSC_PWM_REV and should not be used |
|
|
|
// @Param: COL2_MIN |
|
// @DisplayName: Collective Pitch Minimum for rear swashplate |
|
// @Description: Lowest possible servo position in PWM microseconds for the rear swashplate |
|
// @Range: 1000 2000 |
|
// @Units: PWM |
|
// @Increment: 1 |
|
// @User: Standard |
|
AP_GROUPINFO("COL2_MIN", 16, AP_MotorsHeli_Dual, _collective2_min, AP_MOTORS_HELI_DUAL_COLLECTIVE2_MIN), |
|
|
|
// @Param: COL2_MAX |
|
// @DisplayName: Collective Pitch Maximum for rear swashplate |
|
// @Description: Highest possible servo position in PWM microseconds for the rear swashplate |
|
// @Range: 1000 2000 |
|
// @Units: PWM |
|
// @Increment: 1 |
|
// @User: Standard |
|
AP_GROUPINFO("COL2_MAX", 17, AP_MotorsHeli_Dual, _collective2_max, AP_MOTORS_HELI_DUAL_COLLECTIVE2_MAX), |
|
|
|
// @Param: COL2_MID |
|
// @DisplayName: Collective Pitch Mid-Point for rear swashplate |
|
// @Description: Swash servo position in PWM microseconds corresponding to zero collective pitch for the rear swashplate (or zero lift for Asymmetrical blades) |
|
// @Range: 1000 2000 |
|
// @Units: PWM |
|
// @Increment: 1 |
|
// @User: Standard |
|
AP_GROUPINFO("COL2_MID", 18, AP_MotorsHeli_Dual, _collective2_mid, AP_MOTORS_HELI_DUAL_COLLECTIVE2_MID), |
|
|
|
// @Param: COL_CTRL_DIR |
|
// @DisplayName: Collective Control Direction |
|
// @Description: Direction collective moves for positive pitch. 0 for Normal, 1 for Reversed |
|
// @Values: 0:Normal,1:Reversed |
|
// @User: Standard |
|
AP_GROUPINFO("COL_CTRL_DIR", 19, AP_MotorsHeli_Dual, _collective_direction, AP_MOTORS_HELI_DUAL_COLLECTIVE_DIRECTION_NORMAL), |
|
|
|
AP_GROUPEND |
|
}; |
|
|
|
// set update rate to motors - a value in hertz |
|
void AP_MotorsHeli_Dual::set_update_rate( uint16_t speed_hz ) |
|
{ |
|
// record requested speed |
|
_speed_hz = speed_hz; |
|
|
|
// setup fast channels |
|
uint16_t mask = 0; |
|
for (uint8_t i=0; i<AP_MOTORS_HELI_DUAL_NUM_SWASHPLATE_SERVOS; i++) { |
|
mask |= 1U << (AP_MOTORS_MOT_1+i); |
|
} |
|
|
|
rc_set_freq(mask, _speed_hz); |
|
} |
|
|
|
// init_outputs |
|
bool AP_MotorsHeli_Dual::init_outputs() |
|
{ |
|
if (!_flags.initialised_ok) { |
|
// make sure 6 output channels are mapped |
|
for (uint8_t i=0; i<AP_MOTORS_HELI_DUAL_NUM_SWASHPLATE_SERVOS; i++) { |
|
add_motor_num(CH_1+i); |
|
} |
|
|
|
// set rotor servo range |
|
_rotor.init_servo(); |
|
|
|
} |
|
|
|
// reset swash servo range and endpoints |
|
for (uint8_t i=0; i<AP_MOTORS_HELI_DUAL_NUM_SWASHPLATE_SERVOS; i++) { |
|
reset_swash_servo(SRV_Channels::get_motor_function(i)); |
|
} |
|
|
|
_flags.initialised_ok = true; |
|
|
|
return true; |
|
} |
|
|
|
// output_test_seq - spin a motor at the pwm value specified |
|
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame |
|
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000 |
|
void AP_MotorsHeli_Dual::output_test_seq(uint8_t motor_seq, int16_t pwm) |
|
{ |
|
// exit immediately if not armed |
|
if (!armed()) { |
|
return; |
|
} |
|
|
|
// output to motors and servos |
|
switch (motor_seq) { |
|
case 1: |
|
// swash servo 1 |
|
rc_write(AP_MOTORS_MOT_1, pwm); |
|
break; |
|
case 2: |
|
// swash servo 2 |
|
rc_write(AP_MOTORS_MOT_2, pwm); |
|
break; |
|
case 3: |
|
// swash servo 3 |
|
rc_write(AP_MOTORS_MOT_3, pwm); |
|
break; |
|
case 4: |
|
// swash servo 4 |
|
rc_write(AP_MOTORS_MOT_4, pwm); |
|
break; |
|
case 5: |
|
// swash servo 5 |
|
rc_write(AP_MOTORS_MOT_5, pwm); |
|
break; |
|
case 6: |
|
// swash servo 6 |
|
rc_write(AP_MOTORS_MOT_6, pwm); |
|
break; |
|
case 7: |
|
// main rotor |
|
rc_write(AP_MOTORS_HELI_DUAL_RSC, pwm); |
|
break; |
|
default: |
|
// do nothing |
|
break; |
|
} |
|
} |
|
|
|
// set_desired_rotor_speed |
|
void AP_MotorsHeli_Dual::set_desired_rotor_speed(float desired_speed) |
|
{ |
|
_rotor.set_desired_speed(desired_speed); |
|
} |
|
|
|
// calculate_armed_scalars |
|
void AP_MotorsHeli_Dual::calculate_armed_scalars() |
|
{ |
|
float thrcrv[5]; |
|
for (uint8_t i = 0; i < 5; i++) { |
|
thrcrv[i]=_rsc_thrcrv[i]*0.001f; |
|
} |
|
_rotor.set_ramp_time(_rsc_ramp_time); |
|
_rotor.set_runup_time(_rsc_runup_time); |
|
_rotor.set_critical_speed(_rsc_critical*0.001f); |
|
_rotor.set_idle_output(_rsc_idle_output*0.001f); |
|
_rotor.set_throttle_curve(thrcrv, (uint16_t)_rsc_slewrate.get()); |
|
} |
|
|
|
// calculate_scalars |
|
void AP_MotorsHeli_Dual::calculate_scalars() |
|
{ |
|
// range check collective min, max and mid |
|
if( _collective_min >= _collective_max ) { |
|
_collective_min = AP_MOTORS_HELI_COLLECTIVE_MIN; |
|
_collective_max = AP_MOTORS_HELI_COLLECTIVE_MAX; |
|
} |
|
|
|
|
|
// range check collective min, max and mid for rear swashplate |
|
if( _collective2_min >= _collective2_max ) { |
|
_collective2_min = AP_MOTORS_HELI_DUAL_COLLECTIVE2_MIN; |
|
_collective2_max = AP_MOTORS_HELI_DUAL_COLLECTIVE2_MAX; |
|
} |
|
|
|
_collective_mid = constrain_int16(_collective_mid, _collective_min, _collective_max); |
|
_collective2_mid = constrain_int16(_collective2_mid, _collective2_min, _collective2_max); |
|
|
|
// calculate collective mid point as a number from 0 to 1000 |
|
_collective_mid_pct = ((float)(_collective_mid-_collective_min))/((float)(_collective_max-_collective_min)); |
|
_collective2_mid_pct = ((float)(_collective2_mid-_collective2_min))/((float)(_collective2_max-_collective2_min)); |
|
|
|
// calculate factors based on swash type and servo position |
|
calculate_roll_pitch_collective_factors(); |
|
|
|
// set mode of main rotor controller and trigger recalculation of scalars |
|
_rotor.set_control_mode(static_cast<RotorControlMode>(_rsc_mode.get())); |
|
calculate_armed_scalars(); |
|
} |
|
|
|
// calculate_swash_factors - calculate factors based on swash type and servo position |
|
// To Do: support H3-140 swashplates in Heli Dual? |
|
void AP_MotorsHeli_Dual::calculate_roll_pitch_collective_factors() |
|
{ |
|
if (_dual_mode == AP_MOTORS_HELI_DUAL_MODE_TRANSVERSE) { |
|
// roll factors |
|
_rollFactor[CH_1] = _dcp_scaler; |
|
_rollFactor[CH_2] = _dcp_scaler; |
|
_rollFactor[CH_3] = _dcp_scaler; |
|
|
|
_rollFactor[CH_4] = -_dcp_scaler; |
|
_rollFactor[CH_5] = -_dcp_scaler; |
|
_rollFactor[CH_6] = -_dcp_scaler; |
|
|
|
// pitch factors |
|
_pitchFactor[CH_1] = cosf(radians(_servo1_pos - _swash1_phase_angle)); |
|
_pitchFactor[CH_2] = cosf(radians(_servo2_pos - _swash1_phase_angle)); |
|
_pitchFactor[CH_3] = cosf(radians(_servo3_pos - _swash1_phase_angle)); |
|
|
|
_pitchFactor[CH_4] = cosf(radians(_servo4_pos - _swash2_phase_angle)); |
|
_pitchFactor[CH_5] = cosf(radians(_servo5_pos - _swash2_phase_angle)); |
|
_pitchFactor[CH_6] = cosf(radians(_servo6_pos - _swash2_phase_angle)); |
|
|
|
// yaw factors |
|
_yawFactor[CH_1] = cosf(radians(_servo1_pos + 180 - _swash1_phase_angle)) * _yaw_scaler; |
|
_yawFactor[CH_2] = cosf(radians(_servo2_pos + 180 - _swash1_phase_angle)) * _yaw_scaler; |
|
_yawFactor[CH_3] = cosf(radians(_servo3_pos + 180 - _swash1_phase_angle)) * _yaw_scaler; |
|
|
|
_yawFactor[CH_4] = cosf(radians(_servo4_pos - _swash2_phase_angle)) * _yaw_scaler; |
|
_yawFactor[CH_5] = cosf(radians(_servo5_pos - _swash2_phase_angle)) * _yaw_scaler; |
|
_yawFactor[CH_6] = cosf(radians(_servo6_pos - _swash2_phase_angle)) * _yaw_scaler; |
|
} else { // AP_MOTORS_HELI_DUAL_MODE_TANDEM |
|
// roll factors |
|
_rollFactor[CH_1] = cosf(radians(_servo1_pos + 90 - _swash1_phase_angle)); |
|
_rollFactor[CH_2] = cosf(radians(_servo2_pos + 90 - _swash1_phase_angle)); |
|
_rollFactor[CH_3] = cosf(radians(_servo3_pos + 90 - _swash1_phase_angle)); |
|
|
|
_rollFactor[CH_4] = cosf(radians(_servo4_pos + 90 - _swash2_phase_angle)); |
|
_rollFactor[CH_5] = cosf(radians(_servo5_pos + 90 - _swash2_phase_angle)); |
|
_rollFactor[CH_6] = cosf(radians(_servo6_pos + 90 - _swash2_phase_angle)); |
|
|
|
// pitch factors |
|
_pitchFactor[CH_1] = _dcp_scaler; |
|
_pitchFactor[CH_2] = _dcp_scaler; |
|
_pitchFactor[CH_3] = _dcp_scaler; |
|
|
|
_pitchFactor[CH_4] = -_dcp_scaler; |
|
_pitchFactor[CH_5] = -_dcp_scaler; |
|
_pitchFactor[CH_6] = -_dcp_scaler; |
|
|
|
// yaw factors |
|
_yawFactor[CH_1] = cosf(radians(_servo1_pos + 90 - _swash1_phase_angle)) * _yaw_scaler; |
|
_yawFactor[CH_2] = cosf(radians(_servo2_pos + 90 - _swash1_phase_angle)) * _yaw_scaler; |
|
_yawFactor[CH_3] = cosf(radians(_servo3_pos + 90 - _swash1_phase_angle)) * _yaw_scaler; |
|
|
|
_yawFactor[CH_4] = cosf(radians(_servo4_pos + 270 - _swash2_phase_angle)) * _yaw_scaler; |
|
_yawFactor[CH_5] = cosf(radians(_servo5_pos + 270 - _swash2_phase_angle)) * _yaw_scaler; |
|
_yawFactor[CH_6] = cosf(radians(_servo6_pos + 270 - _swash2_phase_angle)) * _yaw_scaler; |
|
} |
|
|
|
// collective factors |
|
_collectiveFactor[CH_1] = 1; |
|
_collectiveFactor[CH_2] = 1; |
|
_collectiveFactor[CH_3] = 1; |
|
|
|
_collectiveFactor[CH_4] = 1; |
|
_collectiveFactor[CH_5] = 1; |
|
_collectiveFactor[CH_6] = 1; |
|
} |
|
|
|
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used) |
|
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict |
|
uint16_t AP_MotorsHeli_Dual::get_motor_mask() |
|
{ |
|
// dual heli uses channels 1,2,3,4,5,6 and 8 |
|
uint16_t mask = 0; |
|
for (uint8_t i=0; i<AP_MOTORS_HELI_DUAL_NUM_SWASHPLATE_SERVOS; i++) { |
|
mask |= 1U << (AP_MOTORS_MOT_1+i); |
|
} |
|
mask |= 1U << AP_MOTORS_HELI_DUAL_RSC; |
|
return mask; |
|
} |
|
|
|
// update_motor_controls - sends commands to motor controllers |
|
void AP_MotorsHeli_Dual::update_motor_control(RotorControlState state) |
|
{ |
|
// Send state update to motors |
|
_rotor.output(state); |
|
|
|
if (state == ROTOR_CONTROL_STOP) { |
|
// set engine run enable aux output to not run position to kill engine when disarmed |
|
SRV_Channels::set_output_limit(SRV_Channel::k_engine_run_enable, SRV_Channel::SRV_CHANNEL_LIMIT_MIN); |
|
} else { |
|
// else if armed, set engine run enable output to run position |
|
SRV_Channels::set_output_limit(SRV_Channel::k_engine_run_enable, SRV_Channel::SRV_CHANNEL_LIMIT_MAX); |
|
} |
|
|
|
// Check if rotors are run-up |
|
_heliflags.rotor_runup_complete = _rotor.is_runup_complete(); |
|
} |
|
|
|
// |
|
// move_actuators - moves swash plate to attitude of parameters passed in |
|
// - expected ranges: |
|
// roll : -1 ~ +1 |
|
// pitch: -1 ~ +1 |
|
// collective: 0 ~ 1 |
|
// yaw: -1 ~ +1 |
|
// |
|
void AP_MotorsHeli_Dual::move_actuators(float roll_out, float pitch_out, float collective_in, float yaw_out) |
|
{ |
|
// initialize limits flag |
|
limit.roll_pitch = false; |
|
limit.yaw = false; |
|
limit.throttle_lower = false; |
|
limit.throttle_upper = false; |
|
|
|
if (_dual_mode == AP_MOTORS_HELI_DUAL_MODE_TRANSVERSE) { |
|
if (pitch_out < -_cyclic_max/4500.0f) { |
|
pitch_out = -_cyclic_max/4500.0f; |
|
limit.roll_pitch = true; |
|
} |
|
|
|
if (pitch_out > _cyclic_max/4500.0f) { |
|
pitch_out = _cyclic_max/4500.0f; |
|
limit.roll_pitch = true; |
|
} |
|
} else { |
|
if (roll_out < -_cyclic_max/4500.0f) { |
|
roll_out = -_cyclic_max/4500.0f; |
|
limit.roll_pitch = true; |
|
} |
|
|
|
if (roll_out > _cyclic_max/4500.0f) { |
|
roll_out = _cyclic_max/4500.0f; |
|
limit.roll_pitch = true; |
|
} |
|
} |
|
|
|
if (_heliflags.inverted_flight) { |
|
collective_in = 1 - collective_in; |
|
} |
|
|
|
float yaw_compensation = 0.0f; |
|
|
|
// if servo output not in manual mode, process pre-compensation factors |
|
if (_servo_mode == SERVO_CONTROL_MODE_AUTOMATED) { |
|
// add differential collective pitch yaw compensation |
|
if (_dual_mode == AP_MOTORS_HELI_DUAL_MODE_TRANSVERSE) { |
|
yaw_compensation = _dcp_yaw_effect * roll_out; |
|
} else { // AP_MOTORS_HELI_DUAL_MODE_TANDEM |
|
yaw_compensation = _dcp_yaw_effect * pitch_out; |
|
} |
|
yaw_out = yaw_out + yaw_compensation; |
|
} |
|
|
|
// scale yaw and update limits |
|
if (yaw_out < -_cyclic_max/4500.0f) { |
|
yaw_out = -_cyclic_max/4500.0f; |
|
limit.yaw = true; |
|
} |
|
if (yaw_out > _cyclic_max/4500.0f) { |
|
yaw_out = _cyclic_max/4500.0f; |
|
limit.yaw = true; |
|
} |
|
|
|
// constrain collective input |
|
float collective_out = collective_in; |
|
if (collective_out <= 0.0f) { |
|
collective_out = 0.0f; |
|
limit.throttle_lower = true; |
|
} |
|
if (collective_out >= 1.0f) { |
|
collective_out = 1.0f; |
|
limit.throttle_upper = true; |
|
} |
|
|
|
// ensure not below landed/landing collective |
|
if (_heliflags.landing_collective && collective_out < (_land_collective_min*0.001f)) { |
|
collective_out = _land_collective_min*0.001f; |
|
limit.throttle_lower = true; |
|
} |
|
|
|
// Set rear collective to midpoint if required |
|
float collective2_out = collective_out; |
|
if (_servo_mode == SERVO_CONTROL_MODE_MANUAL_CENTER) { |
|
collective2_out = _collective2_mid_pct; |
|
} |
|
|
|
// scale collective pitch for front swashplate (servos 1,2,3) |
|
float collective_scaler = ((float)(_collective_max-_collective_min))*0.001f; |
|
float collective_out_scaled = collective_out * collective_scaler + (_collective_min - 1000)*0.001f; |
|
|
|
// scale collective pitch for rear swashplate (servos 4,5,6) |
|
float collective2_scaler = ((float)(_collective2_max-_collective2_min))*0.001f; |
|
float collective2_out_scaled = collective2_out * collective2_scaler + (_collective2_min - 1000)*0.001f; |
|
|
|
// Collective control direction. Swash plates move up for negative collective pitch, down for positive collective pitch |
|
if (_collective_direction == AP_MOTORS_HELI_DUAL_COLLECTIVE_DIRECTION_REVERSED){ |
|
collective_out_scaled = 1 - collective_out_scaled; |
|
collective2_out_scaled = 1 - collective2_out_scaled; |
|
} |
|
|
|
// feed power estimate into main rotor controller |
|
// ToDo: add main rotor cyclic power? |
|
_rotor.set_collective(fabsf(collective_out)); |
|
|
|
// swashplate servos |
|
_servo_out[CH_1] = (_rollFactor[CH_1] * roll_out + _pitchFactor[CH_1] * pitch_out + _yawFactor[CH_1] * yaw_out)*0.45f + _collectiveFactor[CH_1] * collective_out_scaled; |
|
_servo_out[CH_2] = (_rollFactor[CH_2] * roll_out + _pitchFactor[CH_2] * pitch_out + _yawFactor[CH_2] * yaw_out)*0.45f + _collectiveFactor[CH_2] * collective_out_scaled; |
|
_servo_out[CH_3] = (_rollFactor[CH_3] * roll_out + _pitchFactor[CH_3] * pitch_out + _yawFactor[CH_3] * yaw_out)*0.45f + _collectiveFactor[CH_3] * collective_out_scaled; |
|
|
|
_servo_out[CH_4] = (_rollFactor[CH_4] * roll_out + _pitchFactor[CH_4] * pitch_out + _yawFactor[CH_4] * yaw_out)*0.45f + _collectiveFactor[CH_4] * collective2_out_scaled; |
|
_servo_out[CH_5] = (_rollFactor[CH_5] * roll_out + _pitchFactor[CH_5] * pitch_out + _yawFactor[CH_5] * yaw_out)*0.45f + _collectiveFactor[CH_5] * collective2_out_scaled; |
|
_servo_out[CH_6] = (_rollFactor[CH_6] * roll_out + _pitchFactor[CH_6] * pitch_out + _yawFactor[CH_6] * yaw_out)*0.45f + _collectiveFactor[CH_6] * collective2_out_scaled; |
|
|
|
// rescale from -1..1, so we can use the pwm calc that includes trim |
|
for (uint8_t i=0; i<AP_MOTORS_HELI_DUAL_NUM_SWASHPLATE_SERVOS; i++) { |
|
_servo_out[i] = 2*_servo_out[i] - 1; |
|
} |
|
} |
|
|
|
void AP_MotorsHeli_Dual::output_to_motors() |
|
{ |
|
if (!_flags.initialised_ok) { |
|
return; |
|
} |
|
// actually move the servos. PWM is sent based on nominal 1500 center. servo output shifts center based on trim value. |
|
for (uint8_t i=0; i<AP_MOTORS_HELI_DUAL_NUM_SWASHPLATE_SERVOS; i++) { |
|
rc_write_swash(i, _servo_out[i]); |
|
} |
|
|
|
switch (_spool_mode) { |
|
case SHUT_DOWN: |
|
// sends minimum values out to the motors |
|
update_motor_control(ROTOR_CONTROL_STOP); |
|
break; |
|
case GROUND_IDLE: |
|
// sends idle output to motors when armed. rotor could be static or turning (autorotation) |
|
update_motor_control(ROTOR_CONTROL_IDLE); |
|
break; |
|
case SPOOL_UP: |
|
case THROTTLE_UNLIMITED: |
|
// set motor output based on thrust requests |
|
update_motor_control(ROTOR_CONTROL_ACTIVE); |
|
break; |
|
case SPOOL_DOWN: |
|
// sends idle output to motors and wait for rotor to stop |
|
update_motor_control(ROTOR_CONTROL_IDLE); |
|
break; |
|
|
|
} |
|
} |
|
|
|
// servo_test - move servos through full range of movement |
|
void AP_MotorsHeli_Dual::servo_test() |
|
{ |
|
// this test cycle is equivalent to that of AP_MotorsHeli_Single, but excluding |
|
// mixing of yaw, as that physical movement is represented by pitch and roll |
|
|
|
_servo_test_cycle_time += 1.0f / _loop_rate; |
|
|
|
if ((_servo_test_cycle_time >= 0.0f && _servo_test_cycle_time < 0.5f)|| // Tilt swash back |
|
(_servo_test_cycle_time >= 6.0f && _servo_test_cycle_time < 6.5f)){ |
|
_pitch_test += (1.0f / (_loop_rate/2)); |
|
_oscillate_angle += 8 * M_PI / _loop_rate; |
|
} else if ((_servo_test_cycle_time >= 0.5f && _servo_test_cycle_time < 4.5f)|| // Roll swash around |
|
(_servo_test_cycle_time >= 6.5f && _servo_test_cycle_time < 10.5f)){ |
|
_oscillate_angle += M_PI / (2 * _loop_rate); |
|
_roll_test = sinf(_oscillate_angle); |
|
_pitch_test = cosf(_oscillate_angle); |
|
} else if ((_servo_test_cycle_time >= 4.5f && _servo_test_cycle_time < 5.0f)|| // Return swash to level |
|
(_servo_test_cycle_time >= 10.5f && _servo_test_cycle_time < 11.0f)){ |
|
_pitch_test -= (1.0f / (_loop_rate/2)); |
|
_oscillate_angle += 8 * M_PI / _loop_rate; |
|
} else if (_servo_test_cycle_time >= 5.0f && _servo_test_cycle_time < 6.0f){ // Raise swash to top |
|
_collective_test += (1.0f / _loop_rate); |
|
_oscillate_angle += 2 * M_PI / _loop_rate; |
|
} else if (_servo_test_cycle_time >= 11.0f && _servo_test_cycle_time < 12.0f){ // Lower swash to bottom |
|
_collective_test -= (1.0f / _loop_rate); |
|
_oscillate_angle += 2 * M_PI / _loop_rate; |
|
} else { // reset cycle |
|
_servo_test_cycle_time = 0.0f; |
|
_oscillate_angle = 0.0f; |
|
_collective_test = 0.0f; |
|
_roll_test = 0.0f; |
|
_pitch_test = 0.0f; |
|
// decrement servo test cycle counter at the end of the cycle |
|
if (_servo_test_cycle_counter > 0){ |
|
_servo_test_cycle_counter--; |
|
} |
|
} |
|
|
|
// over-ride servo commands to move servos through defined ranges |
|
|
|
_throttle_filter.reset(constrain_float(_collective_test, 0.0f, 1.0f)); |
|
_roll_in = constrain_float(_roll_test, -1.0f, 1.0f); |
|
_pitch_in = constrain_float(_pitch_test, -1.0f, 1.0f); |
|
}
|
|
|