You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
489 lines
28 KiB
489 lines
28 KiB
/* |
|
24 state EKF based on the derivation in https://github.com/priseborough/ |
|
InertialNav/blob/master/derivations/RotationVectorAttitudeParameterisation/ |
|
GenerateNavFilterEquations.m |
|
|
|
Converted from Matlab to C++ by Paul Riseborough |
|
|
|
EKF Tuning parameters refactored by Tom Cauchois |
|
|
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
#pragma once |
|
|
|
#include <AP_Common/Location.h> |
|
#include <AP_Math/AP_Math.h> |
|
#include <AP_Param/AP_Param.h> |
|
#include <GCS_MAVLink/GCS_MAVLink.h> |
|
#include <AP_NavEKF/AP_Nav_Common.h> |
|
|
|
class NavEKF2_core; |
|
|
|
class NavEKF2 { |
|
friend class NavEKF2_core; |
|
|
|
public: |
|
NavEKF2(); |
|
|
|
/* Do not allow copies */ |
|
NavEKF2(const NavEKF2 &other) = delete; |
|
NavEKF2 &operator=(const NavEKF2&) = delete; |
|
|
|
static const struct AP_Param::GroupInfo var_info[]; |
|
|
|
// allow logging to determine the number of active cores |
|
uint8_t activeCores(void) const { |
|
return num_cores; |
|
} |
|
|
|
// Initialise the filter |
|
bool InitialiseFilter(void); |
|
|
|
// Update Filter States - this should be called whenever new IMU data is available |
|
void UpdateFilter(void); |
|
|
|
// Check basic filter health metrics and return a consolidated health status |
|
bool healthy(void) const; |
|
|
|
// returns false if we fail arming checks, in which case the buffer will be populated with a failure message |
|
bool pre_arm_check(char *failure_msg, uint8_t failure_msg_len) const; |
|
|
|
// returns the index of the primary core |
|
// return -1 if no primary core selected |
|
int8_t getPrimaryCoreIndex(void) const; |
|
|
|
// returns the index of the IMU of the primary core |
|
// return -1 if no primary core selected |
|
int8_t getPrimaryCoreIMUIndex(void) const; |
|
|
|
// Write the last calculated NE position relative to the reference point (m) for the specified instance. |
|
// An out of range instance (eg -1) returns data for the primary instance |
|
// If a calculated solution is not available, use the best available data and return false |
|
// If false returned, do not use for flight control |
|
bool getPosNE(int8_t instance, Vector2f &posNE) const; |
|
|
|
// Write the last calculated D position relative to the reference point (m) for the specified instance. |
|
// An out of range instance (eg -1) returns data for the primary instance |
|
// If a calculated solution is not available, use the best available data and return false |
|
// If false returned, do not use for flight control |
|
bool getPosD(int8_t instance, float &posD) const; |
|
|
|
// return NED velocity in m/s for the specified instance |
|
// An out of range instance (eg -1) returns data for the primary instance |
|
void getVelNED(int8_t instance, Vector3f &vel) const; |
|
|
|
// return estimate of true airspeed vector in body frame in m/s for the specified instance |
|
// An out of range instance (eg -1) returns data for the primary instance |
|
// returns false if estimate is unavailable |
|
bool getAirSpdVec(int8_t instance, Vector3f &vel) const; |
|
|
|
// Return the rate of change of vertical position in the down direction (dPosD/dt) in m/s for the specified instance |
|
// An out of range instance (eg -1) returns data for the primary instance |
|
// This can be different to the z component of the EKF velocity state because it will fluctuate with height errors and corrections in the EKF |
|
// but will always be kinematically consistent with the z component of the EKF position state |
|
float getPosDownDerivative(int8_t instance) const; |
|
|
|
// return body axis gyro bias estimates in rad/sec for the specified instance |
|
// An out of range instance (eg -1) returns data for the primary instance |
|
void getGyroBias(int8_t instance, Vector3f &gyroBias) const; |
|
|
|
// return body axis gyro scale factor error as a percentage for the specified instance |
|
// An out of range instance (eg -1) returns data for the primary instance |
|
void getGyroScaleErrorPercentage(int8_t instance, Vector3f &gyroScale) const; |
|
|
|
// reset body axis gyro bias estimates |
|
void resetGyroBias(void); |
|
|
|
// Resets the baro so that it reads zero at the current height |
|
// Resets the EKF height to zero |
|
// Adjusts the EKf origin height so that the EKF height + origin height is the same as before |
|
// Returns true if the height datum reset has been performed |
|
// If using a range finder for height no reset is performed and it returns false |
|
bool resetHeightDatum(void); |
|
|
|
// return the horizontal speed limit in m/s set by optical flow sensor limits |
|
// return the scale factor to be applied to navigation velocity gains to compensate for increase in velocity noise with height when using optical flow |
|
void getEkfControlLimits(float &ekfGndSpdLimit, float &ekfNavVelGainScaler) const; |
|
|
|
// return the Z-accel bias estimate in m/s^2 for the specified instance |
|
// An out of range instance (eg -1) returns data for the primary instance |
|
void getAccelZBias(int8_t instance, float &zbias) const; |
|
|
|
// return the NED wind speed estimates in m/s (positive is air moving in the direction of the axis) |
|
// An out of range instance (eg -1) returns data for the primary instance |
|
void getWind(int8_t instance, Vector3f &wind) const; |
|
|
|
// return earth magnetic field estimates in measurement units / 1000 for the specified instance |
|
// An out of range instance (eg -1) returns data for the primary instance |
|
void getMagNED(int8_t instance, Vector3f &magNED) const; |
|
|
|
// return body magnetic field estimates in measurement units / 1000 for the specified instance |
|
// An out of range instance (eg -1) returns data for the primary instance |
|
void getMagXYZ(int8_t instance, Vector3f &magXYZ) const; |
|
|
|
// Return estimated magnetometer offsets |
|
// Return true if magnetometer offsets are valid |
|
bool getMagOffsets(uint8_t mag_idx, Vector3f &magOffsets) const; |
|
|
|
// Return the last calculated latitude, longitude and height in WGS-84 |
|
// If a calculated location isn't available, return a raw GPS measurement |
|
// The status will return true if a calculation or raw measurement is available |
|
// The getFilterStatus() function provides a more detailed description of data health and must be checked if data is to be used for flight control |
|
bool getLLH(struct Location &loc) const; |
|
|
|
// Return the latitude and longitude and height used to set the NED origin for the specified instance |
|
// An out of range instance (eg -1) returns data for the primary instance |
|
// All NED positions calculated by the filter are relative to this location |
|
// Returns false if the origin has not been set |
|
bool getOriginLLH(int8_t instance, struct Location &loc) const; |
|
|
|
// set the latitude and longitude and height used to set the NED origin |
|
// All NED positions calculated by the filter will be relative to this location |
|
// The origin cannot be set if the filter is in a flight mode (eg vehicle armed) |
|
// Returns false if the filter has rejected the attempt to set the origin |
|
bool setOriginLLH(const Location &loc); |
|
|
|
// return estimated height above ground level |
|
// return false if ground height is not being estimated. |
|
bool getHAGL(float &HAGL) const; |
|
|
|
// return the Euler roll, pitch and yaw angle in radians for the specified instance |
|
// An out of range instance (eg -1) returns data for the primary instance |
|
void getEulerAngles(int8_t instance, Vector3f &eulers) const; |
|
|
|
// return the transformation matrix from XYZ (body) to NED axes |
|
void getRotationBodyToNED(Matrix3f &mat) const; |
|
|
|
// return the transformation matrix from XYZ (body) to NED axes |
|
void getQuaternionBodyToNED(int8_t instance, Quaternion &quat) const; |
|
|
|
// return the quaternions defining the rotation from NED to autopilot axes |
|
void getQuaternion(int8_t instance, Quaternion &quat) const; |
|
|
|
// return the innovations for the specified instance |
|
// An out of range instance (eg -1) returns data for the primary instance |
|
void getInnovations(int8_t index, Vector3f &velInnov, Vector3f &posInnov, Vector3f &magInnov, float &tasInnov, float &yawInnov) const; |
|
|
|
// return the innovation consistency test ratios for the specified instance |
|
// An out of range instance (eg -1) returns data for the primary instance |
|
void getVariances(int8_t instance, float &velVar, float &posVar, float &hgtVar, Vector3f &magVar, float &tasVar, Vector2f &offset) const; |
|
|
|
// should we use the compass? This is public so it can be used for |
|
// reporting via ahrs.use_compass() |
|
bool use_compass(void) const; |
|
|
|
// write the raw optical flow measurements |
|
// rawFlowQuality is a measured of quality between 0 and 255, with 255 being the best quality |
|
// rawFlowRates are the optical flow rates in rad/sec about the X and Y sensor axes. |
|
// rawGyroRates are the sensor rotation rates in rad/sec measured by the sensors internal gyro |
|
// The sign convention is that a RH physical rotation of the sensor about an axis produces both a positive flow and gyro rate |
|
// msecFlowMeas is the scheduler time in msec when the optical flow data was received from the sensor. |
|
// posOffset is the XYZ flow sensor position in the body frame in m |
|
void writeOptFlowMeas(const uint8_t rawFlowQuality, const Vector2f &rawFlowRates, const Vector2f &rawGyroRates, const uint32_t msecFlowMeas, const Vector3f &posOffset); |
|
|
|
// called by vehicle code to specify that a takeoff is happening |
|
// causes the EKF to compensate for expected barometer errors due to ground effect |
|
void setTakeoffExpected(bool val); |
|
|
|
// called by vehicle code to specify that a touchdown is expected to happen |
|
// causes the EKF to compensate for expected barometer errors due to ground effect |
|
void setTouchdownExpected(bool val); |
|
|
|
// Set to true if the terrain underneath is stable enough to be used as a height reference |
|
// in combination with a range finder. Set to false if the terrain underneath the vehicle |
|
// cannot be used as a height reference. Use to prevent range finder operation otherwise |
|
// enabled by the combination of EK2_RNG_AID_HGT and EK2_RNG_USE_SPD parameters. |
|
void setTerrainHgtStable(bool val); |
|
|
|
/* |
|
return the filter fault status as a bitmasked integer for the specified instance |
|
An out of range instance (eg -1) returns data for the primary instance |
|
0 = quaternions are NaN |
|
1 = velocities are NaN |
|
2 = badly conditioned X magnetometer fusion |
|
3 = badly conditioned Y magnetometer fusion |
|
4 = badly conditioned Z magnetometer fusion |
|
5 = badly conditioned airspeed fusion |
|
6 = badly conditioned synthetic sideslip fusion |
|
7 = filter is not initialised |
|
*/ |
|
void getFilterFaults(int8_t instance, uint16_t &faults) const; |
|
|
|
/* |
|
return filter gps quality check status for the specified instance |
|
An out of range instance (eg -1) returns data for the primary instance |
|
*/ |
|
void getFilterGpsStatus(int8_t instance, nav_gps_status &faults) const; |
|
|
|
/* |
|
return filter status flags for the specified instance |
|
An out of range instance (eg -1) returns data for the primary instance |
|
*/ |
|
void getFilterStatus(int8_t instance, nav_filter_status &status) const; |
|
|
|
// send an EKF_STATUS_REPORT message to GCS |
|
void send_status_report(mavlink_channel_t chan) const; |
|
|
|
// provides the height limit to be observed by the control loops |
|
// returns false if no height limiting is required |
|
// this is needed to ensure the vehicle does not fly too high when using optical flow navigation |
|
bool getHeightControlLimit(float &height) const; |
|
|
|
// return the amount of yaw angle change (in radians) due to the last yaw angle reset or core selection switch |
|
// returns the time of the last yaw angle reset or 0 if no reset has ever occurred |
|
uint32_t getLastYawResetAngle(float &yawAngDelta); |
|
|
|
// return the amount of NE position change due to the last position reset in metres |
|
// returns the time of the last reset or 0 if no reset has ever occurred |
|
uint32_t getLastPosNorthEastReset(Vector2f &posDelta); |
|
|
|
// return the amount of NE velocity change due to the last velocity reset in metres/sec |
|
// returns the time of the last reset or 0 if no reset has ever occurred |
|
uint32_t getLastVelNorthEastReset(Vector2f &vel) const; |
|
|
|
// return the amount of vertical position change due to the last reset in metres |
|
// returns the time of the last reset or 0 if no reset has ever occurred |
|
uint32_t getLastPosDownReset(float &posDelta); |
|
|
|
// set and save the _baroAltNoise parameter |
|
void set_baro_alt_noise(float noise) { _baroAltNoise.set_and_save(noise); }; |
|
|
|
// allow the enable flag to be set by Replay |
|
void set_enable(bool enable) { _enable.set_enable(enable); } |
|
|
|
/* |
|
* Write position and quaternion data from an external navigation system |
|
* |
|
* pos : position in the RH navigation frame. Frame is assumed to be NED (m) |
|
* quat : quaternion desribing the rotation from navigation frame to body frame |
|
* posErr : 1-sigma spherical position error (m) |
|
* angErr : 1-sigma spherical angle error (rad) |
|
* timeStamp_ms : system time the measurement was taken, not the time it was received (mSec) |
|
* delay_ms : average delay of external nav system measurements relative to inertial measurements |
|
* resetTime_ms : system time of the last position reset request (mSec) |
|
* |
|
* Sensor offsets are pulled directly from the AP_VisualOdom library |
|
* |
|
*/ |
|
void writeExtNavData(const Vector3f &pos, const Quaternion &quat, float posErr, float angErr, uint32_t timeStamp_ms, uint16_t delay_ms, uint32_t resetTime_ms); |
|
|
|
/* |
|
* Write velocity data from an external navigation system |
|
* vel : velocity in NED (m) |
|
* err : velocity error (m/s) |
|
* timeStamp_ms : system time the measurement was taken, not the time it was received (mSec) |
|
* delay_ms : average delay of external nav system measurements relative to inertial measurements |
|
*/ |
|
void writeExtNavVelData(const Vector3f &vel, float err, uint32_t timeStamp_ms, uint16_t delay_ms); |
|
|
|
/* |
|
check if switching lanes will reduce the normalised |
|
innovations. This is called when the vehicle code is about to |
|
trigger an EKF failsafe, and it would like to avoid that by |
|
using a different EKF lane |
|
*/ |
|
void checkLaneSwitch(void); |
|
|
|
/* |
|
Request a reset of the EKF yaw. This is called when the vehicle code is about to |
|
trigger an EKF failsafe, and it would like to avoid that. |
|
*/ |
|
void requestYawReset(void); |
|
|
|
// write EKF information to on-board logs |
|
void Log_Write(); |
|
|
|
// check if external navigation is being used for yaw observation |
|
bool isExtNavUsedForYaw(void) const; |
|
|
|
// check if configured to use GPS for horizontal position estimation |
|
bool configuredToUseGPSForPosXY(void) const; |
|
|
|
// Writes the default equivalent airspeed in m/s to be used in forward flight if a measured airspeed is required and not available. |
|
void writeDefaultAirSpeed(float airspeed); |
|
|
|
private: |
|
uint8_t num_cores; // number of allocated cores |
|
uint8_t primary; // current primary core |
|
NavEKF2_core *core = nullptr; |
|
bool core_malloc_failed; |
|
|
|
uint32_t _frameTimeUsec; // time per IMU frame |
|
uint8_t _framesPerPrediction; // expected number of IMU frames per prediction |
|
|
|
// EKF Mavlink Tuneable Parameters |
|
AP_Int8 _enable; // zero to disable EKF2 |
|
AP_Float _gpsHorizVelNoise; // GPS horizontal velocity measurement noise : m/s |
|
AP_Float _gpsVertVelNoise; // GPS vertical velocity measurement noise : m/s |
|
AP_Float _gpsHorizPosNoise; // GPS horizontal position measurement noise m |
|
AP_Float _baroAltNoise; // Baro height measurement noise : m |
|
AP_Float _magNoise; // magnetometer measurement noise : gauss |
|
AP_Float _easNoise; // equivalent airspeed measurement noise : m/s |
|
AP_Float _windVelProcessNoise; // wind velocity state process noise : m/s^2 |
|
AP_Float _wndVarHgtRateScale; // scale factor applied to wind process noise due to height rate |
|
AP_Float _magEarthProcessNoise; // Earth magnetic field process noise : gauss/sec |
|
AP_Float _magBodyProcessNoise; // Body magnetic field process noise : gauss/sec |
|
AP_Float _gyrNoise; // gyro process noise : rad/s |
|
AP_Float _accNoise; // accelerometer process noise : m/s^2 |
|
AP_Float _gyroBiasProcessNoise; // gyro bias state process noise : rad/s |
|
AP_Float _accelBiasProcessNoise;// accel bias state process noise : m/s^2 |
|
AP_Int16 _hgtDelay_ms; // effective average delay of Height measurements relative to inertial measurements (msec) |
|
AP_Int8 _fusionModeGPS; // 0 = use 3D velocity, 1 = use 2D velocity, 2 = use no velocity, 3 = do not use GPS |
|
AP_Int16 _gpsVelInnovGate; // Percentage number of standard deviations applied to GPS velocity innovation consistency check |
|
AP_Int16 _gpsPosInnovGate; // Percentage number of standard deviations applied to GPS position innovation consistency check |
|
AP_Int16 _hgtInnovGate; // Percentage number of standard deviations applied to height innovation consistency check |
|
AP_Int16 _magInnovGate; // Percentage number of standard deviations applied to magnetometer innovation consistency check |
|
AP_Int16 _tasInnovGate; // Percentage number of standard deviations applied to true airspeed innovation consistency check |
|
AP_Int8 _magCal; // Sets activation condition for in-flight magnetometer calibration |
|
AP_Int8 _gpsGlitchRadiusMax; // Maximum allowed discrepancy between inertial and GPS Horizontal position before GPS glitch is declared : m |
|
AP_Float _flowNoise; // optical flow rate measurement noise |
|
AP_Int16 _flowInnovGate; // Percentage number of standard deviations applied to optical flow innovation consistency check |
|
AP_Int8 _flowDelay_ms; // effective average delay of optical flow measurements rel to IMU (msec) |
|
AP_Int16 _rngInnovGate; // Percentage number of standard deviations applied to range finder innovation consistency check |
|
AP_Float _maxFlowRate; // Maximum flow rate magnitude that will be accepted by the filter |
|
AP_Int8 _altSource; // Primary alt source during optical flow navigation. 0 = use Baro, 1 = use range finder, 2 = use GPS, 3 = use Range Beacon |
|
AP_Float _gyroScaleProcessNoise;// gyro scale factor state process noise : 1/s |
|
AP_Float _rngNoise; // Range finder noise : m |
|
AP_Int8 _gpsCheck; // Bitmask controlling which preflight GPS checks are bypassed |
|
AP_Int8 _imuMask; // Bitmask of IMUs to instantiate EKF2 for |
|
AP_Int16 _gpsCheckScaler; // Percentage increase to be applied to GPS pre-flight accuracy and drift thresholds |
|
AP_Float _noaidHorizNoise; // horizontal position measurement noise assumed when synthesised zero position measurements are used to constrain attitude drift : m |
|
AP_Float _yawNoise; // magnetic yaw measurement noise : rad |
|
AP_Int16 _yawInnovGate; // Percentage number of standard deviations applied to magnetic yaw innovation consistency check |
|
AP_Int8 _tauVelPosOutput; // Time constant of output complementary filter : csec (centi-seconds) |
|
AP_Int8 _useRngSwHgt; // Maximum valid range of the range finder as a percentage of the maximum range specified by the sensor driver |
|
AP_Float _terrGradMax; // Maximum terrain gradient below the vehicle |
|
AP_Float _rngBcnNoise; // Range beacon measurement noise (m) |
|
AP_Int16 _rngBcnInnovGate; // Percentage number of standard deviations applied to range beacon innovation consistency check |
|
AP_Int8 _rngBcnDelay_ms; // effective average delay of range beacon measurements rel to IMU (msec) |
|
AP_Float _useRngSwSpd; // Maximum horizontal ground speed to use range finder as the primary height source (m/s) |
|
AP_Int8 _magMask; // Bitmask forcng specific EKF core instances to use simple heading magnetometer fusion. |
|
AP_Int8 _originHgtMode; // Bitmask controlling post alignment correction and reporting of the EKF origin height. |
|
AP_Int8 _flowUse; // Controls if the optical flow data is fused into the main navigation estimator and/or the terrain estimator. |
|
AP_Int16 _mag_ef_limit; // limit on difference between WMM tables and learned earth field. |
|
AP_Float _hrt_filt_freq; // frequency of output observer height rate complementary filter in Hz |
|
AP_Int8 _gsfRunMask; // mask controlling which EKF2 instances run a separate EKF-GSF yaw estimator |
|
AP_Int8 _gsfUseMask; // mask controlling which EKF2 instances will use EKF-GSF yaw estimator data to assit with yaw resets |
|
AP_Int16 _gsfResetDelay; // number of mSec from loss of navigation to requesting a reset using EKF-GSF yaw estimator data |
|
AP_Int8 _gsfResetMaxCount; // maximum number of times the EKF2 is allowed to reset it's yaw to the EKF-GSF estimate |
|
|
|
// Possible values for _flowUse |
|
#define FLOW_USE_NONE 0 |
|
#define FLOW_USE_NAV 1 |
|
#define FLOW_USE_TERRAIN 2 |
|
|
|
// Tuning parameters |
|
const float gpsNEVelVarAccScale = 0.05f; // Scale factor applied to NE velocity measurement variance due to manoeuvre acceleration |
|
const float gpsDVelVarAccScale = 0.07f; // Scale factor applied to vertical velocity measurement variance due to manoeuvre acceleration |
|
const float extNavVelVarAccScale = 0.05f; // Scale factor applied to ext nav velocity measurement variance due to manoeuvre acceleration |
|
const float gpsPosVarAccScale = 0.05f; // Scale factor applied to horizontal position measurement variance due to manoeuvre acceleration |
|
const uint8_t magDelay_ms = 60; // Magnetometer measurement delay (msec) |
|
const uint8_t tasDelay_ms = 240; // Airspeed measurement delay (msec) |
|
const uint16_t tiltDriftTimeMax_ms = 15000; // Maximum number of ms allowed without any form of tilt aiding (GPS, flow, TAS, etc) |
|
const uint16_t posRetryTimeUseVel_ms = 10000; // Position aiding retry time with velocity measurements (msec) |
|
const uint16_t posRetryTimeNoVel_ms = 7000; // Position aiding retry time without velocity measurements (msec) |
|
const uint16_t hgtRetryTimeMode0_ms = 10000; // Height retry time with vertical velocity measurement (msec) |
|
const uint16_t hgtRetryTimeMode12_ms = 5000; // Height retry time without vertical velocity measurement (msec) |
|
const uint16_t tasRetryTime_ms = 5000; // True airspeed timeout and retry interval (msec) |
|
const uint16_t magFailTimeLimit_ms = 10000; // number of msec before a magnetometer failing innovation consistency checks is declared failed (msec) |
|
const float magVarRateScale = 0.005f; // scale factor applied to magnetometer variance due to angular rate |
|
const float gyroBiasNoiseScaler = 2.0f; // scale factor applied to gyro bias state process noise when on ground |
|
const uint8_t hgtAvg_ms = 100; // average number of msec between height measurements |
|
const uint8_t betaAvg_ms = 100; // average number of msec between synthetic sideslip measurements |
|
const float covTimeStepMax = 0.1f; // maximum time (sec) between covariance prediction updates |
|
const float covDelAngMax = 0.05f; // maximum delta angle between covariance prediction updates |
|
const float DCM33FlowMin = 0.71f; // If Tbn(3,3) is less than this number, optical flow measurements will not be fused as tilt is too high. |
|
const float fScaleFactorPnoise = 1e-10f; // Process noise added to focal length scale factor state variance at each time step |
|
const uint8_t flowTimeDeltaAvg_ms = 100; // average interval between optical flow measurements (msec) |
|
const uint8_t flowIntervalMax_ms = 100; // maximum allowable time between flow fusion events |
|
const uint16_t gndEffectTimeout_ms = 1000; // time in msec that ground effect mode is active after being activated |
|
const float gndEffectBaroScaler = 4.0f; // scaler applied to the barometer observation variance when ground effect mode is active |
|
const uint8_t fusionTimeStep_ms = 10; // The minimum time interval between covariance predictions and measurement fusions in msec |
|
const float maxYawEstVelInnov = 2.0f; // Maximum acceptable length of the velocity innovation returned by the EKF-GSF yaw estimator (m/s) |
|
|
|
// origin set by one of the cores |
|
struct Location common_EKF_origin; |
|
bool common_origin_valid; |
|
|
|
// time at start of current filter update |
|
uint64_t imuSampleTime_us; |
|
|
|
// last time of Log_Write |
|
uint64_t lastLogWrite_us; |
|
|
|
struct { |
|
uint32_t last_function_call; // last time getLastYawResetAngle was called |
|
bool core_changed; // true when a core change happened and hasn't been consumed, false otherwise |
|
uint32_t last_primary_change; // last time a primary has changed |
|
float core_delta; // the amount of yaw change between cores when a change happened |
|
} yaw_reset_data; |
|
|
|
struct { |
|
uint32_t last_function_call; // last time getLastPosNorthEastReset was called |
|
bool core_changed; // true when a core change happened and hasn't been consumed, false otherwise |
|
uint32_t last_primary_change; // last time a primary has changed |
|
Vector2f core_delta; // the amount of NE position change between cores when a change happened |
|
} pos_reset_data; |
|
|
|
struct { |
|
uint32_t last_function_call; // last time getLastPosDownReset was called |
|
bool core_changed; // true when a core change happened and hasn't been consumed, false otherwise |
|
uint32_t last_primary_change; // last time a primary has changed |
|
float core_delta; // the amount of D position change between cores when a change happened |
|
} pos_down_reset_data; |
|
|
|
bool runCoreSelection; // true when the primary core has stabilised and the core selection logic can be started |
|
|
|
// time of last lane switch |
|
uint32_t lastLaneSwitch_ms; |
|
|
|
enum class InitFailures { |
|
UNKNOWN, |
|
NO_ENABLE, |
|
NO_IMUS, |
|
NO_MASK, |
|
NO_MEM, |
|
NO_SETUP, |
|
NUM_INIT_FAILURES |
|
}; |
|
// initialization failure reasons |
|
const char* initFailureReason[int(InitFailures::NUM_INIT_FAILURES)] { |
|
"EKF2: unknown initialization failure", |
|
"EKF2: EK2_enable is false", |
|
"EKF2: no IMUs available", |
|
"EKF2: EK2_IMU_MASK is zero", |
|
"EKF2: insufficient memory available", |
|
"EKF2: core setup failed" |
|
}; |
|
InitFailures initFailure; |
|
|
|
// update the yaw reset data to capture changes due to a lane switch |
|
// new_primary - index of the ekf instance that we are about to switch to as the primary |
|
// old_primary - index of the ekf instance that we are currently using as the primary |
|
void updateLaneSwitchYawResetData(uint8_t new_primary, uint8_t old_primary); |
|
|
|
// update the position reset data to capture changes due to a lane switch |
|
// new_primary - index of the ekf instance that we are about to switch to as the primary |
|
// old_primary - index of the ekf instance that we are currently using as the primary |
|
void updateLaneSwitchPosResetData(uint8_t new_primary, uint8_t old_primary); |
|
|
|
// update the position down reset data to capture changes due to a lane switch |
|
// new_primary - index of the ekf instance that we are about to switch to as the primary |
|
// old_primary - index of the ekf instance that we are currently using as the primary |
|
void updateLaneSwitchPosDownResetData(uint8_t new_primary, uint8_t old_primary); |
|
|
|
// return true if a new core has a better score than an existing core, including |
|
// checks for alignment |
|
bool coreBetterScore(uint8_t new_core, uint8_t current_core) const; |
|
};
|
|
|