You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
829 lines
28 KiB
829 lines
28 KiB
#include "Copter.h" |
|
|
|
/* |
|
* High level calls to set and update flight modes logic for individual |
|
* flight modes is in control_acro.cpp, control_stabilize.cpp, etc |
|
*/ |
|
|
|
/* |
|
constructor for Mode object |
|
*/ |
|
Mode::Mode(void) : |
|
g(copter.g), |
|
g2(copter.g2), |
|
wp_nav(copter.wp_nav), |
|
loiter_nav(copter.loiter_nav), |
|
pos_control(copter.pos_control), |
|
inertial_nav(copter.inertial_nav), |
|
ahrs(copter.ahrs), |
|
attitude_control(copter.attitude_control), |
|
motors(copter.motors), |
|
channel_roll(copter.channel_roll), |
|
channel_pitch(copter.channel_pitch), |
|
channel_throttle(copter.channel_throttle), |
|
channel_yaw(copter.channel_yaw), |
|
G_Dt(copter.G_Dt) |
|
{ }; |
|
|
|
// return the static controller object corresponding to supplied mode |
|
Mode *Copter::mode_from_mode_num(const Mode::Number mode) |
|
{ |
|
Mode *ret = nullptr; |
|
|
|
switch (mode) { |
|
#if MODE_ACRO_ENABLED == ENABLED |
|
case Mode::Number::ACRO: |
|
ret = &mode_acro; |
|
break; |
|
#endif |
|
|
|
case Mode::Number::STABILIZE: |
|
ret = &mode_stabilize; |
|
break; |
|
|
|
case Mode::Number::ALT_HOLD: |
|
ret = &mode_althold; |
|
break; |
|
|
|
#if MODE_AUTO_ENABLED == ENABLED |
|
case Mode::Number::AUTO: |
|
ret = &mode_auto; |
|
break; |
|
#endif |
|
|
|
#if MODE_CIRCLE_ENABLED == ENABLED |
|
case Mode::Number::CIRCLE: |
|
ret = &mode_circle; |
|
break; |
|
#endif |
|
|
|
#if MODE_LOITER_ENABLED == ENABLED |
|
case Mode::Number::LOITER: |
|
ret = &mode_loiter; |
|
break; |
|
#endif |
|
|
|
#if MODE_GUIDED_ENABLED == ENABLED |
|
case Mode::Number::GUIDED: |
|
ret = &mode_guided; |
|
break; |
|
#endif |
|
|
|
case Mode::Number::LAND: |
|
ret = &mode_land; |
|
break; |
|
|
|
#if MODE_RTL_ENABLED == ENABLED |
|
case Mode::Number::RTL: |
|
ret = &mode_rtl; |
|
break; |
|
#endif |
|
|
|
#if MODE_DRIFT_ENABLED == ENABLED |
|
case Mode::Number::DRIFT: |
|
ret = &mode_drift; |
|
break; |
|
#endif |
|
|
|
#if MODE_SPORT_ENABLED == ENABLED |
|
case Mode::Number::SPORT: |
|
ret = &mode_sport; |
|
break; |
|
#endif |
|
|
|
#if MODE_FLIP_ENABLED == ENABLED |
|
case Mode::Number::FLIP: |
|
ret = &mode_flip; |
|
break; |
|
#endif |
|
|
|
#if AUTOTUNE_ENABLED == ENABLED |
|
case Mode::Number::AUTOTUNE: |
|
ret = &mode_autotune; |
|
break; |
|
#endif |
|
|
|
#if MODE_POSHOLD_ENABLED == ENABLED |
|
case Mode::Number::POSHOLD: |
|
ret = &mode_poshold; |
|
break; |
|
#endif |
|
|
|
#if MODE_BRAKE_ENABLED == ENABLED |
|
case Mode::Number::BRAKE: |
|
ret = &mode_brake; |
|
break; |
|
#endif |
|
|
|
#if MODE_THROW_ENABLED == ENABLED |
|
case Mode::Number::THROW: |
|
ret = &mode_throw; |
|
break; |
|
#endif |
|
|
|
#if HAL_ADSB_ENABLED |
|
case Mode::Number::AVOID_ADSB: |
|
ret = &mode_avoid_adsb; |
|
break; |
|
#endif |
|
|
|
#if MODE_GUIDED_NOGPS_ENABLED == ENABLED |
|
case Mode::Number::GUIDED_NOGPS: |
|
ret = &mode_guided_nogps; |
|
break; |
|
#endif |
|
|
|
#if MODE_SMARTRTL_ENABLED == ENABLED |
|
case Mode::Number::SMART_RTL: |
|
ret = &mode_smartrtl; |
|
break; |
|
#endif |
|
|
|
#if OPTFLOW == ENABLED |
|
case Mode::Number::FLOWHOLD: |
|
ret = (Mode *)g2.mode_flowhold_ptr; |
|
break; |
|
#endif |
|
|
|
#if MODE_FOLLOW_ENABLED == ENABLED |
|
case Mode::Number::FOLLOW: |
|
ret = &mode_follow; |
|
break; |
|
#endif |
|
|
|
#if MODE_ZIGZAG_ENABLED == ENABLED |
|
case Mode::Number::ZIGZAG: |
|
ret = &mode_zigzag; |
|
break; |
|
#endif |
|
|
|
#if MODE_SYSTEMID_ENABLED == ENABLED |
|
case Mode::Number::SYSTEMID: |
|
ret = (Mode *)g2.mode_systemid_ptr; |
|
break; |
|
#endif |
|
|
|
#if MODE_AUTOROTATE_ENABLED == ENABLED |
|
case Mode::Number::AUTOROTATE: |
|
ret = &mode_autorotate; |
|
break; |
|
#endif |
|
|
|
default: |
|
break; |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
|
|
// called when an attempt to change into a mode is unsuccessful: |
|
void Copter::mode_change_failed(const Mode *mode, const char *reason) |
|
{ |
|
gcs().send_text(MAV_SEVERITY_WARNING, "Mode change to %s failed: %s", mode->name(), reason); |
|
AP::logger().Write_Error(LogErrorSubsystem::FLIGHT_MODE, LogErrorCode(mode->mode_number())); |
|
} |
|
|
|
// set_mode - change flight mode and perform any necessary initialisation |
|
// optional force parameter used to force the flight mode change (used only first time mode is set) |
|
// returns true if mode was successfully set |
|
// ACRO, STABILIZE, ALTHOLD, LAND, DRIFT and SPORT can always be set successfully but the return state of other flight modes should be checked and the caller should deal with failures appropriately |
|
bool Copter::set_mode(Mode::Number mode, ModeReason reason) |
|
{ |
|
|
|
// return immediately if we are already in the desired mode |
|
if (mode == flightmode->mode_number()) { |
|
control_mode_reason = reason; |
|
return true; |
|
} |
|
|
|
Mode *new_flightmode = mode_from_mode_num((Mode::Number)mode); |
|
if (new_flightmode == nullptr) { |
|
gcs().send_text(MAV_SEVERITY_WARNING,"No such mode"); |
|
AP::logger().Write_Error(LogErrorSubsystem::FLIGHT_MODE, LogErrorCode(mode)); |
|
return false; |
|
} |
|
|
|
bool ignore_checks = !motors->armed(); // allow switching to any mode if disarmed. We rely on the arming check to perform |
|
|
|
#if FRAME_CONFIG == HELI_FRAME |
|
// do not allow helis to enter a non-manual throttle mode if the |
|
// rotor runup is not complete |
|
if (!ignore_checks && !new_flightmode->has_manual_throttle() && |
|
(motors->get_spool_state() == AP_Motors::SpoolState::SPOOLING_UP || motors->get_spool_state() == AP_Motors::SpoolState::SPOOLING_DOWN)) { |
|
#if MODE_AUTOROTATE_ENABLED == ENABLED |
|
//if the mode being exited is the autorotation mode allow mode change despite rotor not being at |
|
//full speed. This will reduce altitude loss on bail-outs back to non-manual throttle modes |
|
bool in_autorotation_check = (flightmode != &mode_autorotate || new_flightmode != &mode_autorotate); |
|
#else |
|
bool in_autorotation_check = false; |
|
#endif |
|
|
|
if (!in_autorotation_check) { |
|
mode_change_failed(new_flightmode, "runup not complete"); |
|
return false; |
|
} |
|
} |
|
#endif |
|
|
|
#if FRAME_CONFIG != HELI_FRAME |
|
// ensure vehicle doesn't leap off the ground if a user switches |
|
// into a manual throttle mode from a non-manual-throttle mode |
|
// (e.g. user arms in guided, raises throttle to 1300 (not enough to |
|
// trigger auto takeoff), then switches into manual): |
|
bool user_throttle = new_flightmode->has_manual_throttle(); |
|
#if MODE_DRIFT_ENABLED == ENABLED |
|
if (new_flightmode == &mode_drift) { |
|
user_throttle = true; |
|
} |
|
#endif |
|
if (!ignore_checks && |
|
ap.land_complete && |
|
user_throttle && |
|
!copter.flightmode->has_manual_throttle() && |
|
new_flightmode->get_pilot_desired_throttle() > copter.get_non_takeoff_throttle()) { |
|
mode_change_failed(new_flightmode, "throttle too high"); |
|
return false; |
|
} |
|
#endif |
|
|
|
if (!ignore_checks && |
|
new_flightmode->requires_GPS() && |
|
!copter.position_ok()) { |
|
mode_change_failed(new_flightmode, "requires position"); |
|
return false; |
|
} |
|
|
|
// check for valid altitude if old mode did not require it but new one does |
|
// we only want to stop changing modes if it could make things worse |
|
if (!ignore_checks && |
|
!copter.ekf_alt_ok() && |
|
flightmode->has_manual_throttle() && |
|
!new_flightmode->has_manual_throttle()) { |
|
mode_change_failed(new_flightmode, "need alt estimate"); |
|
return false; |
|
} |
|
|
|
if (!new_flightmode->init(ignore_checks)) { |
|
mode_change_failed(new_flightmode, "initialisation failed"); |
|
return false; |
|
} |
|
|
|
// perform any cleanup required by previous flight mode |
|
exit_mode(flightmode, new_flightmode); |
|
|
|
// store previous flight mode (only used by tradeheli's autorotation) |
|
prev_control_mode = flightmode->mode_number(); |
|
|
|
// update flight mode |
|
flightmode = new_flightmode; |
|
control_mode_reason = reason; |
|
logger.Write_Mode((uint8_t)flightmode->mode_number(), reason); |
|
gcs().send_message(MSG_HEARTBEAT); |
|
|
|
#if HAL_ADSB_ENABLED |
|
adsb.set_is_auto_mode((mode == Mode::Number::AUTO) || (mode == Mode::Number::RTL) || (mode == Mode::Number::GUIDED)); |
|
#endif |
|
|
|
#if AC_FENCE == ENABLED |
|
// pilot requested flight mode change during a fence breach indicates pilot is attempting to manually recover |
|
// this flight mode change could be automatic (i.e. fence, battery, GPS or GCS failsafe) |
|
// but it should be harmless to disable the fence temporarily in these situations as well |
|
fence.manual_recovery_start(); |
|
#endif |
|
|
|
#if CAMERA == ENABLED |
|
camera.set_is_auto_mode(flightmode->mode_number() == Mode::Number::AUTO); |
|
#endif |
|
|
|
// update notify object |
|
notify_flight_mode(); |
|
|
|
// return success |
|
return true; |
|
} |
|
|
|
bool Copter::set_mode(const uint8_t new_mode, const ModeReason reason) |
|
{ |
|
static_assert(sizeof(Mode::Number) == sizeof(new_mode), "The new mode can't be mapped to the vehicles mode number"); |
|
#ifdef DISALLOW_GCS_MODE_CHANGE_DURING_RC_FAILSAFE |
|
if (reason == ModeReason::GCS_COMMAND && copter.failsafe.radio) { |
|
// don't allow mode changes while in radio failsafe |
|
return false; |
|
} |
|
#endif |
|
return copter.set_mode(static_cast<Mode::Number>(new_mode), reason); |
|
} |
|
|
|
// update_flight_mode - calls the appropriate attitude controllers based on flight mode |
|
// called at 100hz or more |
|
void Copter::update_flight_mode() |
|
{ |
|
surface_tracking.invalidate_for_logging(); // invalidate surface tracking alt, flight mode will set to true if used |
|
|
|
flightmode->run(); |
|
} |
|
|
|
// exit_mode - high level call to organise cleanup as a flight mode is exited |
|
void Copter::exit_mode(Mode *&old_flightmode, |
|
Mode *&new_flightmode) |
|
{ |
|
// smooth throttle transition when switching from manual to automatic flight modes |
|
if (old_flightmode->has_manual_throttle() && !new_flightmode->has_manual_throttle() && motors->armed() && !ap.land_complete) { |
|
// this assumes all manual flight modes use get_pilot_desired_throttle to translate pilot input to output throttle |
|
set_accel_throttle_I_from_pilot_throttle(); |
|
} |
|
|
|
// cancel any takeoffs in progress |
|
old_flightmode->takeoff_stop(); |
|
|
|
// perform cleanup required for each flight mode |
|
old_flightmode->exit(); |
|
|
|
#if FRAME_CONFIG == HELI_FRAME |
|
// firmly reset the flybar passthrough to false when exiting acro mode. |
|
if (old_flightmode == &mode_acro) { |
|
attitude_control->use_flybar_passthrough(false, false); |
|
motors->set_acro_tail(false); |
|
} |
|
|
|
// if we are changing from a mode that did not use manual throttle, |
|
// stab col ramp value should be pre-loaded to the correct value to avoid a twitch |
|
// heli_stab_col_ramp should really only be active switching between Stabilize and Acro modes |
|
if (!old_flightmode->has_manual_throttle()){ |
|
if (new_flightmode == &mode_stabilize){ |
|
input_manager.set_stab_col_ramp(1.0); |
|
} else if (new_flightmode == &mode_acro){ |
|
input_manager.set_stab_col_ramp(0.0); |
|
} |
|
} |
|
#endif //HELI_FRAME |
|
} |
|
|
|
// notify_flight_mode - sets notify object based on current flight mode. Only used for OreoLED notify device |
|
void Copter::notify_flight_mode() { |
|
AP_Notify::flags.autopilot_mode = flightmode->is_autopilot(); |
|
AP_Notify::flags.flight_mode = (uint8_t)flightmode->mode_number(); |
|
notify.set_flight_mode_str(flightmode->name4()); |
|
} |
|
|
|
// get_pilot_desired_angle - transform pilot's roll or pitch input into a desired lean angle |
|
// returns desired angle in centi-degrees |
|
void Mode::get_pilot_desired_lean_angles(float &roll_out, float &pitch_out, float angle_max, float angle_limit) const |
|
{ |
|
// throttle failsafe check |
|
if (copter.failsafe.radio || !copter.ap.rc_receiver_present) { |
|
roll_out = 0; |
|
pitch_out = 0; |
|
return; |
|
} |
|
// fetch roll and pitch inputs |
|
roll_out = channel_roll->get_control_in(); |
|
pitch_out = channel_pitch->get_control_in(); |
|
|
|
// limit max lean angle |
|
angle_limit = constrain_float(angle_limit, 1000.0f, angle_max); |
|
|
|
// scale roll and pitch inputs to ANGLE_MAX parameter range |
|
float scaler = angle_max/(float)ROLL_PITCH_YAW_INPUT_MAX; |
|
roll_out *= scaler; |
|
pitch_out *= scaler; |
|
|
|
// do circular limit |
|
float total_in = norm(pitch_out, roll_out); |
|
if (total_in > angle_limit) { |
|
float ratio = angle_limit / total_in; |
|
roll_out *= ratio; |
|
pitch_out *= ratio; |
|
} |
|
|
|
// do lateral tilt to euler roll conversion |
|
roll_out = (18000/M_PI) * atanf(cosf(pitch_out*(M_PI/18000))*tanf(roll_out*(M_PI/18000))); |
|
|
|
// roll_out and pitch_out are returned |
|
} |
|
|
|
bool Mode::_TakeOff::triggered(const float target_climb_rate) const |
|
{ |
|
if (!copter.ap.land_complete) { |
|
// can't take off if we're already flying |
|
return false; |
|
} |
|
if (target_climb_rate <= 0.0f) { |
|
// can't takeoff unless we want to go up... |
|
return false; |
|
} |
|
|
|
if (copter.motors->get_spool_state() != AP_Motors::SpoolState::THROTTLE_UNLIMITED) { |
|
// hold aircraft on the ground until rotor speed runup has finished |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
bool Mode::is_disarmed_or_landed() const |
|
{ |
|
if (!motors->armed() || !copter.ap.auto_armed || copter.ap.land_complete) { |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
void Mode::zero_throttle_and_relax_ac(bool spool_up) |
|
{ |
|
if (spool_up) { |
|
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); |
|
} else { |
|
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE); |
|
} |
|
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(0.0f, 0.0f, 0.0f); |
|
attitude_control->set_throttle_out(0.0f, false, copter.g.throttle_filt); |
|
} |
|
|
|
void Mode::zero_throttle_and_hold_attitude() |
|
{ |
|
// run attitude controller |
|
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, 0.0f, 0.0f); |
|
attitude_control->set_throttle_out(0.0f, false, copter.g.throttle_filt); |
|
} |
|
|
|
// handle situations where the vehicle is on the ground waiting for takeoff |
|
// force_throttle_unlimited should be true in cases where we want to keep the motors spooled up |
|
// (instead of spooling down to ground idle). This is required for tradheli's in Guided and Auto |
|
// where we always want the motor spooled up in Guided or Auto mode. Tradheli's main rotor stops |
|
// when spooled down to ground idle. |
|
// ultimately it forces the motor interlock to be obeyed in auto and guided modes when on the ground. |
|
void Mode::make_safe_ground_handling(bool force_throttle_unlimited) |
|
{ |
|
if (force_throttle_unlimited) { |
|
// keep rotors turning |
|
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); |
|
} else { |
|
// spool down to ground idle |
|
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE); |
|
} |
|
|
|
|
|
switch (motors->get_spool_state()) { |
|
|
|
case AP_Motors::SpoolState::SHUT_DOWN: |
|
case AP_Motors::SpoolState::GROUND_IDLE: |
|
// relax controllers during idle states |
|
attitude_control->reset_rate_controller_I_terms_smoothly(); |
|
attitude_control->reset_yaw_target_and_rate(); |
|
break; |
|
|
|
case AP_Motors::SpoolState::SPOOLING_UP: |
|
case AP_Motors::SpoolState::THROTTLE_UNLIMITED: |
|
case AP_Motors::SpoolState::SPOOLING_DOWN: |
|
// while transitioning though active states continue to operate normally |
|
break; |
|
} |
|
|
|
pos_control->relax_z_controller(0.0f); // forces throttle output to decay to zero |
|
pos_control->update_z_controller(); |
|
// we may need to move this out |
|
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(0.0f, 0.0f, 0.0f); |
|
} |
|
|
|
/* |
|
get a height above ground estimate for landing |
|
*/ |
|
int32_t Mode::get_alt_above_ground_cm(void) |
|
{ |
|
int32_t alt_above_ground_cm; |
|
if (copter.get_rangefinder_height_interpolated_cm(alt_above_ground_cm)) { |
|
return alt_above_ground_cm; |
|
} |
|
if (!pos_control->is_active_xy()) { |
|
return copter.current_loc.alt; |
|
} |
|
if (copter.current_loc.get_alt_cm(Location::AltFrame::ABOVE_TERRAIN, alt_above_ground_cm)) { |
|
return alt_above_ground_cm; |
|
} |
|
|
|
// Assume the Earth is flat: |
|
return copter.current_loc.alt; |
|
} |
|
|
|
void Mode::land_run_vertical_control(bool pause_descent) |
|
{ |
|
float cmb_rate = 0; |
|
bool ignore_descent_limit = false; |
|
if (!pause_descent) { |
|
|
|
// do not ignore limits until we have slowed down for landing |
|
ignore_descent_limit = (MAX(g2.land_alt_low,100) > get_alt_above_ground_cm()) || copter.ap.land_complete_maybe; |
|
|
|
float max_land_descent_velocity; |
|
if (g.land_speed_high > 0) { |
|
max_land_descent_velocity = -g.land_speed_high; |
|
} else { |
|
max_land_descent_velocity = pos_control->get_max_speed_down_cms(); |
|
} |
|
|
|
// Don't speed up for landing. |
|
max_land_descent_velocity = MIN(max_land_descent_velocity, -abs(g.land_speed)); |
|
|
|
// Compute a vertical velocity demand such that the vehicle approaches g2.land_alt_low. Without the below constraint, this would cause the vehicle to hover at g2.land_alt_low. |
|
cmb_rate = sqrt_controller(MAX(g2.land_alt_low,100)-get_alt_above_ground_cm(), pos_control->get_pos_z_p().kP(), pos_control->get_max_accel_z_cmss(), G_Dt); |
|
|
|
// Constrain the demanded vertical velocity so that it is between the configured maximum descent speed and the configured minimum descent speed. |
|
cmb_rate = constrain_float(cmb_rate, max_land_descent_velocity, -abs(g.land_speed)); |
|
|
|
#if PRECISION_LANDING == ENABLED |
|
const bool navigating = pos_control->is_active_xy(); |
|
bool doing_precision_landing = !copter.ap.land_repo_active && copter.precland.target_acquired() && navigating; |
|
|
|
if (doing_precision_landing && copter.rangefinder_alt_ok() && copter.rangefinder_state.alt_cm > 35.0f && copter.rangefinder_state.alt_cm < 200.0f) { |
|
// compute desired velocity |
|
const float precland_acceptable_error = 15.0f; |
|
const float precland_min_descent_speed = 10.0f; |
|
|
|
float max_descent_speed = abs(g.land_speed)*0.5f; |
|
float land_slowdown = MAX(0.0f, pos_control->get_pos_error_xy_cm()*(max_descent_speed/precland_acceptable_error)); |
|
cmb_rate = MIN(-precland_min_descent_speed, -max_descent_speed+land_slowdown); |
|
} |
|
#endif |
|
} |
|
|
|
// update altitude target and call position controller |
|
pos_control->land_at_climb_rate_cm(cmb_rate, ignore_descent_limit); |
|
pos_control->update_z_controller(); |
|
} |
|
|
|
void Mode::land_run_horizontal_control() |
|
{ |
|
float target_roll = 0.0f; |
|
float target_pitch = 0.0f; |
|
float target_yaw_rate = 0; |
|
|
|
// relax loiter target if we might be landed |
|
if (copter.ap.land_complete_maybe) { |
|
loiter_nav->soften_for_landing(); |
|
} |
|
|
|
// process pilot inputs |
|
if (!copter.failsafe.radio) { |
|
if ((g.throttle_behavior & THR_BEHAVE_HIGH_THROTTLE_CANCELS_LAND) != 0 && copter.rc_throttle_control_in_filter.get() > LAND_CANCEL_TRIGGER_THR){ |
|
AP::logger().Write_Event(LogEvent::LAND_CANCELLED_BY_PILOT); |
|
// exit land if throttle is high |
|
if (!set_mode(Mode::Number::LOITER, ModeReason::THROTTLE_LAND_ESCAPE)) { |
|
set_mode(Mode::Number::ALT_HOLD, ModeReason::THROTTLE_LAND_ESCAPE); |
|
} |
|
} |
|
|
|
if (g.land_repositioning) { |
|
// apply SIMPLE mode transform to pilot inputs |
|
update_simple_mode(); |
|
|
|
// convert pilot input to lean angles |
|
get_pilot_desired_lean_angles(target_roll, target_pitch, loiter_nav->get_angle_max_cd(), attitude_control->get_althold_lean_angle_max()); |
|
|
|
// record if pilot has overridden roll or pitch |
|
if (!is_zero(target_roll) || !is_zero(target_pitch)) { |
|
if (!copter.ap.land_repo_active) { |
|
AP::logger().Write_Event(LogEvent::LAND_REPO_ACTIVE); |
|
} |
|
copter.ap.land_repo_active = true; |
|
} |
|
} |
|
|
|
// get pilot's desired yaw rate |
|
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in()); |
|
if (!is_zero(target_yaw_rate)) { |
|
auto_yaw.set_mode(AUTO_YAW_HOLD); |
|
} |
|
} |
|
|
|
#if PRECISION_LANDING == ENABLED |
|
bool doing_precision_landing = !copter.ap.land_repo_active && copter.precland.target_acquired(); |
|
// run precision landing |
|
if (doing_precision_landing) { |
|
Vector2f target_pos, target_vel_rel; |
|
if (!copter.precland.get_target_position_cm(target_pos)) { |
|
target_pos.x = inertial_nav.get_position().x; |
|
target_pos.y = inertial_nav.get_position().y; |
|
} |
|
if (!copter.precland.get_target_velocity_relative_cms(target_vel_rel)) { |
|
target_vel_rel.x = -inertial_nav.get_velocity().x; |
|
target_vel_rel.y = -inertial_nav.get_velocity().y; |
|
} |
|
pos_control->set_pos_target_xy_cm(target_pos.x, target_pos.y); |
|
pos_control->override_vehicle_velocity_xy(-target_vel_rel); |
|
} |
|
#endif |
|
|
|
// process roll, pitch inputs |
|
loiter_nav->set_pilot_desired_acceleration(target_roll, target_pitch); |
|
|
|
// run loiter controller |
|
loiter_nav->update(); |
|
|
|
Vector3f thrust_vector = loiter_nav->get_thrust_vector(); |
|
|
|
if (g2.wp_navalt_min > 0) { |
|
// user has requested an altitude below which navigation |
|
// attitude is limited. This is used to prevent commanded roll |
|
// over on landing, which particularly affects helicopters if |
|
// there is any position estimate drift after touchdown. We |
|
// limit attitude to 7 degrees below this limit and linearly |
|
// interpolate for 1m above that |
|
float attitude_limit_cd = linear_interpolate(700, copter.aparm.angle_max, get_alt_above_ground_cm(), |
|
g2.wp_navalt_min*100U, (g2.wp_navalt_min+1)*100U); |
|
float thrust_vector_max = sinf(radians(attitude_limit_cd / 100.0f)) * GRAVITY_MSS * 100.0f; |
|
float thrust_vector_mag = norm(thrust_vector.x, thrust_vector.y); |
|
if (thrust_vector_mag > thrust_vector_max) { |
|
float ratio = thrust_vector_max / thrust_vector_mag; |
|
thrust_vector.x *= ratio; |
|
thrust_vector.y *= ratio; |
|
|
|
// tell position controller we are applying an external limit |
|
pos_control->set_externally_limited_xy(); |
|
} |
|
} |
|
|
|
// call attitude controller |
|
if (auto_yaw.mode() == AUTO_YAW_HOLD) { |
|
// roll & pitch from waypoint controller, yaw rate from pilot |
|
attitude_control->input_thrust_vector_rate_heading(thrust_vector, target_yaw_rate); |
|
} else { |
|
// roll, pitch from waypoint controller, yaw heading from auto_heading() |
|
attitude_control->input_thrust_vector_heading(thrust_vector, auto_yaw.yaw()); |
|
} |
|
} |
|
|
|
float Mode::throttle_hover() const |
|
{ |
|
return motors->get_throttle_hover(); |
|
} |
|
|
|
// transform pilot's manual throttle input to make hover throttle mid stick |
|
// used only for manual throttle modes |
|
// thr_mid should be in the range 0 to 1 |
|
// returns throttle output 0 to 1 |
|
float Mode::get_pilot_desired_throttle() const |
|
{ |
|
const float thr_mid = throttle_hover(); |
|
int16_t throttle_control = channel_throttle->get_control_in(); |
|
|
|
int16_t mid_stick = copter.get_throttle_mid(); |
|
// protect against unlikely divide by zero |
|
if (mid_stick <= 0) { |
|
mid_stick = 500; |
|
} |
|
|
|
// ensure reasonable throttle values |
|
throttle_control = constrain_int16(throttle_control,0,1000); |
|
|
|
// calculate normalised throttle input |
|
float throttle_in; |
|
if (throttle_control < mid_stick) { |
|
throttle_in = ((float)throttle_control)*0.5f/(float)mid_stick; |
|
} else { |
|
throttle_in = 0.5f + ((float)(throttle_control-mid_stick)) * 0.5f / (float)(1000-mid_stick); |
|
} |
|
|
|
const float expo = constrain_float(-(thr_mid-0.5f)/0.375f, -0.5f, 1.0f); |
|
// calculate the output throttle using the given expo function |
|
float throttle_out = throttle_in*(1.0f-expo) + expo*throttle_in*throttle_in*throttle_in; |
|
return throttle_out; |
|
} |
|
|
|
float Mode::get_avoidance_adjusted_climbrate(float target_rate) |
|
{ |
|
#if AC_AVOID_ENABLED == ENABLED |
|
AP::ac_avoid()->adjust_velocity_z(pos_control->get_pos_z_p().kP(), pos_control->get_max_accel_z_cmss(), target_rate, G_Dt); |
|
return target_rate; |
|
#else |
|
return target_rate; |
|
#endif |
|
} |
|
|
|
Mode::AltHoldModeState Mode::get_alt_hold_state(float target_climb_rate_cms) |
|
{ |
|
// Alt Hold State Machine Determination |
|
if (!motors->armed()) { |
|
// the aircraft should moved to a shut down state |
|
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::SHUT_DOWN); |
|
|
|
// transition through states as aircraft spools down |
|
switch (motors->get_spool_state()) { |
|
|
|
case AP_Motors::SpoolState::SHUT_DOWN: |
|
return AltHold_MotorStopped; |
|
|
|
case AP_Motors::SpoolState::GROUND_IDLE: |
|
return AltHold_Landed_Ground_Idle; |
|
|
|
default: |
|
return AltHold_Landed_Pre_Takeoff; |
|
} |
|
|
|
} else if (takeoff.running() || takeoff.triggered(target_climb_rate_cms)) { |
|
// the aircraft is currently landed or taking off, asking for a positive climb rate and in THROTTLE_UNLIMITED |
|
// the aircraft should progress through the take off procedure |
|
return AltHold_Takeoff; |
|
|
|
} else if (!copter.ap.auto_armed || copter.ap.land_complete) { |
|
// the aircraft is armed and landed |
|
if (target_climb_rate_cms < 0.0f && !copter.ap.using_interlock) { |
|
// the aircraft should move to a ground idle state |
|
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE); |
|
|
|
} else { |
|
// the aircraft should prepare for imminent take off |
|
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); |
|
} |
|
|
|
if (motors->get_spool_state() == AP_Motors::SpoolState::GROUND_IDLE) { |
|
// the aircraft is waiting in ground idle |
|
return AltHold_Landed_Ground_Idle; |
|
|
|
} else { |
|
// the aircraft can leave the ground at any time |
|
return AltHold_Landed_Pre_Takeoff; |
|
} |
|
|
|
} else { |
|
// the aircraft is in a flying state |
|
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); |
|
return AltHold_Flying; |
|
} |
|
} |
|
|
|
// transform pilot's yaw input into a desired yaw rate |
|
// returns desired yaw rate in centi-degrees per second |
|
float Mode::get_pilot_desired_yaw_rate(int16_t stick_angle) |
|
{ |
|
// throttle failsafe check |
|
if (copter.failsafe.radio || !copter.ap.rc_receiver_present) { |
|
return 0.0f; |
|
} |
|
|
|
// range check expo |
|
g2.acro_y_expo = constrain_float(g2.acro_y_expo, -0.5f, 1.0f); |
|
|
|
// calculate yaw rate request |
|
float yaw_request; |
|
if (is_zero(g2.acro_y_expo)) { |
|
yaw_request = stick_angle * g.acro_yaw_p; |
|
} else { |
|
// expo variables |
|
float y_in, y_in3, y_out; |
|
|
|
// yaw expo |
|
y_in = float(stick_angle)/ROLL_PITCH_YAW_INPUT_MAX; |
|
y_in3 = y_in*y_in*y_in; |
|
y_out = (g2.acro_y_expo * y_in3) + ((1.0f - g2.acro_y_expo) * y_in); |
|
yaw_request = ROLL_PITCH_YAW_INPUT_MAX * y_out * g.acro_yaw_p; |
|
} |
|
// convert pilot input to the desired yaw rate |
|
return yaw_request; |
|
} |
|
|
|
// pass-through functions to reduce code churn on conversion; |
|
// these are candidates for moving into the Mode base |
|
// class. |
|
float Mode::get_pilot_desired_climb_rate(float throttle_control) |
|
{ |
|
return copter.get_pilot_desired_climb_rate(throttle_control); |
|
} |
|
|
|
float Mode::get_non_takeoff_throttle() |
|
{ |
|
return copter.get_non_takeoff_throttle(); |
|
} |
|
|
|
void Mode::update_simple_mode(void) { |
|
copter.update_simple_mode(); |
|
} |
|
|
|
bool Mode::set_mode(Mode::Number mode, ModeReason reason) |
|
{ |
|
return copter.set_mode(mode, reason); |
|
} |
|
|
|
void Mode::set_land_complete(bool b) |
|
{ |
|
return copter.set_land_complete(b); |
|
} |
|
|
|
GCS_Copter &Mode::gcs() |
|
{ |
|
return copter.gcs(); |
|
} |
|
|
|
// set_throttle_takeoff - allows modes to tell throttle controller we |
|
// are taking off so I terms can be cleared |
|
void Mode::set_throttle_takeoff() |
|
{ |
|
// initialise the vertical position controller |
|
pos_control->init_z_controller(); |
|
} |
|
|
|
uint16_t Mode::get_pilot_speed_dn() |
|
{ |
|
return copter.get_pilot_speed_dn(); |
|
}
|
|
|