You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
718 lines
27 KiB
718 lines
27 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
#include <AP_HAL.h> |
|
#include <AC_WPNav.h> |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
const AP_Param::GroupInfo AC_WPNav::var_info[] PROGMEM = { |
|
// index 0 was used for the old orientation matrix |
|
|
|
// @Param: SPEED |
|
// @DisplayName: Waypoint Horizontal Speed Target |
|
// @Description: Defines the speed in cm/s which the aircraft will attempt to maintain horizontally during a WP mission |
|
// @Units: cm/s |
|
// @Range: 0 2000 |
|
// @Increment: 50 |
|
// @User: Standard |
|
AP_GROUPINFO("SPEED", 0, AC_WPNav, _wp_speed_cms, WPNAV_WP_SPEED), |
|
|
|
// @Param: RADIUS |
|
// @DisplayName: Waypoint Radius |
|
// @Description: Defines the distance from a waypoint, that when crossed indicates the wp has been hit. |
|
// @Units: cm |
|
// @Range: 100 1000 |
|
// @Increment: 1 |
|
// @User: Standard |
|
AP_GROUPINFO("RADIUS", 1, AC_WPNav, _wp_radius_cm, WPNAV_WP_RADIUS), |
|
|
|
// @Param: SPEED_UP |
|
// @DisplayName: Waypoint Climb Speed Target |
|
// @Description: Defines the speed in cm/s which the aircraft will attempt to maintain while climbing during a WP mission |
|
// @Units: cm/s |
|
// @Range: 0 1000 |
|
// @Increment: 50 |
|
// @User: Standard |
|
AP_GROUPINFO("SPEED_UP", 2, AC_WPNav, _wp_speed_up_cms, WPNAV_WP_SPEED_UP), |
|
|
|
// @Param: SPEED_DN |
|
// @DisplayName: Waypoint Descent Speed Target |
|
// @Description: Defines the speed in cm/s which the aircraft will attempt to maintain while descending during a WP mission |
|
// @Units: cm/s |
|
// @Range: 0 1000 |
|
// @Increment: 50 |
|
// @User: Standard |
|
AP_GROUPINFO("SPEED_DN", 3, AC_WPNav, _wp_speed_down_cms, WPNAV_WP_SPEED_DOWN), |
|
|
|
// @Param: LOIT_SPEED |
|
// @DisplayName: Loiter Horizontal Maximum Speed |
|
// @Description: Defines the maximum speed in cm/s which the aircraft will travel horizontally while in loiter mode |
|
// @Units: cm/s |
|
// @Range: 0 2000 |
|
// @Increment: 50 |
|
// @User: Standard |
|
AP_GROUPINFO("LOIT_SPEED", 4, AC_WPNav, _loiter_speed_cms, WPNAV_LOITER_SPEED), |
|
|
|
// @Param: ACCEL |
|
// @DisplayName: Waypoint Acceleration |
|
// @Description: Defines the horizontal acceleration in cm/s/s used during missions |
|
// @Units: cm/s/s |
|
// @Range: 0 980 |
|
// @Increment: 10 |
|
// @User: Standard |
|
AP_GROUPINFO("ACCEL", 5, AC_WPNav, _wp_accel_cms, WPNAV_ACCELERATION), |
|
|
|
AP_GROUPEND |
|
}; |
|
|
|
// Default constructor. |
|
// Note that the Vector/Matrix constructors already implicitly zero |
|
// their values. |
|
// |
|
AC_WPNav::AC_WPNav(AP_InertialNav* inav, AP_AHRS* ahrs, APM_PI* pid_pos_lat, APM_PI* pid_pos_lon, AC_PID* pid_rate_lat, AC_PID* pid_rate_lon) : |
|
_inav(inav), |
|
_ahrs(ahrs), |
|
_pid_pos_lat(pid_pos_lat), |
|
_pid_pos_lon(pid_pos_lon), |
|
_pid_rate_lat(pid_rate_lat), |
|
_pid_rate_lon(pid_rate_lon), |
|
_loiter_last_update(0), |
|
_wpnav_last_update(0), |
|
_cos_yaw(1.0), |
|
_sin_yaw(0.0), |
|
_cos_pitch(1.0), |
|
_althold_kP(WPNAV_ALT_HOLD_P), |
|
_desired_roll(0), |
|
_desired_pitch(0), |
|
_target(0,0,0), |
|
_pilot_vel_forward_cms(0), |
|
_pilot_vel_right_cms(0), |
|
_target_vel(0,0,0), |
|
_vel_last(0,0,0), |
|
_loiter_leash(WPNAV_MIN_LEASH_LENGTH), |
|
_loiter_accel_cms(WPNAV_LOITER_ACCEL_MAX), |
|
_wp_leash_xy(WPNAV_MIN_LEASH_LENGTH), |
|
_wp_leash_z(WPNAV_MIN_LEASH_LENGTH), |
|
_track_accel(0), |
|
_track_speed(0), |
|
_track_leash_length(0), |
|
dist_error(0,0), |
|
desired_vel(0,0), |
|
desired_accel(0,0) |
|
{ |
|
AP_Param::setup_object_defaults(this, var_info); |
|
|
|
// calculate loiter leash |
|
calculate_loiter_leash_length(); |
|
} |
|
|
|
/// |
|
/// simple loiter controller |
|
/// |
|
|
|
/// get_stopping_point - returns vector to stopping point based on a horizontal position and velocity |
|
void AC_WPNav::get_stopping_point(const Vector3f& position, const Vector3f& velocity, Vector3f &target) const |
|
{ |
|
float linear_distance; // half the distace we swap between linear and sqrt and the distace we offset sqrt. |
|
float linear_velocity; // the velocity we swap between linear and sqrt. |
|
float vel_total; |
|
float target_dist; |
|
float kP = _pid_pos_lat->kP(); |
|
|
|
// calculate current velocity |
|
vel_total = safe_sqrt(velocity.x*velocity.x + velocity.y*velocity.y); |
|
|
|
// avoid divide by zero by using current position if the velocity is below 10cm/s, kP is very low or acceleration is zero |
|
if (vel_total < 10.0f || kP <= 0.0f || _wp_accel_cms <= 0.0f) { |
|
target = position; |
|
return; |
|
} |
|
|
|
// calculate point at which velocity switches from linear to sqrt |
|
linear_velocity = _wp_accel_cms/kP; |
|
|
|
// calculate distance within which we can stop |
|
if (vel_total < linear_velocity) { |
|
target_dist = vel_total/kP; |
|
} else { |
|
linear_distance = _wp_accel_cms/(2.0f*kP*kP); |
|
target_dist = linear_distance + (vel_total*vel_total)/(2.0f*_wp_accel_cms); |
|
} |
|
target_dist = constrain_float(target_dist, 0, _wp_leash_xy*2.0f); |
|
|
|
target.x = position.x + (target_dist * velocity.x / vel_total); |
|
target.y = position.y + (target_dist * velocity.y / vel_total); |
|
target.z = position.z; |
|
} |
|
|
|
/// set_loiter_target in cm from home |
|
void AC_WPNav::set_loiter_target(const Vector3f& position) |
|
{ |
|
_target = position; |
|
_target_vel.x = 0; |
|
_target_vel.y = 0; |
|
} |
|
|
|
/// init_loiter_target - set initial loiter target based on current position and velocity |
|
void AC_WPNav::init_loiter_target(const Vector3f& position, const Vector3f& velocity) |
|
{ |
|
// set target position and velocity based on current pos and velocity |
|
_target.x = position.x; |
|
_target.y = position.y; |
|
_target_vel.x = velocity.x; |
|
_target_vel.y = velocity.y; |
|
|
|
// initialise desired roll and pitch to current roll and pitch. This avoids a random twitch between now and when the loiter controller is first run |
|
_desired_roll = constrain_int32(_ahrs->roll_sensor,-MAX_LEAN_ANGLE,MAX_LEAN_ANGLE); |
|
_desired_pitch = constrain_int32(_ahrs->pitch_sensor,-MAX_LEAN_ANGLE,MAX_LEAN_ANGLE); |
|
|
|
// initialise pilot input |
|
_pilot_vel_forward_cms = 0; |
|
_pilot_vel_right_cms = 0; |
|
|
|
// set last velocity to current velocity |
|
// To-Do: remove the line below by instead forcing reset_I to be called on the first loiter_update call |
|
_vel_last = _inav->get_velocity(); |
|
} |
|
|
|
/// move_loiter_target - move loiter target by velocity provided in front/right directions in cm/s |
|
void AC_WPNav::move_loiter_target(float control_roll, float control_pitch, float dt) |
|
{ |
|
// convert pilot input to desired velocity in cm/s |
|
_pilot_vel_forward_cms = -control_pitch * _loiter_accel_cms / 4500.0f; |
|
_pilot_vel_right_cms = control_roll * _loiter_accel_cms / 4500.0f; |
|
} |
|
|
|
/// translate_loiter_target_movements - consumes adjustments created by move_loiter_target |
|
void AC_WPNav::translate_loiter_target_movements(float nav_dt) |
|
{ |
|
Vector2f target_vel_adj; |
|
float vel_total; |
|
|
|
// range check nav_dt |
|
if( nav_dt < 0 ) { |
|
return; |
|
} |
|
|
|
// check loiter speed and avoid divide by zero |
|
if( _loiter_speed_cms < 100.0f) { |
|
_loiter_speed_cms = 100.0f; |
|
} |
|
|
|
// rotate pilot input to lat/lon frame |
|
target_vel_adj.x = (_pilot_vel_forward_cms*_cos_yaw - _pilot_vel_right_cms*_sin_yaw); |
|
target_vel_adj.y = (_pilot_vel_forward_cms*_sin_yaw + _pilot_vel_right_cms*_cos_yaw); |
|
|
|
// add desired change in velocity to current target velocit |
|
_target_vel.x += target_vel_adj.x*nav_dt; |
|
_target_vel.y += target_vel_adj.y*nav_dt; |
|
if(_target_vel.x > 0 ) { |
|
_target_vel.x -= (_loiter_accel_cms-WPNAV_LOITER_ACCEL_MIN)*nav_dt*_target_vel.x/_loiter_speed_cms; |
|
_target_vel.x = max(_target_vel.x - WPNAV_LOITER_ACCEL_MIN*nav_dt, 0); |
|
}else if(_target_vel.x < 0) { |
|
_target_vel.x -= (_loiter_accel_cms-WPNAV_LOITER_ACCEL_MIN)*nav_dt*_target_vel.x/_loiter_speed_cms; |
|
_target_vel.x = min(_target_vel.x + WPNAV_LOITER_ACCEL_MIN*nav_dt, 0); |
|
} |
|
if(_target_vel.y > 0 ) { |
|
_target_vel.y -= (_loiter_accel_cms-WPNAV_LOITER_ACCEL_MIN)*nav_dt*_target_vel.y/_loiter_speed_cms; |
|
_target_vel.y = max(_target_vel.y - WPNAV_LOITER_ACCEL_MIN*nav_dt, 0); |
|
}else if(_target_vel.y < 0) { |
|
_target_vel.y -= (_loiter_accel_cms-WPNAV_LOITER_ACCEL_MIN)*nav_dt*_target_vel.y/_loiter_speed_cms; |
|
_target_vel.y = min(_target_vel.y + WPNAV_LOITER_ACCEL_MIN*nav_dt, 0); |
|
} |
|
|
|
// constrain the velocity vector and scale if necessary |
|
vel_total = safe_sqrt(_target_vel.x*_target_vel.x + _target_vel.y*_target_vel.y); |
|
if (vel_total > _loiter_speed_cms && vel_total > 0.0f) { |
|
_target_vel.x = _loiter_speed_cms * _target_vel.x/vel_total; |
|
_target_vel.y = _loiter_speed_cms * _target_vel.y/vel_total; |
|
} |
|
|
|
// update target position |
|
_target.x += _target_vel.x * nav_dt; |
|
_target.y += _target_vel.y * nav_dt; |
|
|
|
// constrain target position to within reasonable distance of current location |
|
Vector3f curr_pos = _inav->get_position(); |
|
Vector3f distance_err = _target - curr_pos; |
|
float distance = safe_sqrt(distance_err.x*distance_err.x + distance_err.y*distance_err.y); |
|
if (distance > _loiter_leash && distance > 0.0f) { |
|
_target.x = curr_pos.x + _loiter_leash * distance_err.x/distance; |
|
_target.y = curr_pos.y + _loiter_leash * distance_err.y/distance; |
|
} |
|
} |
|
|
|
/// get_distance_to_target - get horizontal distance to loiter target in cm |
|
float AC_WPNav::get_distance_to_target() const |
|
{ |
|
return _distance_to_target; |
|
} |
|
|
|
/// get_bearing_to_target - get bearing to loiter target in centi-degrees |
|
int32_t AC_WPNav::get_bearing_to_target() const |
|
{ |
|
return get_bearing_cd(_inav->get_position(), _target); |
|
} |
|
|
|
/// update_loiter - run the loiter controller - should be called at 10hz |
|
void AC_WPNav::update_loiter() |
|
{ |
|
uint32_t now = hal.scheduler->millis(); |
|
float dt = (now - _loiter_last_update) / 1000.0f; |
|
_loiter_last_update = now; |
|
|
|
// catch if we've just been started |
|
if( dt >= 1.0 ) { |
|
dt = 0.0; |
|
reset_I(); |
|
} |
|
|
|
// translate any adjustments from pilot to loiter target |
|
translate_loiter_target_movements(dt); |
|
|
|
// run loiter position controller |
|
get_loiter_position_to_velocity(dt, WPNAV_LOITER_SPEED_MAX_TO_CORRECT_ERROR); |
|
} |
|
|
|
/// calculate_loiter_leash_length - calculates the maximum distance in cm that the target position may be from the current location |
|
void AC_WPNav::calculate_loiter_leash_length() |
|
{ |
|
// get loiter position P |
|
float kP = _pid_pos_lat->kP(); |
|
|
|
// check loiter speed |
|
if( _loiter_speed_cms < 100.0f) { |
|
_loiter_speed_cms = 100.0f; |
|
} |
|
|
|
// set loiter acceleration to 1/2 loiter speed |
|
_loiter_accel_cms = _loiter_speed_cms / 2.0f; |
|
|
|
// avoid divide by zero |
|
if (kP <= 0.0f || _wp_accel_cms <= 0.0f) { |
|
_loiter_leash = WPNAV_MIN_LEASH_LENGTH; |
|
return; |
|
} |
|
|
|
// calculate horizontal leash length |
|
if(WPNAV_LOITER_SPEED_MAX_TO_CORRECT_ERROR <= _wp_accel_cms / kP) { |
|
// linear leash length based on speed close in |
|
_loiter_leash = WPNAV_LOITER_SPEED_MAX_TO_CORRECT_ERROR / kP; |
|
}else{ |
|
// leash length grows at sqrt of speed further out |
|
_loiter_leash = (_wp_accel_cms / (2.0f*kP*kP)) + (WPNAV_LOITER_SPEED_MAX_TO_CORRECT_ERROR*WPNAV_LOITER_SPEED_MAX_TO_CORRECT_ERROR / (2.0f*_wp_accel_cms)); |
|
} |
|
|
|
// ensure leash is at least 1m long |
|
if( _loiter_leash < WPNAV_MIN_LEASH_LENGTH ) { |
|
_loiter_leash = WPNAV_MIN_LEASH_LENGTH; |
|
} |
|
} |
|
|
|
/// |
|
/// waypoint navigation |
|
/// |
|
|
|
/// set_destination - set destination using cm from home |
|
void AC_WPNav::set_destination(const Vector3f& destination) |
|
{ |
|
// if waypoint controlls is active and copter has reached the previous waypoint use it for the origin |
|
if( _flags.reached_destination && ((hal.scheduler->millis() - _wpnav_last_update) < 1000) ) { |
|
_origin = _destination; |
|
}else{ |
|
// otherwise calculate origin from the current position and velocity |
|
get_stopping_point(_inav->get_position(), _inav->get_velocity(), _origin); |
|
} |
|
|
|
// set origin and destination |
|
set_origin_and_destination(_origin, destination); |
|
} |
|
|
|
/// set_origin_and_destination - set origin and destination using lat/lon coordinates |
|
void AC_WPNav::set_origin_and_destination(const Vector3f& origin, const Vector3f& destination) |
|
{ |
|
// store origin and destination locations |
|
_origin = origin; |
|
_destination = destination; |
|
Vector3f pos_delta = _destination - _origin; |
|
|
|
// calculate leash lengths |
|
bool climb = pos_delta.z >= 0; // climbing vs descending leads to different leash lengths because speed_up_cms and speed_down_cms can be different |
|
|
|
_track_length = pos_delta.length(); // get track length |
|
|
|
// calculate each axis' percentage of the total distance to the destination |
|
if (_track_length == 0.0f) { |
|
// avoid possible divide by zero |
|
_pos_delta_unit.x = 0; |
|
_pos_delta_unit.y = 0; |
|
_pos_delta_unit.z = 0; |
|
}else{ |
|
_pos_delta_unit = pos_delta/_track_length; |
|
} |
|
calculate_wp_leash_length(climb); // update leash lengths |
|
|
|
// initialise intermediate point to the origin |
|
_track_desired = 0; |
|
_target = origin; |
|
_flags.reached_destination = false; |
|
|
|
// initialise the limited speed to current speed along the track |
|
Vector3f curr_vel = _inav->get_velocity(); |
|
// get speed along track (note: we convert vertical speed into horizontal speed equivalent) |
|
float speed_along_track = curr_vel.x * _pos_delta_unit.x + curr_vel.y * _pos_delta_unit.y + curr_vel.z * _pos_delta_unit.z; |
|
_limited_speed_xy_cms = constrain_float(speed_along_track,0,_wp_speed_cms); |
|
|
|
// default waypoint back to slow |
|
_flags.fast_waypoint = false; |
|
|
|
// initialise desired roll and pitch to current roll and pitch. This avoids a random twitch between now and when the wpnav controller is first run |
|
_desired_roll = constrain_int32(_ahrs->roll_sensor,-MAX_LEAN_ANGLE,MAX_LEAN_ANGLE); |
|
_desired_pitch = constrain_int32(_ahrs->pitch_sensor,-MAX_LEAN_ANGLE,MAX_LEAN_ANGLE); |
|
|
|
// reset target velocity - only used by loiter controller's interpretation of pilot input |
|
_target_vel.x = 0; |
|
_target_vel.y = 0; |
|
} |
|
|
|
/// advance_target_along_track - move target location along track from origin to destination |
|
void AC_WPNav::advance_target_along_track(float dt) |
|
{ |
|
float track_covered; |
|
Vector3f track_error; |
|
float track_desired_max; |
|
float track_desired_temp = _track_desired; |
|
float track_extra_max; |
|
|
|
// get current location |
|
Vector3f curr_pos = _inav->get_position(); |
|
Vector3f curr_delta = curr_pos - _origin; |
|
|
|
// calculate how far along the track we are |
|
track_covered = curr_delta.x * _pos_delta_unit.x + curr_delta.y * _pos_delta_unit.y + curr_delta.z * _pos_delta_unit.z; |
|
|
|
Vector3f track_covered_pos = _pos_delta_unit * track_covered; |
|
track_error = curr_delta - track_covered_pos; |
|
|
|
// calculate the horizontal error |
|
float track_error_xy = safe_sqrt(track_error.x*track_error.x + track_error.y*track_error.y); |
|
|
|
// calculate the vertical error |
|
float track_error_z = fabsf(track_error.z); |
|
|
|
// calculate how far along the track we could move the intermediate target before reaching the end of the leash |
|
track_extra_max = min(_track_leash_length*(_wp_leash_z-track_error_z)/_wp_leash_z, _track_leash_length*(_wp_leash_xy-track_error_xy)/_wp_leash_xy); |
|
if(track_extra_max <0) { |
|
track_desired_max = track_covered; |
|
}else{ |
|
track_desired_max = track_covered + track_extra_max; |
|
} |
|
|
|
// get current velocity |
|
Vector3f curr_vel = _inav->get_velocity(); |
|
// get speed along track |
|
float speed_along_track = curr_vel.x * _pos_delta_unit.x + curr_vel.y * _pos_delta_unit.y + curr_vel.z * _pos_delta_unit.z; |
|
|
|
// calculate point at which velocity switches from linear to sqrt |
|
float linear_velocity = _wp_speed_cms; |
|
float kP = _pid_pos_lat->kP(); |
|
if (kP >= 0.0f) { // avoid divide by zero |
|
linear_velocity = _track_accel/kP; |
|
} |
|
|
|
// let the limited_speed_xy_cms be some range above or below current velocity along track |
|
if (speed_along_track < -linear_velocity) { |
|
// we are travelling fast in the opposite direction of travel to the waypoint so do not move the intermediate point |
|
_limited_speed_xy_cms = 0; |
|
}else{ |
|
// increase intermediate target point's velocity if not yet at target speed (we will limit it below) |
|
if(dt > 0) { |
|
if(track_desired_max > _track_desired) { |
|
_limited_speed_xy_cms += 2.0 * _track_accel * dt; |
|
}else{ |
|
// do nothing, velocity stays constant |
|
_track_desired = track_desired_max; |
|
} |
|
} |
|
// do not go over top speed |
|
if(_limited_speed_xy_cms > _track_speed) { |
|
_limited_speed_xy_cms = _track_speed; |
|
} |
|
// if our current velocity is within the linear velocity range limit the intermediate point's velocity to be no more than the linear_velocity above or below our current velocity |
|
if (fabsf(speed_along_track) < linear_velocity) { |
|
_limited_speed_xy_cms = constrain_float(_limited_speed_xy_cms,speed_along_track-linear_velocity,speed_along_track+linear_velocity); |
|
} |
|
} |
|
// advance the current target |
|
track_desired_temp += _limited_speed_xy_cms * dt; |
|
|
|
// do not let desired point go past the end of the segment |
|
track_desired_temp = constrain_float(track_desired_temp, 0, _track_length); |
|
_track_desired = max(_track_desired, track_desired_temp); |
|
|
|
// recalculate the desired position |
|
_target = _origin + _pos_delta_unit * _track_desired; |
|
|
|
// check if we've reached the waypoint |
|
if( !_flags.reached_destination ) { |
|
if( _track_desired >= _track_length ) { |
|
// "fast" waypoints are complete once the intermediate point reaches the destination |
|
if (_flags.fast_waypoint) { |
|
_flags.reached_destination = true; |
|
}else{ |
|
// regular waypoints also require the copter to be within the waypoint radius |
|
Vector3f dist_to_dest = curr_pos - _destination; |
|
if( dist_to_dest.length() <= _wp_radius_cm ) { |
|
_flags.reached_destination = true; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
/// get_distance_to_destination - get horizontal distance to destination in cm |
|
float AC_WPNav::get_distance_to_destination() |
|
{ |
|
// get current location |
|
Vector3f curr = _inav->get_position(); |
|
return pythagorous2(_destination.x-curr.x,_destination.y-curr.y); |
|
} |
|
|
|
/// get_bearing_to_destination - get bearing to next waypoint in centi-degrees |
|
int32_t AC_WPNav::get_bearing_to_destination() |
|
{ |
|
return get_bearing_cd(_inav->get_position(), _destination); |
|
} |
|
|
|
/// update_wpnav - run the wp controller - should be called at 10hz |
|
void AC_WPNav::update_wpnav() |
|
{ |
|
uint32_t now = hal.scheduler->millis(); |
|
float dt = (now - _wpnav_last_update) / 1000.0f; |
|
_wpnav_last_update = now; |
|
|
|
// catch if we've just been started |
|
if( dt >= 1.0 ) { |
|
dt = 0.0; |
|
reset_I(); |
|
}else{ |
|
// advance the target if necessary |
|
advance_target_along_track(dt); |
|
} |
|
|
|
// run loiter position controller |
|
get_loiter_position_to_velocity(dt, _wp_speed_cms); |
|
} |
|
|
|
/// |
|
/// shared methods |
|
/// |
|
|
|
/// get_loiter_position_to_velocity - loiter position controller |
|
/// converts desired position held in _target vector to desired velocity |
|
void AC_WPNav::get_loiter_position_to_velocity(float dt, float max_speed_cms) |
|
{ |
|
Vector3f curr = _inav->get_position(); |
|
float dist_error_total; |
|
|
|
float vel_sqrt; |
|
float vel_total; |
|
|
|
float linear_distance; // the distace we swap between linear and sqrt. |
|
float kP = _pid_pos_lat->kP(); |
|
|
|
// avoid divide by zero |
|
if (kP <= 0.0f) { |
|
desired_vel.x = 0.0; |
|
desired_vel.y = 0.0; |
|
}else{ |
|
// calculate distance error |
|
dist_error.x = _target.x - curr.x; |
|
dist_error.y = _target.y - curr.y; |
|
|
|
linear_distance = _wp_accel_cms/(2.0f*kP*kP); |
|
|
|
dist_error_total = safe_sqrt(dist_error.x*dist_error.x + dist_error.y*dist_error.y); |
|
_distance_to_target = dist_error_total; // for reporting purposes |
|
|
|
if( dist_error_total > 2.0f*linear_distance ) { |
|
vel_sqrt = safe_sqrt(2.0f*_wp_accel_cms*(dist_error_total-linear_distance)); |
|
desired_vel.x = vel_sqrt * dist_error.x/dist_error_total; |
|
desired_vel.y = vel_sqrt * dist_error.y/dist_error_total; |
|
}else{ |
|
desired_vel.x = _pid_pos_lat->kP() * dist_error.x; |
|
desired_vel.y = _pid_pos_lon->kP() * dist_error.y; |
|
} |
|
|
|
// ensure velocity stays within limits |
|
vel_total = safe_sqrt(desired_vel.x*desired_vel.x + desired_vel.y*desired_vel.y); |
|
if( vel_total > max_speed_cms ) { |
|
desired_vel.x = max_speed_cms * desired_vel.x/vel_total; |
|
desired_vel.y = max_speed_cms * desired_vel.y/vel_total; |
|
} |
|
|
|
// feed forward velocity request |
|
desired_vel.x += _target_vel.x; |
|
desired_vel.y += _target_vel.y; |
|
} |
|
|
|
// call velocity to acceleration controller |
|
get_loiter_velocity_to_acceleration(desired_vel.x, desired_vel.y, dt); |
|
} |
|
|
|
/// get_loiter_velocity_to_acceleration - loiter velocity controller |
|
/// converts desired velocities in lat/lon directions to accelerations in lat/lon frame |
|
void AC_WPNav::get_loiter_velocity_to_acceleration(float vel_lat, float vel_lon, float dt) |
|
{ |
|
Vector3f vel_curr = _inav->get_velocity(); // current velocity in cm/s |
|
Vector3f vel_error; // The velocity error in cm/s. |
|
float accel_total; // total acceleration in cm/s/s |
|
|
|
// reset last velocity if this controller has just been engaged or dt is zero |
|
if( dt == 0.0 ) { |
|
desired_accel.x = 0; |
|
desired_accel.y = 0; |
|
} else { |
|
// feed forward desired acceleration calculation |
|
desired_accel.x = (vel_lat - _vel_last.x)/dt; |
|
desired_accel.y = (vel_lon - _vel_last.y)/dt; |
|
} |
|
|
|
// store this iteration's velocities for the next iteration |
|
_vel_last.x = vel_lat; |
|
_vel_last.y = vel_lon; |
|
|
|
// calculate velocity error |
|
vel_error.x = vel_lat - vel_curr.x; |
|
vel_error.y = vel_lon - vel_curr.y; |
|
|
|
// combine feed foward accel with PID outpu from velocity error |
|
desired_accel.x += _pid_rate_lat->get_pid(vel_error.x, dt); |
|
desired_accel.y += _pid_rate_lon->get_pid(vel_error.y, dt); |
|
|
|
// scale desired acceleration if it's beyond acceptable limit |
|
accel_total = safe_sqrt(desired_accel.x*desired_accel.x + desired_accel.y*desired_accel.y); |
|
if( accel_total > WPNAV_ACCEL_MAX ) { |
|
desired_accel.x = WPNAV_ACCEL_MAX * desired_accel.x/accel_total; |
|
desired_accel.y = WPNAV_ACCEL_MAX * desired_accel.y/accel_total; |
|
} |
|
|
|
// call accel based controller with desired acceleration |
|
get_loiter_acceleration_to_lean_angles(desired_accel.x, desired_accel.y); |
|
} |
|
|
|
/// get_loiter_acceleration_to_lean_angles - loiter acceleration controller |
|
/// converts desired accelerations provided in lat/lon frame to roll/pitch angles |
|
void AC_WPNav::get_loiter_acceleration_to_lean_angles(float accel_lat, float accel_lon) |
|
{ |
|
float z_accel_meas = -GRAVITY_MSS * 100; // gravity in cm/s/s |
|
float accel_forward; |
|
float accel_right; |
|
|
|
// To-Do: add 1hz filter to accel_lat, accel_lon |
|
|
|
// rotate accelerations into body forward-right frame |
|
accel_forward = accel_lat*_cos_yaw + accel_lon*_sin_yaw; |
|
accel_right = -accel_lat*_sin_yaw + accel_lon*_cos_yaw; |
|
|
|
// update angle targets that will be passed to stabilize controller |
|
_desired_roll = constrain_float(fast_atan(accel_right*_cos_pitch/(-z_accel_meas))*(18000/M_PI), -MAX_LEAN_ANGLE, MAX_LEAN_ANGLE); |
|
_desired_pitch = constrain_float(fast_atan(-accel_forward/(-z_accel_meas))*(18000/M_PI), -MAX_LEAN_ANGLE, MAX_LEAN_ANGLE); |
|
} |
|
|
|
// get_bearing_cd - return bearing in centi-degrees between two positions |
|
// To-Do: move this to math library |
|
float AC_WPNav::get_bearing_cd(const Vector3f &origin, const Vector3f &destination) const |
|
{ |
|
float bearing = 9000 + atan2f(-(destination.x-origin.x), destination.y-origin.y) * 5729.57795f; |
|
if (bearing < 0) { |
|
bearing += 36000; |
|
} |
|
return bearing; |
|
} |
|
|
|
/// reset_I - clears I terms from loiter PID controller |
|
void AC_WPNav::reset_I() |
|
{ |
|
_pid_pos_lon->reset_I(); |
|
_pid_pos_lat->reset_I(); |
|
_pid_rate_lon->reset_I(); |
|
_pid_rate_lat->reset_I(); |
|
|
|
// set last velocity to current velocity |
|
_vel_last = _inav->get_velocity(); |
|
} |
|
|
|
/// calculate_wp_leash_length - calculates horizontal and vertical leash lengths for waypoint controller |
|
void AC_WPNav::calculate_wp_leash_length(bool climb) |
|
{ |
|
|
|
// get loiter position P |
|
float kP = _pid_pos_lat->kP(); |
|
|
|
// sanity check acceleration and avoid divide by zero |
|
if (_wp_accel_cms <= 0.0f) { |
|
_wp_accel_cms = WPNAV_ACCELERATION_MIN; |
|
} |
|
|
|
// avoid divide by zero |
|
if (kP <= 0.0f) { |
|
_wp_leash_xy = WPNAV_MIN_LEASH_LENGTH; |
|
return; |
|
} |
|
// calculate horiztonal leash length |
|
if(_wp_speed_cms <= _wp_accel_cms / kP) { |
|
// linear leash length based on speed close in |
|
_wp_leash_xy = _wp_speed_cms / kP; |
|
}else{ |
|
// leash length grows at sqrt of speed further out |
|
_wp_leash_xy = (_wp_accel_cms / (2.0f*kP*kP)) + (_wp_speed_cms*_wp_speed_cms / (2.0f*_wp_accel_cms)); |
|
} |
|
|
|
// ensure leash is at least 1m long |
|
if( _wp_leash_xy < WPNAV_MIN_LEASH_LENGTH ) { |
|
_wp_leash_xy = WPNAV_MIN_LEASH_LENGTH; |
|
} |
|
|
|
// calculate vertical leash length |
|
float speed_vert; |
|
if( climb ) { |
|
speed_vert = _wp_speed_up_cms; |
|
}else{ |
|
speed_vert = _wp_speed_down_cms; |
|
} |
|
if(speed_vert <= WPNAV_ALT_HOLD_ACCEL_MAX / _althold_kP) { |
|
// linear leash length based on speed close in |
|
_wp_leash_z = speed_vert / _althold_kP; |
|
}else{ |
|
// leash length grows at sqrt of speed further out |
|
_wp_leash_z = (WPNAV_ALT_HOLD_ACCEL_MAX / (2.0*_althold_kP*_althold_kP)) + (speed_vert*speed_vert / (2*WPNAV_ALT_HOLD_ACCEL_MAX)); |
|
} |
|
|
|
// ensure leash is at least 1m long |
|
if( _wp_leash_z < WPNAV_MIN_LEASH_LENGTH ) { |
|
_wp_leash_z = WPNAV_MIN_LEASH_LENGTH; |
|
} |
|
|
|
// length of the unit direction vector in the horizontal |
|
float pos_delta_unit_xy = sqrt(_pos_delta_unit.x*_pos_delta_unit.x+_pos_delta_unit.y*_pos_delta_unit.y); |
|
float pos_delta_unit_z = fabsf(_pos_delta_unit.z); |
|
|
|
// calculate the maximum acceleration, maximum velocity, and leash length in the direction of travel |
|
if(pos_delta_unit_z == 0 && pos_delta_unit_xy == 0){ |
|
_track_accel = 0; |
|
_track_speed = 0; |
|
_track_leash_length = WPNAV_MIN_LEASH_LENGTH; |
|
}else if(_pos_delta_unit.z == 0){ |
|
_track_accel = _wp_accel_cms/pos_delta_unit_xy; |
|
_track_speed = _wp_speed_cms/pos_delta_unit_xy; |
|
_track_leash_length = _wp_leash_xy/pos_delta_unit_xy; |
|
}else if(pos_delta_unit_xy == 0){ |
|
_track_accel = WPNAV_ALT_HOLD_ACCEL_MAX/pos_delta_unit_z; |
|
_track_speed = speed_vert/pos_delta_unit_z; |
|
_track_leash_length = _wp_leash_z/pos_delta_unit_z; |
|
}else{ |
|
_track_accel = min(WPNAV_ALT_HOLD_ACCEL_MAX/pos_delta_unit_z, _wp_accel_cms/pos_delta_unit_xy); |
|
_track_speed = min(speed_vert/pos_delta_unit_z, _wp_speed_cms/pos_delta_unit_xy); |
|
_track_leash_length = min(_wp_leash_z/pos_delta_unit_z, _wp_leash_xy/pos_delta_unit_xy); |
|
} |
|
}
|
|
|