You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1330 lines
39 KiB
1330 lines
39 KiB
/* |
|
SITL handling |
|
|
|
This simulates a GPS on a serial port |
|
|
|
Andrew Tridgell November 2011 |
|
*/ |
|
|
|
#include <AP_HAL/AP_HAL.h> |
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL |
|
|
|
#include "AP_HAL_SITL.h" |
|
#include "AP_HAL_SITL_Namespace.h" |
|
#include "HAL_SITL_Class.h" |
|
|
|
#include <AP_Math/AP_Math.h> |
|
#include <SITL/SITL.h> |
|
#include "Scheduler.h" |
|
#include "UARTDriver.h" |
|
#include <AP_GPS/AP_GPS.h> |
|
#include <AP_GPS/AP_GPS_UBLOX.h> |
|
#include <sys/ioctl.h> |
|
#include <unistd.h> |
|
#include <time.h> |
|
#include <stdio.h> |
|
#include <sys/time.h> |
|
#include <sys/stat.h> |
|
#include <sys/types.h> |
|
#include <fcntl.h> |
|
|
|
#pragma GCC diagnostic ignored "-Wunused-result" |
|
|
|
using namespace HALSITL; |
|
extern const AP_HAL::HAL& hal; |
|
|
|
static uint8_t next_gps_index; |
|
static uint8_t gps_delay; |
|
|
|
// state of GPS emulation |
|
static struct gps_state { |
|
/* pipe emulating UBLOX GPS serial stream */ |
|
int gps_fd, client_fd; |
|
uint32_t last_update; // milliseconds |
|
} gps_state, gps2_state; |
|
|
|
/* |
|
hook for reading from the GPS pipe |
|
*/ |
|
ssize_t SITL_State::gps_read(int fd, void *buf, size_t count) |
|
{ |
|
#ifdef FIONREAD |
|
// use FIONREAD to get exact value if possible |
|
int num_ready; |
|
while (ioctl(fd, FIONREAD, &num_ready) == 0 && num_ready > 3000) { |
|
// the pipe is filling up - drain it |
|
uint8_t tmp[128]; |
|
if (read(fd, tmp, sizeof(tmp)) != sizeof(tmp)) { |
|
break; |
|
} |
|
} |
|
#endif |
|
return read(fd, buf, count); |
|
} |
|
|
|
/* |
|
setup GPS input pipe |
|
*/ |
|
int SITL_State::gps_pipe(void) |
|
{ |
|
int fd[2]; |
|
if (gps_state.client_fd != 0) { |
|
return gps_state.client_fd; |
|
} |
|
pipe(fd); |
|
gps_state.gps_fd = fd[1]; |
|
gps_state.client_fd = fd[0]; |
|
gps_state.last_update = AP_HAL::millis(); |
|
fcntl(fd[0], F_SETFD, FD_CLOEXEC); |
|
fcntl(fd[1], F_SETFD, FD_CLOEXEC); |
|
HALSITL::UARTDriver::_set_nonblocking(gps_state.gps_fd); |
|
HALSITL::UARTDriver::_set_nonblocking(fd[0]); |
|
return gps_state.client_fd; |
|
} |
|
|
|
/* |
|
setup GPS2 input pipe |
|
*/ |
|
int SITL_State::gps2_pipe(void) |
|
{ |
|
int fd[2]; |
|
if (gps2_state.client_fd != 0) { |
|
return gps2_state.client_fd; |
|
} |
|
pipe(fd); |
|
gps2_state.gps_fd = fd[1]; |
|
gps2_state.client_fd = fd[0]; |
|
gps2_state.last_update = AP_HAL::millis(); |
|
HALSITL::UARTDriver::_set_nonblocking(gps2_state.gps_fd); |
|
HALSITL::UARTDriver::_set_nonblocking(fd[0]); |
|
return gps2_state.client_fd; |
|
} |
|
|
|
/* |
|
write some bytes from the simulated GPS |
|
*/ |
|
void SITL_State::_gps_write(const uint8_t *p, uint16_t size, uint8_t instance) |
|
{ |
|
while (size--) { |
|
if (_sitl->gps_byteloss > 0.0f) { |
|
float r = ((((unsigned)random()) % 1000000)) / 1.0e4; |
|
if (r < _sitl->gps_byteloss) { |
|
// lose the byte |
|
p++; |
|
continue; |
|
} |
|
} |
|
if (instance == 0 && gps_state.gps_fd != 0) { |
|
write(gps_state.gps_fd, p, 1); |
|
} |
|
if (instance == 1 && _sitl->gps2_enable) { |
|
if (gps2_state.gps_fd != 0) { |
|
write(gps2_state.gps_fd, p, 1); |
|
} |
|
} |
|
p++; |
|
} |
|
} |
|
|
|
/* |
|
get timeval using simulation time |
|
*/ |
|
static void simulation_timeval(struct timeval *tv) |
|
{ |
|
uint64_t now = AP_HAL::micros64(); |
|
static uint64_t first_usec; |
|
static struct timeval first_tv; |
|
if (first_usec == 0) { |
|
first_usec = now; |
|
gettimeofday(&first_tv, nullptr); |
|
} |
|
*tv = first_tv; |
|
tv->tv_sec += now / 1000000ULL; |
|
uint64_t new_usec = tv->tv_usec + (now % 1000000ULL); |
|
tv->tv_sec += new_usec / 1000000ULL; |
|
tv->tv_usec = new_usec % 1000000ULL; |
|
} |
|
|
|
/* |
|
send a UBLOX GPS message |
|
*/ |
|
void SITL_State::_gps_send_ubx(uint8_t msgid, uint8_t *buf, uint16_t size, uint8_t instance) |
|
{ |
|
const uint8_t PREAMBLE1 = 0xb5; |
|
const uint8_t PREAMBLE2 = 0x62; |
|
const uint8_t CLASS_NAV = 0x1; |
|
uint8_t hdr[6], chk[2]; |
|
hdr[0] = PREAMBLE1; |
|
hdr[1] = PREAMBLE2; |
|
hdr[2] = CLASS_NAV; |
|
hdr[3] = msgid; |
|
hdr[4] = size & 0xFF; |
|
hdr[5] = size >> 8; |
|
chk[0] = chk[1] = hdr[2]; |
|
chk[1] += (chk[0] += hdr[3]); |
|
chk[1] += (chk[0] += hdr[4]); |
|
chk[1] += (chk[0] += hdr[5]); |
|
for (uint8_t i=0; i<size; i++) { |
|
chk[1] += (chk[0] += buf[i]); |
|
} |
|
_gps_write(hdr, sizeof(hdr), instance); |
|
_gps_write(buf, size, instance); |
|
_gps_write(chk, sizeof(chk), instance); |
|
} |
|
|
|
/* |
|
return GPS time of week in milliseconds |
|
*/ |
|
static void gps_time(uint16_t *time_week, uint32_t *time_week_ms) |
|
{ |
|
struct timeval tv; |
|
simulation_timeval(&tv); |
|
const uint32_t epoch = 86400*(10*365 + (1980-1969)/4 + 1 + 6 - 2) - (GPS_LEAPSECONDS_MILLIS / 1000ULL); |
|
uint32_t epoch_seconds = tv.tv_sec - epoch; |
|
*time_week = epoch_seconds / AP_SEC_PER_WEEK; |
|
uint32_t t_ms = tv.tv_usec / 1000; |
|
// round time to nearest 200ms |
|
*time_week_ms = (epoch_seconds % AP_SEC_PER_WEEK) * AP_MSEC_PER_SEC + ((t_ms/200) * 200); |
|
} |
|
|
|
/* |
|
send a new set of GPS UBLOX packets |
|
*/ |
|
void SITL_State::_update_gps_ubx(const struct gps_data *d, uint8_t instance) |
|
{ |
|
struct PACKED ubx_nav_posllh { |
|
uint32_t time; // GPS msToW |
|
int32_t longitude; |
|
int32_t latitude; |
|
int32_t altitude_ellipsoid; |
|
int32_t altitude_msl; |
|
uint32_t horizontal_accuracy; |
|
uint32_t vertical_accuracy; |
|
} pos {}; |
|
struct PACKED ubx_nav_status { |
|
uint32_t time; // GPS msToW |
|
uint8_t fix_type; |
|
uint8_t fix_status; |
|
uint8_t differential_status; |
|
uint8_t res; |
|
uint32_t time_to_first_fix; |
|
uint32_t uptime; // milliseconds |
|
} status {}; |
|
struct PACKED ubx_nav_velned { |
|
uint32_t time; // GPS msToW |
|
int32_t ned_north; |
|
int32_t ned_east; |
|
int32_t ned_down; |
|
uint32_t speed_3d; |
|
uint32_t speed_2d; |
|
int32_t heading_2d; |
|
uint32_t speed_accuracy; |
|
uint32_t heading_accuracy; |
|
} velned {}; |
|
struct PACKED ubx_nav_solution { |
|
uint32_t time; |
|
int32_t time_nsec; |
|
int16_t week; |
|
uint8_t fix_type; |
|
uint8_t fix_status; |
|
int32_t ecef_x; |
|
int32_t ecef_y; |
|
int32_t ecef_z; |
|
uint32_t position_accuracy_3d; |
|
int32_t ecef_x_velocity; |
|
int32_t ecef_y_velocity; |
|
int32_t ecef_z_velocity; |
|
uint32_t speed_accuracy; |
|
uint16_t position_DOP; |
|
uint8_t res; |
|
uint8_t satellites; |
|
uint32_t res2; |
|
} sol {}; |
|
struct PACKED ubx_nav_dop { |
|
uint32_t time; // GPS msToW |
|
uint16_t gDOP; |
|
uint16_t pDOP; |
|
uint16_t tDOP; |
|
uint16_t vDOP; |
|
uint16_t hDOP; |
|
uint16_t nDOP; |
|
uint16_t eDOP; |
|
} dop {}; |
|
struct PACKED ubx_nav_pvt { |
|
uint32_t itow; |
|
uint16_t year; |
|
uint8_t month, day, hour, min, sec; |
|
uint8_t valid; |
|
uint32_t t_acc; |
|
int32_t nano; |
|
uint8_t fix_type; |
|
uint8_t flags; |
|
uint8_t flags2; |
|
uint8_t num_sv; |
|
int32_t lon, lat; |
|
int32_t height, h_msl; |
|
uint32_t h_acc, v_acc; |
|
int32_t velN, velE, velD, gspeed; |
|
int32_t head_mot; |
|
uint32_t s_acc; |
|
uint32_t head_acc; |
|
uint16_t p_dop; |
|
uint8_t reserved1[6]; |
|
uint32_t headVeh; |
|
uint8_t reserved2[4]; |
|
} pvt {}; |
|
const uint8_t SV_COUNT = 10; |
|
struct PACKED ubx_nav_svinfo { |
|
uint32_t itow; |
|
uint8_t numCh; |
|
uint8_t globalFlags; |
|
uint8_t reserved1[2]; |
|
// repeated block |
|
struct PACKED svinfo_sv { |
|
uint8_t chn; |
|
uint8_t svid; |
|
uint8_t flags; |
|
uint8_t quality; |
|
uint8_t cno; |
|
int8_t elev; |
|
int16_t azim; |
|
int32_t prRes; |
|
} sv[SV_COUNT]; |
|
} svinfo {}; |
|
const uint8_t MSG_POSLLH = 0x2; |
|
const uint8_t MSG_STATUS = 0x3; |
|
const uint8_t MSG_DOP = 0x4; |
|
const uint8_t MSG_VELNED = 0x12; |
|
const uint8_t MSG_SOL = 0x6; |
|
const uint8_t MSG_PVT = 0x7; |
|
const uint8_t MSG_SVINFO = 0x30; |
|
|
|
static uint32_t _next_nav_sv_info_time = 0; |
|
|
|
uint16_t time_week; |
|
uint32_t time_week_ms; |
|
|
|
gps_time(&time_week, &time_week_ms); |
|
|
|
pos.time = time_week_ms; |
|
pos.longitude = d->longitude * 1.0e7; |
|
pos.latitude = d->latitude * 1.0e7; |
|
pos.altitude_ellipsoid = d->altitude * 1000.0f; |
|
pos.altitude_msl = d->altitude * 1000.0f; |
|
pos.horizontal_accuracy = 1500; |
|
pos.vertical_accuracy = 2000; |
|
|
|
status.time = time_week_ms; |
|
status.fix_type = d->have_lock?3:0; |
|
status.fix_status = d->have_lock?1:0; |
|
status.differential_status = 0; |
|
status.res = 0; |
|
status.time_to_first_fix = 0; |
|
status.uptime = AP_HAL::millis(); |
|
|
|
velned.time = time_week_ms; |
|
velned.ned_north = 100.0f * d->speedN; |
|
velned.ned_east = 100.0f * d->speedE; |
|
velned.ned_down = 100.0f * d->speedD; |
|
velned.speed_2d = norm(d->speedN, d->speedE) * 100; |
|
velned.speed_3d = norm(d->speedN, d->speedE, d->speedD) * 100; |
|
velned.heading_2d = ToDeg(atan2f(d->speedE, d->speedN)) * 100000.0f; |
|
if (velned.heading_2d < 0.0f) { |
|
velned.heading_2d += 360.0f * 100000.0f; |
|
} |
|
velned.speed_accuracy = 40; |
|
velned.heading_accuracy = 4; |
|
|
|
memset(&sol, 0, sizeof(sol)); |
|
sol.fix_type = d->have_lock?3:0; |
|
sol.fix_status = 221; |
|
sol.satellites = d->have_lock?_sitl->gps_numsats:3; |
|
sol.time = time_week_ms; |
|
sol.week = time_week; |
|
|
|
dop.time = time_week_ms; |
|
dop.gDOP = 65535; |
|
dop.pDOP = 65535; |
|
dop.tDOP = 65535; |
|
dop.vDOP = 200; |
|
dop.hDOP = 121; |
|
dop.nDOP = 65535; |
|
dop.eDOP = 65535; |
|
|
|
pvt.itow = time_week_ms; |
|
pvt.year = 0; |
|
pvt.month = 0; |
|
pvt.day = 0; |
|
pvt.hour = 0; |
|
pvt.min = 0; |
|
pvt.sec = 0; |
|
pvt.valid = 0; // invalid utc date |
|
pvt.t_acc = 0; |
|
pvt.nano = 0; |
|
pvt.fix_type = d->have_lock? 0x3 : 0; |
|
pvt.flags = 0b10000011; // carrsoln=fixed, psm = na, diffsoln and fixok |
|
pvt.flags2 =0; |
|
pvt.num_sv = d->have_lock?_sitl->gps_numsats:3; |
|
pvt.lon = d->longitude * 1.0e7; |
|
pvt.lat = d->latitude * 1.0e7; |
|
pvt.height = d->altitude * 1000.0f; |
|
pvt.h_msl = d->altitude * 1000.0f; |
|
pvt.h_acc = 200; |
|
pvt.v_acc = 200; |
|
pvt.velN = 1000.0f * d->speedN; |
|
pvt.velE = 1000.0f * d->speedE; |
|
pvt.velD = 1000.0f * d->speedD; |
|
pvt.gspeed = norm(d->speedN, d->speedE) * 1000; |
|
pvt.head_mot = ToDeg(atan2f(d->speedE, d->speedN)) * 1.0e5; |
|
pvt.s_acc = 40; |
|
pvt.head_acc = 38 * 1.0e5; |
|
pvt.p_dop = 65535; |
|
memset(pvt.reserved1, '\0', ARRAY_SIZE(pvt.reserved1)); |
|
pvt.headVeh = 0; |
|
memset(pvt.reserved2, '\0', ARRAY_SIZE(pvt.reserved2)); |
|
|
|
_gps_send_ubx(MSG_POSLLH, (uint8_t*)&pos, sizeof(pos), instance); |
|
_gps_send_ubx(MSG_STATUS, (uint8_t*)&status, sizeof(status), instance); |
|
_gps_send_ubx(MSG_VELNED, (uint8_t*)&velned, sizeof(velned), instance); |
|
_gps_send_ubx(MSG_SOL, (uint8_t*)&sol, sizeof(sol), instance); |
|
_gps_send_ubx(MSG_DOP, (uint8_t*)&dop, sizeof(dop), instance); |
|
_gps_send_ubx(MSG_PVT, (uint8_t*)&pvt, sizeof(pvt), instance); |
|
|
|
if (time_week_ms > _next_nav_sv_info_time) { |
|
svinfo.itow = time_week_ms; |
|
svinfo.numCh = 32; |
|
svinfo.globalFlags = 4; // u-blox 8/M8 |
|
// fill in the SV's with some data even though firmware does not currently use it |
|
// note that this is not using num_sats as we aren't dynamically creating this to match |
|
for (uint8_t i = 0; i < SV_COUNT; i++) { |
|
svinfo.sv[i].chn = i; |
|
svinfo.sv[i].svid = i; |
|
svinfo.sv[i].flags = (i < _sitl->gps_numsats) ? 0x7 : 0x6; // sv used, diff correction data, orbit information |
|
svinfo.sv[i].quality = 7; // code and carrier lock and time synchronized |
|
svinfo.sv[i].cno = MAX(20, 30 - i); |
|
svinfo.sv[i].elev = MAX(30, 90 - i); |
|
svinfo.sv[i].azim = i; |
|
// not bothering to fill in prRes |
|
} |
|
_gps_send_ubx(MSG_SVINFO, (uint8_t*)&svinfo, sizeof(svinfo), instance); |
|
_next_nav_sv_info_time = time_week_ms + 10000; // 10 second delay |
|
} |
|
} |
|
|
|
/* |
|
MTK type simple checksum |
|
*/ |
|
static void mtk_checksum(const uint8_t *data, uint8_t n, uint8_t *ck_a, uint8_t *ck_b) |
|
{ |
|
*ck_a = *ck_b = 0; |
|
while (n--) { |
|
*ck_a += *data++; |
|
*ck_b += *ck_a; |
|
} |
|
} |
|
|
|
|
|
/* |
|
send a new GPS MTK packet |
|
*/ |
|
void SITL_State::_update_gps_mtk(const struct gps_data *d, uint8_t instance) |
|
{ |
|
struct PACKED mtk_msg { |
|
uint8_t preamble1; |
|
uint8_t preamble2; |
|
uint8_t msg_class; |
|
uint8_t msg_id; |
|
int32_t latitude; |
|
int32_t longitude; |
|
int32_t altitude; |
|
int32_t ground_speed; |
|
int32_t ground_course; |
|
uint8_t satellites; |
|
uint8_t fix_type; |
|
uint32_t utc_time; |
|
uint8_t ck_a; |
|
uint8_t ck_b; |
|
} p; |
|
|
|
p.preamble1 = 0xb5; |
|
p.preamble2 = 0x62; |
|
p.msg_class = 1; |
|
p.msg_id = 5; |
|
p.latitude = htonl(d->latitude * 1.0e6); |
|
p.longitude = htonl(d->longitude * 1.0e6); |
|
p.altitude = htonl(d->altitude * 100); |
|
p.ground_speed = htonl(norm(d->speedN, d->speedE) * 100); |
|
p.ground_course = htonl(ToDeg(atan2f(d->speedE, d->speedN)) * 1000000.0f); |
|
if (p.ground_course < 0.0f) { |
|
p.ground_course += 360.0f * 1000000.0f; |
|
} |
|
p.satellites = d->have_lock?_sitl->gps_numsats:3; |
|
p.fix_type = d->have_lock?3:1; |
|
|
|
// the spec is not very clear, but the time field seems to be |
|
// milliseconds since the start of the day in UTC time, |
|
// done in powers of 100. |
|
// The date is powers of 100 as well, but in days since 1/1/2000 |
|
struct tm tm; |
|
struct timeval tv; |
|
|
|
simulation_timeval(&tv); |
|
tm = *gmtime(&tv.tv_sec); |
|
uint32_t hsec = (tv.tv_usec / (10000*20)) * 20; // always multiple of 20 |
|
|
|
p.utc_time = htonl(hsec + tm.tm_sec*100 + tm.tm_min*100*100 + tm.tm_hour*100*100*100); |
|
|
|
mtk_checksum(&p.msg_class, sizeof(p)-4, &p.ck_a, &p.ck_b); |
|
|
|
_gps_write((uint8_t*)&p, sizeof(p), instance); |
|
} |
|
|
|
/* |
|
send a new GPS MTK 1.6 packet |
|
*/ |
|
void SITL_State::_update_gps_mtk16(const struct gps_data *d, uint8_t instance) |
|
{ |
|
struct PACKED mtk_msg { |
|
uint8_t preamble1; |
|
uint8_t preamble2; |
|
uint8_t size; |
|
int32_t latitude; |
|
int32_t longitude; |
|
int32_t altitude; |
|
int32_t ground_speed; |
|
int32_t ground_course; |
|
uint8_t satellites; |
|
uint8_t fix_type; |
|
uint32_t utc_date; |
|
uint32_t utc_time; |
|
uint16_t hdop; |
|
uint8_t ck_a; |
|
uint8_t ck_b; |
|
} p; |
|
|
|
p.preamble1 = 0xd0; |
|
p.preamble2 = 0xdd; |
|
p.size = sizeof(p) - 5; |
|
p.latitude = d->latitude * 1.0e6; |
|
p.longitude = d->longitude * 1.0e6; |
|
p.altitude = d->altitude * 100; |
|
p.ground_speed = norm(d->speedN, d->speedE) * 100; |
|
p.ground_course = ToDeg(atan2f(d->speedE, d->speedN)) * 100.0f; |
|
if (p.ground_course < 0.0f) { |
|
p.ground_course += 360.0f * 100.0f; |
|
} |
|
p.satellites = d->have_lock?_sitl->gps_numsats:3; |
|
p.fix_type = d->have_lock?3:1; |
|
|
|
// the spec is not very clear, but the time field seems to be |
|
// milliseconds since the start of the day in UTC time, |
|
// done in powers of 100. |
|
// The date is powers of 100 as well, but in days since 1/1/2000 |
|
struct tm tm; |
|
struct timeval tv; |
|
|
|
simulation_timeval(&tv); |
|
tm = *gmtime(&tv.tv_sec); |
|
uint32_t millisec = (tv.tv_usec / (1000*200)) * 200; // always multiple of 200 |
|
|
|
p.utc_date = (tm.tm_year-100) + ((tm.tm_mon+1)*100) + (tm.tm_mday*100*100); |
|
p.utc_time = millisec + tm.tm_sec*1000 + tm.tm_min*1000*100 + tm.tm_hour*1000*100*100; |
|
|
|
p.hdop = 115; |
|
|
|
mtk_checksum(&p.size, sizeof(p)-4, &p.ck_a, &p.ck_b); |
|
|
|
_gps_write((uint8_t*)&p, sizeof(p), instance); |
|
} |
|
|
|
/* |
|
send a new GPS MTK 1.9 packet |
|
*/ |
|
void SITL_State::_update_gps_mtk19(const struct gps_data *d, uint8_t instance) |
|
{ |
|
struct PACKED mtk_msg { |
|
uint8_t preamble1; |
|
uint8_t preamble2; |
|
uint8_t size; |
|
int32_t latitude; |
|
int32_t longitude; |
|
int32_t altitude; |
|
int32_t ground_speed; |
|
int32_t ground_course; |
|
uint8_t satellites; |
|
uint8_t fix_type; |
|
uint32_t utc_date; |
|
uint32_t utc_time; |
|
uint16_t hdop; |
|
uint8_t ck_a; |
|
uint8_t ck_b; |
|
} p; |
|
|
|
p.preamble1 = 0xd1; |
|
p.preamble2 = 0xdd; |
|
p.size = sizeof(p) - 5; |
|
p.latitude = d->latitude * 1.0e7; |
|
p.longitude = d->longitude * 1.0e7; |
|
p.altitude = d->altitude * 100; |
|
p.ground_speed = norm(d->speedN, d->speedE) * 100; |
|
p.ground_course = ToDeg(atan2f(d->speedE, d->speedN)) * 100.0f; |
|
if (p.ground_course < 0.0f) { |
|
p.ground_course += 360.0f * 100.0f; |
|
} |
|
p.satellites = d->have_lock?_sitl->gps_numsats:3; |
|
p.fix_type = d->have_lock?3:1; |
|
|
|
// the spec is not very clear, but the time field seems to be |
|
// milliseconds since the start of the day in UTC time, |
|
// done in powers of 100. |
|
// The date is powers of 100 as well, but in days since 1/1/2000 |
|
struct tm tm; |
|
struct timeval tv; |
|
|
|
simulation_timeval(&tv); |
|
tm = *gmtime(&tv.tv_sec); |
|
uint32_t millisec = (tv.tv_usec / (1000*200)) * 200; // always multiple of 200 |
|
|
|
p.utc_date = (tm.tm_year-100) + ((tm.tm_mon+1)*100) + (tm.tm_mday*100*100); |
|
p.utc_time = millisec + tm.tm_sec*1000 + tm.tm_min*1000*100 + tm.tm_hour*1000*100*100; |
|
|
|
p.hdop = 115; |
|
|
|
mtk_checksum(&p.size, sizeof(p)-4, &p.ck_a, &p.ck_b); |
|
|
|
_gps_write((uint8_t*)&p, sizeof(p), instance); |
|
} |
|
|
|
/* |
|
NMEA checksum |
|
*/ |
|
uint16_t SITL_State::_gps_nmea_checksum(const char *s) |
|
{ |
|
uint16_t cs = 0; |
|
const uint8_t *b = (const uint8_t *)s; |
|
for (uint16_t i=1; s[i]; i++) { |
|
cs ^= b[i]; |
|
} |
|
return cs; |
|
} |
|
|
|
/* |
|
formatted print of NMEA message, with checksum appended |
|
*/ |
|
void SITL_State::_gps_nmea_printf(uint8_t instance, const char *fmt, ...) |
|
{ |
|
char *s = nullptr; |
|
uint16_t csum; |
|
char trailer[6]; |
|
|
|
va_list ap; |
|
|
|
va_start(ap, fmt); |
|
vasprintf(&s, fmt, ap); |
|
va_end(ap); |
|
csum = _gps_nmea_checksum(s); |
|
snprintf(trailer, sizeof(trailer), "*%02X\r\n", (unsigned)csum); |
|
_gps_write((const uint8_t*)s, strlen(s), instance); |
|
_gps_write((const uint8_t*)trailer, 5, instance); |
|
free(s); |
|
} |
|
|
|
|
|
/* |
|
send a new GPS NMEA packet |
|
*/ |
|
void SITL_State::_update_gps_nmea(const struct gps_data *d, uint8_t instance) |
|
{ |
|
struct timeval tv; |
|
struct tm *tm; |
|
char tstring[20]; |
|
char dstring[20]; |
|
char lat_string[20]; |
|
char lng_string[20]; |
|
|
|
simulation_timeval(&tv); |
|
|
|
tm = gmtime(&tv.tv_sec); |
|
|
|
// format time string |
|
snprintf(tstring, sizeof(tstring), "%02u%02u%06.3f", tm->tm_hour, tm->tm_min, tm->tm_sec + tv.tv_usec*1.0e-6); |
|
|
|
// format date string |
|
snprintf(dstring, sizeof(dstring), "%02u%02u%02u", tm->tm_mday, tm->tm_mon+1, tm->tm_year % 100); |
|
|
|
// format latitude |
|
double deg = fabs(d->latitude); |
|
snprintf(lat_string, sizeof(lat_string), "%02u%08.5f,%c", |
|
(unsigned)deg, |
|
(deg - int(deg))*60, |
|
d->latitude<0?'S':'N'); |
|
|
|
// format longitude |
|
deg = fabs(d->longitude); |
|
snprintf(lng_string, sizeof(lng_string), "%03u%08.5f,%c", |
|
(unsigned)deg, |
|
(deg - int(deg))*60, |
|
d->longitude<0?'W':'E'); |
|
|
|
_gps_nmea_printf(instance, "$GPGGA,%s,%s,%s,%01d,%02d,%04.1f,%07.2f,M,0.0,M,,", |
|
tstring, |
|
lat_string, |
|
lng_string, |
|
d->have_lock?1:0, |
|
d->have_lock?_sitl->gps_numsats:3, |
|
2.0, |
|
d->altitude); |
|
float speed_knots = norm(d->speedN, d->speedE) * M_PER_SEC_TO_KNOTS; |
|
float heading = ToDeg(atan2f(d->speedE, d->speedN)); |
|
if (heading < 0) { |
|
heading += 360.0f; |
|
} |
|
_gps_nmea_printf(instance, "$GPRMC,%s,%c,%s,%s,%.2f,%.2f,%s,,", |
|
tstring, |
|
d->have_lock?'A':'V', |
|
lat_string, |
|
lng_string, |
|
speed_knots, |
|
heading, |
|
dstring); |
|
} |
|
|
|
void SITL_State::_sbp_send_message(uint16_t msg_type, uint16_t sender_id, uint8_t len, uint8_t *payload, uint8_t instance) |
|
{ |
|
if (len != 0 && payload == 0) { |
|
return; //SBP_NULL_ERROR; |
|
} |
|
|
|
uint8_t preamble = 0x55; |
|
_gps_write(&preamble, 1, instance); |
|
_gps_write((uint8_t*)&msg_type, 2, instance); |
|
_gps_write((uint8_t*)&sender_id, 2, instance); |
|
_gps_write(&len, 1, instance); |
|
if (len > 0) { |
|
_gps_write((uint8_t*)payload, len, instance); |
|
} |
|
|
|
uint16_t crc; |
|
crc = crc16_ccitt((uint8_t*)&(msg_type), 2, 0); |
|
crc = crc16_ccitt((uint8_t*)&(sender_id), 2, crc); |
|
crc = crc16_ccitt(&(len), 1, crc); |
|
crc = crc16_ccitt(payload, len, crc); |
|
_gps_write((uint8_t*)&crc, 2, instance); |
|
} |
|
|
|
void SITL_State::_update_gps_sbp(const struct gps_data *d, uint8_t instance) |
|
{ |
|
struct sbp_heartbeat_t { |
|
bool sys_error : 1; |
|
bool io_error : 1; |
|
bool nap_error : 1; |
|
uint8_t res : 5; |
|
uint8_t protocol_minor : 8; |
|
uint8_t protocol_major : 8; |
|
uint8_t res2 : 7; |
|
bool ext_antenna : 1; |
|
} hb; // 4 bytes |
|
|
|
struct PACKED sbp_gps_time_t { |
|
uint16_t wn; //< GPS week number |
|
uint32_t tow; //< GPS Time of Week rounded to the nearest ms |
|
int32_t ns; //< Nanosecond remainder of rounded tow |
|
uint8_t flags; //< Status flags (reserved) |
|
} t; |
|
struct PACKED sbp_pos_llh_t { |
|
uint32_t tow; //< GPS Time of Week |
|
double lat; //< Latitude |
|
double lon; //< Longitude |
|
double height; //< Height |
|
uint16_t h_accuracy; //< Horizontal position accuracy estimate |
|
uint16_t v_accuracy; //< Vertical position accuracy estimate |
|
uint8_t n_sats; //< Number of satellites used in solution |
|
uint8_t flags; //< Status flags |
|
} pos; |
|
struct PACKED sbp_vel_ned_t { |
|
uint32_t tow; //< GPS Time of Week |
|
int32_t n; //< Velocity North coordinate |
|
int32_t e; //< Velocity East coordinate |
|
int32_t d; //< Velocity Down coordinate |
|
uint16_t h_accuracy; //< Horizontal velocity accuracy estimate |
|
uint16_t v_accuracy; //< Vertical velocity accuracy estimate |
|
uint8_t n_sats; //< Number of satellites used in solution |
|
uint8_t flags; //< Status flags (reserved) |
|
} velned; |
|
struct PACKED sbp_dops_t { |
|
uint32_t tow; //< GPS Time of Week |
|
uint16_t gdop; //< Geometric Dilution of Precision |
|
uint16_t pdop; //< Position Dilution of Precision |
|
uint16_t tdop; //< Time Dilution of Precision |
|
uint16_t hdop; //< Horizontal Dilution of Precision |
|
uint16_t vdop; //< Vertical Dilution of Precision |
|
uint8_t flags; //< Status flags (reserved) |
|
} dops; |
|
|
|
static const uint16_t SBP_HEARTBEAT_MSGTYPE = 0xFFFF; |
|
static const uint16_t SBP_GPS_TIME_MSGTYPE = 0x0100; |
|
static const uint16_t SBP_DOPS_MSGTYPE = 0x0206; |
|
static const uint16_t SBP_POS_LLH_MSGTYPE = 0x0201; |
|
static const uint16_t SBP_VEL_NED_MSGTYPE = 0x0205; |
|
uint16_t time_week; |
|
uint32_t time_week_ms; |
|
|
|
gps_time(&time_week, &time_week_ms); |
|
|
|
t.wn = time_week; |
|
t.tow = time_week_ms; |
|
t.ns = 0; |
|
t.flags = 0; |
|
_sbp_send_message(SBP_GPS_TIME_MSGTYPE, 0x2222, sizeof(t), (uint8_t*)&t, instance); |
|
|
|
if (!d->have_lock) { |
|
return; |
|
} |
|
|
|
pos.tow = time_week_ms; |
|
pos.lon = d->longitude; |
|
pos.lat= d->latitude; |
|
pos.height = d->altitude; |
|
pos.h_accuracy = 5e3; |
|
pos.v_accuracy = 10e3; |
|
pos.n_sats = _sitl->gps_numsats; |
|
|
|
// Send single point position solution |
|
pos.flags = 0; |
|
_sbp_send_message(SBP_POS_LLH_MSGTYPE, 0x2222, sizeof(pos), (uint8_t*)&pos, instance); |
|
// Send "pseudo-absolute" RTK position solution |
|
pos.flags = 1; |
|
_sbp_send_message(SBP_POS_LLH_MSGTYPE, 0x2222, sizeof(pos), (uint8_t*)&pos, instance); |
|
|
|
velned.tow = time_week_ms; |
|
velned.n = 1e3 * d->speedN; |
|
velned.e = 1e3 * d->speedE; |
|
velned.d = 1e3 * d->speedD; |
|
velned.h_accuracy = 5e3; |
|
velned.v_accuracy = 5e3; |
|
velned.n_sats = _sitl->gps_numsats; |
|
velned.flags = 0; |
|
_sbp_send_message(SBP_VEL_NED_MSGTYPE, 0x2222, sizeof(velned), (uint8_t*)&velned, instance); |
|
|
|
static uint32_t do_every_count = 0; |
|
if (do_every_count % 5 == 0) { |
|
|
|
dops.tow = time_week_ms; |
|
dops.gdop = 1; |
|
dops.pdop = 1; |
|
dops.tdop = 1; |
|
dops.hdop = 100; |
|
dops.vdop = 1; |
|
dops.flags = 1; |
|
_sbp_send_message(SBP_DOPS_MSGTYPE, 0x2222, sizeof(dops), |
|
(uint8_t*)&dops, instance); |
|
|
|
hb.protocol_major = 0; //Sends protocol version 0 |
|
_sbp_send_message(SBP_HEARTBEAT_MSGTYPE, 0x2222, sizeof(hb), |
|
(uint8_t*)&hb, instance); |
|
|
|
} |
|
do_every_count++; |
|
} |
|
|
|
|
|
void SITL_State::_update_gps_sbp2(const struct gps_data *d, uint8_t instance) |
|
{ |
|
struct sbp_heartbeat_t { |
|
bool sys_error : 1; |
|
bool io_error : 1; |
|
bool nap_error : 1; |
|
uint8_t res : 5; |
|
uint8_t protocol_minor : 8; |
|
uint8_t protocol_major : 8; |
|
uint8_t res2 : 7; |
|
bool ext_antenna : 1; |
|
} hb; // 4 bytes |
|
|
|
struct PACKED sbp_gps_time_t { |
|
uint16_t wn; //< GPS week number |
|
uint32_t tow; //< GPS Time of Week rounded to the nearest ms |
|
int32_t ns; //< Nanosecond remainder of rounded tow |
|
uint8_t flags; //< Status flags (reserved) |
|
} t; |
|
struct PACKED sbp_pos_llh_t { |
|
uint32_t tow; //< GPS Time of Week |
|
double lat; //< Latitude |
|
double lon; //< Longitude |
|
double height; //< Height |
|
uint16_t h_accuracy; //< Horizontal position accuracy estimate |
|
uint16_t v_accuracy; //< Vertical position accuracy estimate |
|
uint8_t n_sats; //< Number of satellites used in solution |
|
uint8_t flags; //< Status flags |
|
} pos; |
|
struct PACKED sbp_vel_ned_t { |
|
uint32_t tow; //< GPS Time of Week |
|
int32_t n; //< Velocity North coordinate |
|
int32_t e; //< Velocity East coordinate |
|
int32_t d; //< Velocity Down coordinate |
|
uint16_t h_accuracy; //< Horizontal velocity accuracy estimate |
|
uint16_t v_accuracy; //< Vertical velocity accuracy estimate |
|
uint8_t n_sats; //< Number of satellites used in solution |
|
uint8_t flags; //< Status flags (reserved) |
|
} velned; |
|
struct PACKED sbp_dops_t { |
|
uint32_t tow; //< GPS Time of Week |
|
uint16_t gdop; //< Geometric Dilution of Precision |
|
uint16_t pdop; //< Position Dilution of Precision |
|
uint16_t tdop; //< Time Dilution of Precision |
|
uint16_t hdop; //< Horizontal Dilution of Precision |
|
uint16_t vdop; //< Vertical Dilution of Precision |
|
uint8_t flags; //< Status flags (reserved) |
|
} dops; |
|
|
|
static const uint16_t SBP_HEARTBEAT_MSGTYPE = 0xFFFF; |
|
static const uint16_t SBP_GPS_TIME_MSGTYPE = 0x0102; |
|
static const uint16_t SBP_DOPS_MSGTYPE = 0x0208; |
|
static const uint16_t SBP_POS_LLH_MSGTYPE = 0x020A; |
|
static const uint16_t SBP_VEL_NED_MSGTYPE = 0x020E; |
|
|
|
uint16_t time_week; |
|
uint32_t time_week_ms; |
|
|
|
gps_time(&time_week, &time_week_ms); |
|
|
|
t.wn = time_week; |
|
t.tow = time_week_ms; |
|
t.ns = 0; |
|
t.flags = 1; |
|
_sbp_send_message(SBP_GPS_TIME_MSGTYPE, 0x2222, sizeof(t), (uint8_t*)&t, instance); |
|
|
|
if (!d->have_lock) { |
|
return; |
|
} |
|
|
|
pos.tow = time_week_ms; |
|
pos.lon = d->longitude; |
|
pos.lat= d->latitude; |
|
pos.height = d->altitude; |
|
pos.h_accuracy = 5e3; |
|
pos.v_accuracy = 10e3; |
|
pos.n_sats = _sitl->gps_numsats; |
|
|
|
// Send single point position solution |
|
pos.flags = 1; |
|
_sbp_send_message(SBP_POS_LLH_MSGTYPE, 0x2222, sizeof(pos), (uint8_t*)&pos, instance); |
|
// Send "pseudo-absolute" RTK position solution |
|
pos.flags = 4; |
|
_sbp_send_message(SBP_POS_LLH_MSGTYPE, 0x2222, sizeof(pos), (uint8_t*)&pos, instance); |
|
|
|
velned.tow = time_week_ms; |
|
velned.n = 1e3 * d->speedN; |
|
velned.e = 1e3 * d->speedE; |
|
velned.d = 1e3 * d->speedD; |
|
velned.h_accuracy = 5e3; |
|
velned.v_accuracy = 5e3; |
|
velned.n_sats = _sitl->gps_numsats; |
|
velned.flags = 1; |
|
_sbp_send_message(SBP_VEL_NED_MSGTYPE, 0x2222, sizeof(velned), (uint8_t*)&velned, instance); |
|
|
|
static uint32_t do_every_count = 0; |
|
if (do_every_count % 5 == 0) { |
|
|
|
dops.tow = time_week_ms; |
|
dops.gdop = 1; |
|
dops.pdop = 1; |
|
dops.tdop = 1; |
|
dops.hdop = 100; |
|
dops.vdop = 1; |
|
dops.flags = 1; |
|
_sbp_send_message(SBP_DOPS_MSGTYPE, 0x2222, sizeof(dops), |
|
(uint8_t*)&dops, instance); |
|
|
|
hb.protocol_major = 2; //Sends protocol version 2.0 |
|
_sbp_send_message(SBP_HEARTBEAT_MSGTYPE, 0x2222, sizeof(hb), |
|
(uint8_t*)&hb, instance); |
|
} |
|
do_every_count++; |
|
} |
|
|
|
void SITL_State::_update_gps_nova(const struct gps_data *d, uint8_t instance) |
|
{ |
|
static struct PACKED nova_header |
|
{ |
|
// 0 |
|
uint8_t preamble[3]; |
|
// 3 |
|
uint8_t headerlength; |
|
// 4 |
|
uint16_t messageid; |
|
// 6 |
|
uint8_t messagetype; |
|
//7 |
|
uint8_t portaddr; |
|
//8 |
|
uint16_t messagelength; |
|
//10 |
|
uint16_t sequence; |
|
//12 |
|
uint8_t idletime; |
|
//13 |
|
uint8_t timestatus; |
|
//14 |
|
uint16_t week; |
|
//16 |
|
uint32_t tow; |
|
//20 |
|
uint32_t recvstatus; |
|
// 24 |
|
uint16_t resv; |
|
//26 |
|
uint16_t recvswver; |
|
} header; |
|
|
|
struct PACKED psrdop |
|
{ |
|
float gdop; |
|
float pdop; |
|
float hdop; |
|
float htdop; |
|
float tdop; |
|
float cutoff; |
|
uint32_t svcount; |
|
// extra data for individual prns |
|
} psrdop {}; |
|
|
|
struct PACKED bestpos |
|
{ |
|
uint32_t solstat; |
|
uint32_t postype; |
|
double lat; |
|
double lng; |
|
double hgt; |
|
float undulation; |
|
uint32_t datumid; |
|
float latsdev; |
|
float lngsdev; |
|
float hgtsdev; |
|
// 4 bytes |
|
uint8_t stnid[4]; |
|
float diffage; |
|
float sol_age; |
|
uint8_t svstracked; |
|
uint8_t svsused; |
|
uint8_t svsl1; |
|
uint8_t svsmultfreq; |
|
uint8_t resv; |
|
uint8_t extsolstat; |
|
uint8_t galbeisigmask; |
|
uint8_t gpsglosigmask; |
|
} bestpos {}; |
|
|
|
struct PACKED bestvel |
|
{ |
|
uint32_t solstat; |
|
uint32_t veltype; |
|
float latency; |
|
float age; |
|
double horspd; |
|
double trkgnd; |
|
// + up |
|
double vertspd; |
|
float resv; |
|
} bestvel {}; |
|
|
|
uint16_t time_week; |
|
uint32_t time_week_ms; |
|
|
|
gps_time(&time_week, &time_week_ms); |
|
|
|
header.preamble[0] = 0xaa; |
|
header.preamble[1] = 0x44; |
|
header.preamble[2] = 0x12; |
|
header.headerlength = sizeof(header); |
|
header.week = time_week; |
|
header.tow = time_week_ms; |
|
|
|
header.messageid = 174; |
|
header.messagelength = sizeof(psrdop); |
|
header.sequence += 1; |
|
|
|
psrdop.hdop = 1.20; |
|
psrdop.htdop = 1.20; |
|
_nova_send_message((uint8_t*)&header,sizeof(header),(uint8_t*)&psrdop, sizeof(psrdop), instance); |
|
|
|
|
|
header.messageid = 99; |
|
header.messagelength = sizeof(bestvel); |
|
header.sequence += 1; |
|
|
|
bestvel.horspd = norm(d->speedN, d->speedE); |
|
bestvel.trkgnd = ToDeg(atan2f(d->speedE, d->speedN)); |
|
bestvel.vertspd = -d->speedD; |
|
|
|
_nova_send_message((uint8_t*)&header,sizeof(header),(uint8_t*)&bestvel, sizeof(bestvel), instance); |
|
|
|
|
|
header.messageid = 42; |
|
header.messagelength = sizeof(bestpos); |
|
header.sequence += 1; |
|
|
|
bestpos.lat = d->latitude; |
|
bestpos.lng = d->longitude; |
|
bestpos.hgt = d->altitude; |
|
bestpos.svsused = _sitl->gps_numsats; |
|
bestpos.latsdev=0.2; |
|
bestpos.lngsdev=0.2; |
|
bestpos.hgtsdev=0.2; |
|
bestpos.solstat=0; |
|
bestpos.postype=32; |
|
|
|
_nova_send_message((uint8_t*)&header,sizeof(header),(uint8_t*)&bestpos, sizeof(bestpos), instance); |
|
} |
|
|
|
void SITL_State::_nova_send_message(uint8_t *header, uint8_t headerlength, uint8_t *payload, uint8_t payloadlen, uint8_t instance) |
|
{ |
|
_gps_write(header, headerlength, instance); |
|
_gps_write(payload, payloadlen, instance); |
|
|
|
uint32_t crc = CalculateBlockCRC32(headerlength, header, (uint32_t)0); |
|
crc = CalculateBlockCRC32(payloadlen, payload, crc); |
|
|
|
_gps_write((uint8_t*)&crc, 4, instance); |
|
} |
|
|
|
#define CRC32_POLYNOMIAL 0xEDB88320L |
|
uint32_t SITL_State::CRC32Value(uint32_t icrc) |
|
{ |
|
int i; |
|
uint32_t crc = icrc; |
|
for ( i = 8 ; i > 0; i-- ) |
|
{ |
|
if ( crc & 1 ) |
|
crc = ( crc >> 1 ) ^ CRC32_POLYNOMIAL; |
|
else |
|
crc >>= 1; |
|
} |
|
return crc; |
|
} |
|
|
|
uint32_t SITL_State::CalculateBlockCRC32(uint32_t length, uint8_t *buffer, uint32_t crc) |
|
{ |
|
while ( length-- != 0 ) |
|
{ |
|
crc = ((crc >> 8) & 0x00FFFFFFL) ^ (CRC32Value(((uint32_t) crc ^ *buffer++) & 0xff)); |
|
} |
|
return( crc ); |
|
} |
|
|
|
/* |
|
temporary method to use file as GPS data |
|
*/ |
|
void SITL_State::_update_gps_file(uint8_t instance) |
|
{ |
|
static int fd = -1; |
|
static int fd2 = -1; |
|
int temp_fd; |
|
if (instance == 0) { |
|
if (fd == -1) { |
|
fd = open("/tmp/gps.dat", O_RDONLY|O_CLOEXEC); |
|
} |
|
temp_fd = fd; |
|
} else { |
|
if (fd2 == -1) { |
|
fd2 = open("/tmp/gps2.dat", O_RDONLY|O_CLOEXEC); |
|
} |
|
temp_fd = fd2; |
|
} |
|
|
|
if (temp_fd == -1) { |
|
return; |
|
} |
|
char buf[200]; |
|
ssize_t ret = ::read(temp_fd, buf, sizeof(buf)); |
|
if (ret > 0) { |
|
::printf("wrote gps %u bytes\n", (unsigned)ret); |
|
_gps_write((const uint8_t *)buf, ret, instance); |
|
} |
|
if (ret == 0) { |
|
::printf("gps rewind\n"); |
|
lseek(temp_fd, 0, SEEK_SET); |
|
} |
|
} |
|
|
|
/* |
|
possibly send a new GPS packet |
|
*/ |
|
void SITL_State::_update_gps(double latitude, double longitude, float altitude, |
|
double speedN, double speedE, double speedD, bool have_lock) |
|
{ |
|
struct gps_data d; |
|
char c; |
|
|
|
// simulate delayed lock times |
|
if (AP_HAL::millis() < _sitl->gps_lock_time*1000UL) { |
|
have_lock = false; |
|
} |
|
|
|
altitude += _sitl->gps_alt_offset; |
|
|
|
//Capture current position as basestation location for |
|
if (!_gps_has_basestation_position) { |
|
if (have_lock) { |
|
_gps_basestation_data.latitude = latitude; |
|
_gps_basestation_data.longitude = longitude; |
|
_gps_basestation_data.altitude = altitude; |
|
_gps_basestation_data.speedN = speedN; |
|
_gps_basestation_data.speedE = speedE; |
|
_gps_basestation_data.speedD = speedD; |
|
_gps_basestation_data.have_lock = have_lock; |
|
_gps_has_basestation_position = true; |
|
} |
|
} |
|
|
|
// run at configured GPS rate (default 5Hz) |
|
if ((AP_HAL::millis() - gps_state.last_update) < (uint32_t)(1000/_sitl->gps_hertz)) { |
|
return; |
|
} |
|
|
|
// swallow any config bytes |
|
if (gps_state.gps_fd != 0) { |
|
read(gps_state.gps_fd, &c, 1); |
|
} |
|
if (gps2_state.gps_fd != 0) { |
|
read(gps2_state.gps_fd, &c, 1); |
|
} |
|
|
|
gps_state.last_update = AP_HAL::millis(); |
|
gps2_state.last_update = AP_HAL::millis(); |
|
|
|
d.latitude = latitude; |
|
d.longitude = longitude; |
|
// add an altitude error controlled by a slow sine wave |
|
d.altitude = altitude + _sitl->gps_noise * sinf(AP_HAL::millis() * 0.0005f); |
|
|
|
// Add offet to c.g. velocity to get velocity at antenna |
|
d.speedN = speedN; |
|
d.speedE = speedE; |
|
d.speedD = speedD; |
|
d.have_lock = have_lock; |
|
|
|
// correct the latitude, longitude, hiehgt and NED velocity for the offset between |
|
// the vehicle c.g. and GPs antenna |
|
Vector3f posRelOffsetBF = _sitl->gps_pos_offset; |
|
if (!posRelOffsetBF.is_zero()) { |
|
// get a rotation matrix following DCM conventions (body to earth) |
|
Matrix3f rotmat; |
|
_sitl->state.quaternion.rotation_matrix(rotmat); |
|
|
|
// rotate the antenna offset into the earth frame |
|
Vector3f posRelOffsetEF = rotmat * posRelOffsetBF; |
|
|
|
// Add the offset to the latitude, longitude and height using a spherical earth approximation |
|
double const earth_rad_inv = 1.569612305760477e-7; // use Authalic/Volumetric radius |
|
double lng_scale_factor = earth_rad_inv / cos(radians(d.latitude)); |
|
d.latitude += degrees(posRelOffsetEF.x * earth_rad_inv); |
|
d.longitude += degrees(posRelOffsetEF.y * lng_scale_factor); |
|
d.altitude -= posRelOffsetEF.z; |
|
|
|
// calculate a velocity offset due to the antenna position offset and body rotation rate |
|
// note: % operator is overloaded for cross product |
|
Vector3f gyro(radians(_sitl->state.rollRate), |
|
radians(_sitl->state.pitchRate), |
|
radians(_sitl->state.yawRate)); |
|
Vector3f velRelOffsetBF = gyro % posRelOffsetBF; |
|
|
|
// rotate the velocity offset into earth frame and add to the c.g. velocity |
|
Vector3f velRelOffsetEF = rotmat * velRelOffsetBF; |
|
d.speedN += velRelOffsetEF.x; |
|
d.speedE += velRelOffsetEF.y; |
|
d.speedD += velRelOffsetEF.z; |
|
} |
|
|
|
if (_sitl->gps_drift_alt > 0) { |
|
// slow altitude drift |
|
d.altitude += _sitl->gps_drift_alt*sinf(AP_HAL::millis()*0.001f*0.02f); |
|
} |
|
|
|
// add in some GPS lag |
|
_gps_data[next_gps_index++] = d; |
|
if (next_gps_index >= gps_delay+1) { |
|
next_gps_index = 0; |
|
} |
|
|
|
d = _gps_data[next_gps_index]; |
|
|
|
if (_sitl->gps_delay != gps_delay) { |
|
// cope with updates to the delay control |
|
gps_delay = _sitl->gps_delay; |
|
for (uint8_t i=0; i<gps_delay; i++) { |
|
_gps_data[i] = d; |
|
} |
|
} |
|
|
|
if (gps_state.gps_fd == 0 && gps2_state.gps_fd == 0) { |
|
return; |
|
} |
|
// Creating GPS2 data by coping GPS data |
|
gps_data d2 = d; |
|
|
|
// Applying GPS glitch |
|
// Using first gps glitch |
|
Vector3f glitch_offsets = _sitl->gps_glitch; |
|
d.latitude += glitch_offsets.x; |
|
d.longitude += glitch_offsets.y; |
|
d.altitude += glitch_offsets.z; |
|
// Using second gps glitch |
|
glitch_offsets = _sitl->gps2_glitch; |
|
d2.latitude += glitch_offsets.x; |
|
d2.longitude += glitch_offsets.y; |
|
d2.altitude += glitch_offsets.z; |
|
|
|
if (gps_state.gps_fd != 0) { |
|
_update_gps_instance((SITL::SITL::GPSType)_sitl->gps_type.get(), &d, 0); |
|
} |
|
if (gps2_state.gps_fd != 0) { |
|
_update_gps_instance((SITL::SITL::GPSType)_sitl->gps2_type.get(), &d2, 1); |
|
} |
|
} |
|
|
|
void SITL_State::_update_gps_instance(SITL::SITL::GPSType gps_type, const struct gps_data *data, uint8_t instance) { |
|
switch (gps_type) { |
|
case SITL::SITL::GPS_TYPE_NONE: |
|
// no GPS attached |
|
break; |
|
|
|
case SITL::SITL::GPS_TYPE_UBLOX: |
|
_update_gps_ubx(data, instance); |
|
break; |
|
|
|
case SITL::SITL::GPS_TYPE_MTK: |
|
_update_gps_mtk(data, instance); |
|
break; |
|
|
|
case SITL::SITL::GPS_TYPE_MTK16: |
|
_update_gps_mtk16(data, instance); |
|
break; |
|
|
|
case SITL::SITL::GPS_TYPE_MTK19: |
|
_update_gps_mtk19(data, instance); |
|
break; |
|
|
|
case SITL::SITL::GPS_TYPE_NMEA: |
|
_update_gps_nmea(data, instance); |
|
break; |
|
|
|
case SITL::SITL::GPS_TYPE_SBP: |
|
_update_gps_sbp(data, instance); |
|
break; |
|
|
|
case SITL::SITL::GPS_TYPE_SBP2: |
|
_update_gps_sbp2(data, instance); |
|
break; |
|
|
|
case SITL::SITL::GPS_TYPE_NOVA: |
|
_update_gps_nova(data, instance); |
|
break; |
|
|
|
case SITL::SITL::GPS_TYPE_FILE: |
|
_update_gps_file(instance); |
|
break; |
|
} |
|
} |
|
|
|
#endif
|
|
|