You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
221 lines
5.6 KiB
221 lines
5.6 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
|
|
// Copyright 2010 Michael Smith, all rights reserved. |
|
|
|
// Derived closely from: |
|
/**************************************** |
|
* 3D Vector Classes |
|
* By Bill Perone (billperone@yahoo.com) |
|
* Original: 9-16-2002 |
|
* Revised: 19-11-2003 |
|
* 11-12-2003 |
|
* 18-12-2003 |
|
* 06-06-2004 |
|
* |
|
* © 2003, This code is provided "as is" and you can use it freely as long as |
|
* credit is given to Bill Perone in the application it is used in |
|
* |
|
* Notes: |
|
* if a*b = 0 then a & b are orthogonal |
|
* a%b = -b%a |
|
* a*(b%c) = (a%b)*c |
|
* a%b = a(cast to matrix)*b |
|
* (a%b).length() = area of parallelogram formed by a & b |
|
* (a%b).length() = a.length()*b.length() * sin(angle between a & b) |
|
* (a%b).length() = 0 if angle between a & b = 0 or a.length() = 0 or b.length() = 0 |
|
* a * (b%c) = volume of parallelpiped formed by a, b, c |
|
* vector triple product: a%(b%c) = b*(a*c) - c*(a*b) |
|
* scalar triple product: a*(b%c) = c*(a%b) = b*(c%a) |
|
* vector quadruple product: (a%b)*(c%d) = (a*c)*(b*d) - (a*d)*(b*c) |
|
* if a is unit vector along b then a%b = -b%a = -b(cast to matrix)*a = 0 |
|
* vectors a1...an are linearly dependant if there exists a vector of scalars (b) where a1*b1 + ... + an*bn = 0 |
|
* or if the matrix (A) * b = 0 |
|
* |
|
****************************************/ |
|
|
|
#ifndef VECTOR3_H |
|
#define VECTOR3_H |
|
|
|
#include <math.h> |
|
#include <string.h> |
|
|
|
#if MATH_CHECK_INDEXES |
|
#include <assert.h> |
|
#endif |
|
|
|
template <typename T> |
|
class Matrix3; |
|
|
|
template <typename T> |
|
class Vector3 |
|
{ |
|
|
|
public: |
|
T x, y, z; |
|
|
|
// trivial ctor |
|
Vector3<T>() { |
|
x = y = z = 0; |
|
} |
|
|
|
// setting ctor |
|
Vector3<T>(const T x0, const T y0, const T z0) : x(x0), y(y0), z(z0) { |
|
} |
|
|
|
// function call operator |
|
void operator ()(const T x0, const T y0, const T z0) |
|
{ |
|
x= x0; y= y0; z= z0; |
|
} |
|
|
|
// test for equality |
|
bool operator ==(const Vector3<T> &v) const; |
|
|
|
// test for inequality |
|
bool operator !=(const Vector3<T> &v) const; |
|
|
|
// negation |
|
Vector3<T> operator -(void) const; |
|
|
|
// addition |
|
Vector3<T> operator +(const Vector3<T> &v) const; |
|
|
|
// subtraction |
|
Vector3<T> operator -(const Vector3<T> &v) const; |
|
|
|
// uniform scaling |
|
Vector3<T> operator *(const T num) const; |
|
|
|
// uniform scaling |
|
Vector3<T> operator /(const T num) const; |
|
|
|
// addition |
|
Vector3<T> &operator +=(const Vector3<T> &v); |
|
|
|
// subtraction |
|
Vector3<T> &operator -=(const Vector3<T> &v); |
|
|
|
// uniform scaling |
|
Vector3<T> &operator *=(const T num); |
|
|
|
// uniform scaling |
|
Vector3<T> &operator /=(const T num); |
|
|
|
// allow a vector3 to be used as an array, 0 indexed |
|
T & operator[](uint8_t i) { |
|
T *_v = &x; |
|
#if MATH_CHECK_INDEXES |
|
assert(i >= 0 && i < 3); |
|
#endif |
|
return _v[i]; |
|
} |
|
|
|
const T & operator[](uint8_t i) const { |
|
const T *_v = &x; |
|
#if MATH_CHECK_INDEXES |
|
assert(i >= 0 && i < 3); |
|
#endif |
|
return _v[i]; |
|
} |
|
|
|
// dot product |
|
T operator *(const Vector3<T> &v) const; |
|
|
|
// multiply a row vector by a matrix, to give a row vector |
|
Vector3<T> operator *(const Matrix3<T> &m) const; |
|
|
|
// multiply a column vector by a row vector, returning a 3x3 matrix |
|
Matrix3<T> mul_rowcol(const Vector3<T> &v) const; |
|
|
|
// cross product |
|
Vector3<T> operator %(const Vector3<T> &v) const; |
|
|
|
// computes the angle between this vector and another vector |
|
float angle(const Vector3<T> &v2) const; |
|
|
|
// check if any elements are NAN |
|
bool is_nan(void) const; |
|
|
|
// check if any elements are infinity |
|
bool is_inf(void) const; |
|
|
|
// check if all elements are zero |
|
bool is_zero(void) const { return x==0 && y == 0 && z == 0; } |
|
|
|
// rotate by a standard rotation |
|
void rotate(enum Rotation rotation); |
|
|
|
// gets the length of this vector squared |
|
T length_squared() const |
|
{ |
|
return (T)(*this * *this); |
|
} |
|
|
|
// gets the length of this vector |
|
float length(void) const; |
|
|
|
// normalizes this vector |
|
void normalize() |
|
{ |
|
*this /= length(); |
|
} |
|
|
|
// zero the vector |
|
void zero() |
|
{ |
|
x = y = z = 0; |
|
} |
|
|
|
// returns the normalized version of this vector |
|
Vector3<T> normalized() const |
|
{ |
|
return *this/length(); |
|
} |
|
|
|
// reflects this vector about n |
|
void reflect(const Vector3<T> &n) |
|
{ |
|
Vector3<T> orig(*this); |
|
project(n); |
|
*this = *this*2 - orig; |
|
} |
|
|
|
// projects this vector onto v |
|
void project(const Vector3<T> &v) |
|
{ |
|
*this= v * (*this * v)/(v*v); |
|
} |
|
|
|
// returns this vector projected onto v |
|
Vector3<T> projected(const Vector3<T> &v) const |
|
{ |
|
return v * (*this * v)/(v*v); |
|
} |
|
|
|
|
|
}; |
|
|
|
typedef Vector3<int16_t> Vector3i; |
|
typedef Vector3<uint16_t> Vector3ui; |
|
typedef Vector3<int32_t> Vector3l; |
|
typedef Vector3<uint32_t> Vector3ul; |
|
typedef Vector3<float> Vector3f; |
|
#if HAL_CPU_CLASS >= HAL_CPU_CLASS_75 |
|
typedef Vector3<double> Vector3d; |
|
#endif |
|
|
|
#endif // VECTOR3_H
|
|
|