You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
166 lines
5.7 KiB
166 lines
5.7 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
/***************************************** |
|
* Throttle slew limit |
|
*****************************************/ |
|
static void throttle_slew_limit(int16_t last_throttle) |
|
{ |
|
// if slew limit rate is set to zero then do not slew limit |
|
if (g.throttle_slewrate) { |
|
// limit throttle change by the given percentage per second |
|
float temp = g.throttle_slewrate * G_Dt * 0.01f * fabsf(g.channel_throttle.radio_max - g.channel_throttle.radio_min); |
|
// allow a minimum change of 1 PWM per cycle |
|
if (temp < 1) { |
|
temp = 1; |
|
} |
|
g.channel_throttle.radio_out = constrain_int16(g.channel_throttle.radio_out, last_throttle - temp, last_throttle + temp); |
|
} |
|
} |
|
|
|
/* |
|
calculate the throtte for auto-throttle modes |
|
*/ |
|
static void calc_throttle(float target_speed) |
|
{ |
|
if (target_speed <= 0) { |
|
// cope with zero requested speed |
|
g.channel_throttle.servo_out = g.throttle_min.get(); |
|
return; |
|
} |
|
|
|
int throttle_target = g.throttle_cruise + throttle_nudge; |
|
|
|
/* |
|
reduce target speed in proportion to turning rate, up to the |
|
SPEED_TURN_GAIN percentage. |
|
*/ |
|
float steer_rate = fabsf((nav_steer/nav_gain_scaler) / (float)SERVO_MAX); |
|
steer_rate = constrain(steer_rate, 0.0, 1.0); |
|
float reduction = 1.0 - steer_rate*(100 - g.speed_turn_gain)*0.01; |
|
|
|
if (control_mode >= AUTO && wp_distance <= g.speed_turn_dist) { |
|
// in auto-modes we reduce speed when approaching waypoints |
|
float reduction2 = 1.0 - (100-g.speed_turn_gain)*0.01*((g.speed_turn_dist - wp_distance)/g.speed_turn_dist); |
|
if (reduction2 < reduction) { |
|
reduction = reduction2; |
|
} |
|
} |
|
|
|
// reduce the target speed by the reduction factor |
|
target_speed *= reduction; |
|
|
|
groundspeed_error = target_speed - ground_speed; |
|
|
|
throttle = throttle_target + (g.pidSpeedThrottle.get_pid(groundspeed_error * 100) / 100); |
|
|
|
// also reduce the throttle by the reduction factor. This gives a |
|
// much faster response in turns |
|
throttle *= reduction; |
|
|
|
g.channel_throttle.servo_out = constrain_int16(throttle, g.throttle_min.get(), g.throttle_max.get()); |
|
} |
|
|
|
/***************************************** |
|
* Calculate desired turn angles (in medium freq loop) |
|
*****************************************/ |
|
|
|
static void calc_nav_steer() |
|
{ |
|
// Adjust gain based on ground speed |
|
nav_gain_scaler = (float)ground_speed / g.speed_cruise; |
|
nav_gain_scaler = constrain(nav_gain_scaler, 0.2, 1.4); |
|
|
|
// Calculate the required turn of the wheels rover |
|
// ---------------------------------------- |
|
|
|
// negative error = left turn |
|
// positive error = right turn |
|
nav_steer = g.pidNavSteer.get_pid(bearing_error_cd, nav_gain_scaler); |
|
|
|
if (obstacle) { // obstacle avoidance |
|
nav_steer += g.sonar_turn_angle*100; |
|
} |
|
|
|
g.channel_steer.servo_out = nav_steer; |
|
} |
|
|
|
/***************************************** |
|
* Set the flight control servos based on the current calculated values |
|
*****************************************/ |
|
static void set_servos(void) |
|
{ |
|
int16_t last_throttle = g.channel_throttle.radio_out; |
|
|
|
if ((control_mode == MANUAL || control_mode == LEARNING) && |
|
(g.skid_steer_out == g.skid_steer_in)) { |
|
// do a direct pass through of radio values |
|
g.channel_steer.radio_out = hal.rcin->read(CH_STEER); |
|
g.channel_throttle.radio_out = hal.rcin->read(CH_THROTTLE); |
|
} else { |
|
g.channel_steer.calc_pwm(); |
|
g.channel_throttle.servo_out = constrain_int16(g.channel_throttle.servo_out, |
|
g.throttle_min.get(), |
|
g.throttle_max.get()); |
|
// convert 0 to 100% into PWM |
|
g.channel_throttle.calc_pwm(); |
|
|
|
// limit throttle movement speed |
|
throttle_slew_limit(last_throttle); |
|
|
|
if (g.skid_steer_out) { |
|
// convert the two radio_out values to skid steering values |
|
/* |
|
mixing rule: |
|
steering = motor1 - motor2 |
|
throttle = 0.5*(motor1 + motor2) |
|
motor1 = throttle + 0.5*steering |
|
motor2 = throttle - 0.5*steering |
|
*/ |
|
float steering_scaled = g.channel_steer.norm_output(); |
|
float throttle_scaled = g.channel_throttle.norm_output(); |
|
float motor1 = throttle_scaled + 0.5*steering_scaled; |
|
float motor2 = throttle_scaled - 0.5*steering_scaled; |
|
g.channel_steer.servo_out = 4500*motor1; |
|
g.channel_throttle.servo_out = 100*motor2; |
|
g.channel_steer.calc_pwm(); |
|
g.channel_throttle.calc_pwm(); |
|
} |
|
} |
|
|
|
|
|
#if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS |
|
// send values to the PWM timers for output |
|
// ---------------------------------------- |
|
hal.rcout->write(CH_1, g.channel_steer.radio_out); // send to Servos |
|
hal.rcout->write(CH_3, g.channel_throttle.radio_out); // send to Servos |
|
|
|
// Route configurable aux. functions to their respective servos |
|
g.rc_2.output_ch(CH_2); |
|
g.rc_4.output_ch(CH_4); |
|
g.rc_5.output_ch(CH_5); |
|
g.rc_6.output_ch(CH_6); |
|
g.rc_7.output_ch(CH_7); |
|
g.rc_8.output_ch(CH_8); |
|
|
|
#endif |
|
} |
|
|
|
static bool demoing_servos; |
|
|
|
static void demo_servos(uint8_t i) { |
|
|
|
while(i > 0) { |
|
gcs_send_text_P(SEVERITY_LOW,PSTR("Demo Servos!")); |
|
demoing_servos = true; |
|
#if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS |
|
hal.rcout->write(1, 1400); |
|
mavlink_delay(400); |
|
hal.rcout->write(1, 1600); |
|
mavlink_delay(200); |
|
hal.rcout->write(1, 1500); |
|
#endif |
|
demoing_servos = false; |
|
mavlink_delay(400); |
|
i--; |
|
} |
|
}
|
|
|