You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
657 lines
21 KiB
657 lines
21 KiB
#include "Copter.h" |
|
#include "version.h" |
|
|
|
/***************************************************************************** |
|
* The init_ardupilot function processes everything we need for an in - air restart |
|
* We will determine later if we are actually on the ground and process a |
|
* ground start in that case. |
|
* |
|
*****************************************************************************/ |
|
|
|
#if CLI_ENABLED == ENABLED |
|
|
|
// This is the help function |
|
int8_t Copter::main_menu_help(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
cliSerial->printf("Commands:\n" |
|
" logs\n" |
|
" setup\n" |
|
" test\n" |
|
" reboot\n" |
|
"\n"); |
|
return(0); |
|
} |
|
|
|
// Command/function table for the top-level menu. |
|
const struct Menu::command main_menu_commands[] = { |
|
// command function called |
|
// ======= =============== |
|
{"logs", MENU_FUNC(process_logs)}, |
|
{"setup", MENU_FUNC(setup_mode)}, |
|
{"test", MENU_FUNC(test_mode)}, |
|
{"reboot", MENU_FUNC(reboot_board)}, |
|
{"help", MENU_FUNC(main_menu_help)}, |
|
}; |
|
|
|
// Create the top-level menu object. |
|
MENU(main_menu, THISFIRMWARE, main_menu_commands); |
|
|
|
int8_t Copter::reboot_board(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
hal.scheduler->reboot(false); |
|
return 0; |
|
} |
|
|
|
// the user wants the CLI. It never exits |
|
void Copter::run_cli(AP_HAL::UARTDriver *port) |
|
{ |
|
cliSerial = port; |
|
Menu::set_port(port); |
|
port->set_blocking_writes(true); |
|
|
|
// disable the mavlink delay callback |
|
hal.scheduler->register_delay_callback(nullptr, 5); |
|
|
|
// disable main_loop failsafe |
|
failsafe_disable(); |
|
|
|
// cut the engines |
|
if(motors->armed()) { |
|
motors->armed(false); |
|
motors->output(); |
|
} |
|
|
|
while (1) { |
|
main_menu.run(); |
|
} |
|
} |
|
|
|
#endif // CLI_ENABLED |
|
|
|
static void mavlink_delay_cb_static() |
|
{ |
|
copter.mavlink_delay_cb(); |
|
} |
|
|
|
|
|
static void failsafe_check_static() |
|
{ |
|
copter.failsafe_check(); |
|
} |
|
|
|
void Copter::init_ardupilot() |
|
{ |
|
if (!hal.gpio->usb_connected()) { |
|
// USB is not connected, this means UART0 may be a Xbee, with |
|
// its darned bricking problem. We can't write to it for at |
|
// least one second after powering up. Simplest solution for |
|
// now is to delay for 1 second. Something more elegant may be |
|
// added later |
|
delay(1000); |
|
} |
|
|
|
// initialise serial port |
|
serial_manager.init_console(); |
|
|
|
// init vehicle capabilties |
|
init_capabilities(); |
|
|
|
cliSerial->printf("\n\nInit " FIRMWARE_STRING |
|
"\n\nFree RAM: %u\n", |
|
(unsigned)hal.util->available_memory()); |
|
|
|
// |
|
// Report firmware version code expect on console (check of actual EEPROM format version is done in load_parameters function) |
|
// |
|
report_version(); |
|
|
|
// load parameters from EEPROM |
|
load_parameters(); |
|
|
|
// initialise stats module |
|
g2.stats.init(); |
|
|
|
gcs().set_dataflash(&DataFlash); |
|
|
|
// identify ourselves correctly with the ground station |
|
mavlink_system.sysid = g.sysid_this_mav; |
|
|
|
// initialise serial ports |
|
serial_manager.init(); |
|
|
|
// setup first port early to allow BoardConfig to report errors |
|
gcs_chan[0].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 0); |
|
|
|
// Register mavlink_delay_cb, which will run anytime you have |
|
// more than 5ms remaining in your call to hal.scheduler->delay |
|
hal.scheduler->register_delay_callback(mavlink_delay_cb_static, 5); |
|
|
|
BoardConfig.init(); |
|
|
|
// init cargo gripper |
|
#if GRIPPER_ENABLED == ENABLED |
|
g2.gripper.init(); |
|
#endif |
|
|
|
// initialise notify system |
|
notify.init(true); |
|
notify_flight_mode(control_mode); |
|
|
|
// initialise battery monitor |
|
battery.init(); |
|
|
|
// Init RSSI |
|
rssi.init(); |
|
|
|
barometer.init(); |
|
|
|
// we start by assuming USB connected, as we initialed the serial |
|
// port with SERIAL0_BAUD. check_usb_mux() fixes this if need be. |
|
ap.usb_connected = true; |
|
check_usb_mux(); |
|
|
|
// setup telem slots with serial ports |
|
for (uint8_t i = 1; i < MAVLINK_COMM_NUM_BUFFERS; i++) { |
|
gcs_chan[i].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, i); |
|
} |
|
|
|
#if FRSKY_TELEM_ENABLED == ENABLED |
|
// setup frsky, and pass a number of parameters to the library |
|
char firmware_buf[50]; |
|
snprintf(firmware_buf, sizeof(firmware_buf), FIRMWARE_STRING " %s", get_frame_string()); |
|
frsky_telemetry.init(serial_manager, firmware_buf, |
|
get_frame_mav_type(), |
|
&g.fs_batt_voltage, &g.fs_batt_mah, &ap.value); |
|
#endif |
|
|
|
#if LOGGING_ENABLED == ENABLED |
|
log_init(); |
|
#endif |
|
|
|
// update motor interlock state |
|
update_using_interlock(); |
|
|
|
#if FRAME_CONFIG == HELI_FRAME |
|
// trad heli specific initialisation |
|
heli_init(); |
|
#endif |
|
|
|
init_rc_in(); // sets up rc channels from radio |
|
|
|
// default frame class to match firmware if possible |
|
set_default_frame_class(); |
|
|
|
// allocate the motors class |
|
allocate_motors(); |
|
|
|
init_rc_out(); // sets up motors and output to escs |
|
|
|
// initialise which outputs Servo and Relay events can use |
|
ServoRelayEvents.set_channel_mask(~motors->get_motor_mask()); |
|
|
|
relay.init(); |
|
|
|
/* |
|
* setup the 'main loop is dead' check. Note that this relies on |
|
* the RC library being initialised. |
|
*/ |
|
hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000); |
|
|
|
// give AHRS the rnage beacon sensor |
|
ahrs.set_beacon(&g2.beacon); |
|
|
|
// Do GPS init |
|
gps.init(&DataFlash, serial_manager); |
|
|
|
if(g.compass_enabled) |
|
init_compass(); |
|
|
|
#if OPTFLOW == ENABLED |
|
// make optflow available to AHRS |
|
ahrs.set_optflow(&optflow); |
|
#endif |
|
|
|
// init Location class |
|
Location_Class::set_ahrs(&ahrs); |
|
#if AP_TERRAIN_AVAILABLE && AC_TERRAIN |
|
Location_Class::set_terrain(&terrain); |
|
wp_nav->set_terrain(&terrain); |
|
#endif |
|
#if AC_AVOID_ENABLED == ENABLED |
|
wp_nav->set_avoidance(&avoid); |
|
#endif |
|
|
|
attitude_control->parameter_sanity_check(); |
|
pos_control->set_dt(MAIN_LOOP_SECONDS); |
|
|
|
// init the optical flow sensor |
|
init_optflow(); |
|
|
|
#if MOUNT == ENABLED |
|
// initialise camera mount |
|
camera_mount.init(&DataFlash, serial_manager); |
|
#endif |
|
|
|
#if PRECISION_LANDING == ENABLED |
|
// initialise precision landing |
|
init_precland(); |
|
#endif |
|
|
|
#ifdef USERHOOK_INIT |
|
USERHOOK_INIT |
|
#endif |
|
|
|
#if CLI_ENABLED == ENABLED |
|
if (g.cli_enabled) { |
|
const char *msg = "\nPress ENTER 3 times to start interactive setup\n"; |
|
cliSerial->printf("%s\n", msg); |
|
if (gcs_chan[1].initialised && (gcs_chan[1].get_uart() != nullptr)) { |
|
gcs_chan[1].get_uart()->printf("%s\n", msg); |
|
} |
|
if (num_gcs > 2 && gcs_chan[2].initialised && (gcs_chan[2].get_uart() != nullptr)) { |
|
gcs_chan[2].get_uart()->printf("%s\n", msg); |
|
} |
|
} |
|
#endif // CLI_ENABLED |
|
|
|
#if HIL_MODE != HIL_MODE_DISABLED |
|
while (barometer.get_last_update() == 0) { |
|
// the barometer begins updating when we get the first |
|
// HIL_STATE message |
|
gcs_send_text(MAV_SEVERITY_WARNING, "Waiting for first HIL_STATE message"); |
|
delay(1000); |
|
} |
|
|
|
// set INS to HIL mode |
|
ins.set_hil_mode(); |
|
#endif |
|
|
|
// read Baro pressure at ground |
|
//----------------------------- |
|
init_barometer(true); |
|
|
|
// initialise rangefinder |
|
init_rangefinder(); |
|
|
|
// init proximity sensor |
|
init_proximity(); |
|
|
|
// init beacons used for non-gps position estimation |
|
init_beacon(); |
|
|
|
// initialise AP_RPM library |
|
rpm_sensor.init(); |
|
|
|
// initialise mission library |
|
mission.init(); |
|
|
|
// initialise the flight mode and aux switch |
|
// --------------------------- |
|
reset_control_switch(); |
|
init_aux_switches(); |
|
|
|
startup_INS_ground(); |
|
|
|
// set landed flags |
|
set_land_complete(true); |
|
set_land_complete_maybe(true); |
|
|
|
// we don't want writes to the serial port to cause us to pause |
|
// mid-flight, so set the serial ports non-blocking once we are |
|
// ready to fly |
|
serial_manager.set_blocking_writes_all(false); |
|
|
|
// enable CPU failsafe |
|
failsafe_enable(); |
|
|
|
ins.set_raw_logging(should_log(MASK_LOG_IMU_RAW)); |
|
ins.set_dataflash(&DataFlash); |
|
|
|
cliSerial->printf("\nReady to FLY "); |
|
|
|
// flag that initialisation has completed |
|
ap.initialised = true; |
|
} |
|
|
|
|
|
//****************************************************************************** |
|
//This function does all the calibrations, etc. that we need during a ground start |
|
//****************************************************************************** |
|
void Copter::startup_INS_ground() |
|
{ |
|
// initialise ahrs (may push imu calibration into the mpu6000 if using that device). |
|
ahrs.init(); |
|
ahrs.set_vehicle_class(AHRS_VEHICLE_COPTER); |
|
|
|
// Warm up and calibrate gyro offsets |
|
ins.init(scheduler.get_loop_rate_hz()); |
|
|
|
// reset ahrs including gyro bias |
|
ahrs.reset(); |
|
} |
|
|
|
// calibrate gyros - returns true if successfully calibrated |
|
bool Copter::calibrate_gyros() |
|
{ |
|
// gyro offset calibration |
|
copter.ins.init_gyro(); |
|
|
|
// reset ahrs gyro bias |
|
if (copter.ins.gyro_calibrated_ok_all()) { |
|
copter.ahrs.reset_gyro_drift(); |
|
return true; |
|
} |
|
|
|
return false; |
|
} |
|
|
|
// position_ok - returns true if the horizontal absolute position is ok and home position is set |
|
bool Copter::position_ok() |
|
{ |
|
// return false if ekf failsafe has triggered |
|
if (failsafe.ekf) { |
|
return false; |
|
} |
|
|
|
// check ekf position estimate |
|
return (ekf_position_ok() || optflow_position_ok()); |
|
} |
|
|
|
// ekf_position_ok - returns true if the ekf claims it's horizontal absolute position estimate is ok and home position is set |
|
bool Copter::ekf_position_ok() |
|
{ |
|
if (!ahrs.have_inertial_nav()) { |
|
// do not allow navigation with dcm position |
|
return false; |
|
} |
|
|
|
// with EKF use filter status and ekf check |
|
nav_filter_status filt_status = inertial_nav.get_filter_status(); |
|
|
|
// if disarmed we accept a predicted horizontal position |
|
if (!motors->armed()) { |
|
return ((filt_status.flags.horiz_pos_abs || filt_status.flags.pred_horiz_pos_abs)); |
|
} else { |
|
// once armed we require a good absolute position and EKF must not be in const_pos_mode |
|
return (filt_status.flags.horiz_pos_abs && !filt_status.flags.const_pos_mode); |
|
} |
|
} |
|
|
|
// optflow_position_ok - returns true if optical flow based position estimate is ok |
|
bool Copter::optflow_position_ok() |
|
{ |
|
#if OPTFLOW != ENABLED |
|
return false; |
|
#else |
|
// return immediately if optflow is not enabled or EKF not used |
|
if (!optflow.enabled() || !ahrs.have_inertial_nav()) { |
|
return false; |
|
} |
|
|
|
// get filter status from EKF |
|
nav_filter_status filt_status = inertial_nav.get_filter_status(); |
|
|
|
// if disarmed we accept a predicted horizontal relative position |
|
if (!motors->armed()) { |
|
return (filt_status.flags.pred_horiz_pos_rel); |
|
} else { |
|
return (filt_status.flags.horiz_pos_rel && !filt_status.flags.const_pos_mode); |
|
} |
|
#endif |
|
} |
|
|
|
// update_auto_armed - update status of auto_armed flag |
|
void Copter::update_auto_armed() |
|
{ |
|
// disarm checks |
|
if(ap.auto_armed){ |
|
// if motors are disarmed, auto_armed should also be false |
|
if(!motors->armed()) { |
|
set_auto_armed(false); |
|
return; |
|
} |
|
// if in stabilize or acro flight mode and throttle is zero, auto-armed should become false |
|
if(mode_has_manual_throttle(control_mode) && ap.throttle_zero && !failsafe.radio) { |
|
set_auto_armed(false); |
|
} |
|
#if FRAME_CONFIG == HELI_FRAME |
|
// if helicopters are on the ground, and the motor is switched off, auto-armed should be false |
|
// so that rotor runup is checked again before attempting to take-off |
|
if(ap.land_complete && !motors->rotor_runup_complete()) { |
|
set_auto_armed(false); |
|
} |
|
#endif // HELI_FRAME |
|
}else{ |
|
// arm checks |
|
|
|
#if FRAME_CONFIG == HELI_FRAME |
|
// for tradheli if motors are armed and throttle is above zero and the motor is started, auto_armed should be true |
|
if(motors->armed() && !ap.throttle_zero && motors->rotor_runup_complete()) { |
|
set_auto_armed(true); |
|
} |
|
#else |
|
// if motors are armed and throttle is above zero auto_armed should be true |
|
// if motors are armed and we are in throw mode, then auto_ermed should be true |
|
if(motors->armed() && (!ap.throttle_zero || control_mode == THROW)) { |
|
set_auto_armed(true); |
|
} |
|
#endif // HELI_FRAME |
|
} |
|
} |
|
|
|
void Copter::check_usb_mux(void) |
|
{ |
|
bool usb_check = hal.gpio->usb_connected(); |
|
if (usb_check == ap.usb_connected) { |
|
return; |
|
} |
|
|
|
// the user has switched to/from the telemetry port |
|
ap.usb_connected = usb_check; |
|
} |
|
|
|
/* |
|
should we log a message type now? |
|
*/ |
|
bool Copter::should_log(uint32_t mask) |
|
{ |
|
#if LOGGING_ENABLED == ENABLED |
|
if (!(mask & g.log_bitmask) || in_mavlink_delay) { |
|
return false; |
|
} |
|
bool ret = motors->armed() || DataFlash.log_while_disarmed(); |
|
if (ret && !DataFlash.logging_started() && !in_log_download) { |
|
start_logging(); |
|
} |
|
return ret; |
|
#else |
|
return false; |
|
#endif |
|
} |
|
|
|
// default frame_class to match firmware if possible |
|
void Copter::set_default_frame_class() |
|
{ |
|
if (FRAME_CONFIG == HELI_FRAME) { |
|
g2.frame_class.set(AP_Motors::MOTOR_FRAME_HELI); |
|
} |
|
} |
|
|
|
// return MAV_TYPE corresponding to frame class |
|
uint8_t Copter::get_frame_mav_type() |
|
{ |
|
switch ((AP_Motors::motor_frame_class)g2.frame_class.get()) { |
|
case AP_Motors::MOTOR_FRAME_QUAD: |
|
case AP_Motors::MOTOR_FRAME_UNDEFINED: |
|
return MAV_TYPE_QUADROTOR; |
|
case AP_Motors::MOTOR_FRAME_HEXA: |
|
case AP_Motors::MOTOR_FRAME_Y6: |
|
return MAV_TYPE_HEXAROTOR; |
|
case AP_Motors::MOTOR_FRAME_OCTA: |
|
case AP_Motors::MOTOR_FRAME_OCTAQUAD: |
|
return MAV_TYPE_OCTOROTOR; |
|
case AP_Motors::MOTOR_FRAME_HELI: |
|
return MAV_TYPE_HELICOPTER; |
|
case AP_Motors::MOTOR_FRAME_TRI: |
|
return MAV_TYPE_TRICOPTER; |
|
case AP_Motors::MOTOR_FRAME_SINGLE: |
|
case AP_Motors::MOTOR_FRAME_COAX: |
|
return MAV_TYPE_COAXIAL; |
|
} |
|
// unknown frame so return generic |
|
return MAV_TYPE_GENERIC; |
|
} |
|
|
|
// return string corresponding to frame_class |
|
const char* Copter::get_frame_string() |
|
{ |
|
switch ((AP_Motors::motor_frame_class)g2.frame_class.get()) { |
|
case AP_Motors::MOTOR_FRAME_QUAD: |
|
return "QUAD"; |
|
case AP_Motors::MOTOR_FRAME_HEXA: |
|
return "HEXA"; |
|
case AP_Motors::MOTOR_FRAME_Y6: |
|
return "Y6"; |
|
case AP_Motors::MOTOR_FRAME_OCTA: |
|
return "OCTA"; |
|
case AP_Motors::MOTOR_FRAME_OCTAQUAD: |
|
return "OCTA_QUAD"; |
|
case AP_Motors::MOTOR_FRAME_HELI: |
|
return "HELI"; |
|
case AP_Motors::MOTOR_FRAME_TRI: |
|
return "TRI"; |
|
case AP_Motors::MOTOR_FRAME_SINGLE: |
|
return "SINGLE"; |
|
case AP_Motors::MOTOR_FRAME_COAX: |
|
return "COAX"; |
|
case AP_Motors::MOTOR_FRAME_UNDEFINED: |
|
default: |
|
return "UNKNOWN"; |
|
} |
|
} |
|
|
|
/* |
|
allocate the motors class |
|
*/ |
|
void Copter::allocate_motors(void) |
|
{ |
|
const struct AP_Param::GroupInfo *var_info; |
|
|
|
switch ((AP_Motors::motor_frame_class)g2.frame_class.get()) { |
|
#if FRAME_CONFIG != HELI_FRAME |
|
case AP_Motors::MOTOR_FRAME_QUAD: |
|
case AP_Motors::MOTOR_FRAME_HEXA: |
|
case AP_Motors::MOTOR_FRAME_Y6: |
|
case AP_Motors::MOTOR_FRAME_OCTA: |
|
case AP_Motors::MOTOR_FRAME_OCTAQUAD: |
|
default: |
|
motors = new AP_MotorsMatrix(MAIN_LOOP_RATE); |
|
var_info = AP_MotorsMatrix::var_info; |
|
break; |
|
case AP_Motors::MOTOR_FRAME_TRI: |
|
motors = new AP_MotorsTri(MAIN_LOOP_RATE); |
|
var_info = AP_MotorsTri::var_info; |
|
AP_Param::set_frame_type_flags(AP_PARAM_FRAME_TRICOPTER); |
|
break; |
|
case AP_Motors::MOTOR_FRAME_SINGLE: |
|
motors = new AP_MotorsSingle(MAIN_LOOP_RATE); |
|
var_info = AP_MotorsSingle::var_info; |
|
break; |
|
case AP_Motors::MOTOR_FRAME_COAX: |
|
motors = new AP_MotorsCoax(MAIN_LOOP_RATE); |
|
var_info = AP_MotorsCoax::var_info; |
|
break; |
|
#else // FRAME_CONFIG == HELI_FRAME |
|
case AP_Motors::MOTOR_FRAME_HELI: |
|
default: |
|
motors = new AP_MotorsHeli_Single(MAIN_LOOP_RATE); |
|
var_info = AP_MotorsHeli::var_info; |
|
AP_Param::set_frame_type_flags(AP_PARAM_FRAME_HELI); |
|
break; |
|
#endif |
|
} |
|
if (motors == nullptr) { |
|
AP_HAL::panic("Unable to allocate FRAME_CLASS=%u", (unsigned)g2.frame_class.get()); |
|
} |
|
AP_Param::load_object_from_eeprom(motors, var_info); |
|
|
|
#if FRAME_CONFIG != HELI_FRAME |
|
attitude_control = new AC_AttitudeControl_Multi(ahrs, aparm, *motors, MAIN_LOOP_SECONDS); |
|
var_info = AC_AttitudeControl_Multi::var_info; |
|
#else |
|
attitude_control = new AC_AttitudeControl_Heli(ahrs, aparm, *motors, MAIN_LOOP_SECONDS); |
|
var_info = AC_AttitudeControl_Heli::var_info; |
|
#endif |
|
if (attitude_control == nullptr) { |
|
AP_HAL::panic("Unable to allocate AttitudeControl"); |
|
} |
|
AP_Param::load_object_from_eeprom(attitude_control, var_info); |
|
|
|
pos_control = new AC_PosControl(ahrs, inertial_nav, *motors, *attitude_control, |
|
g.p_alt_hold, g.p_vel_z, g.pid_accel_z, |
|
g.p_pos_xy, g.pi_vel_xy); |
|
if (pos_control == nullptr) { |
|
AP_HAL::panic("Unable to allocate PosControl"); |
|
} |
|
AP_Param::load_object_from_eeprom(pos_control, pos_control->var_info); |
|
|
|
wp_nav = new AC_WPNav(inertial_nav, ahrs, *pos_control, *attitude_control); |
|
if (wp_nav == nullptr) { |
|
AP_HAL::panic("Unable to allocate WPNav"); |
|
} |
|
AP_Param::load_object_from_eeprom(wp_nav, wp_nav->var_info); |
|
|
|
circle_nav = new AC_Circle(inertial_nav, ahrs, *pos_control); |
|
if (wp_nav == nullptr) { |
|
AP_HAL::panic("Unable to allocate CircleNav"); |
|
} |
|
AP_Param::load_object_from_eeprom(circle_nav, circle_nav->var_info); |
|
|
|
// reload lines from the defaults file that may now be accessible |
|
AP_Param::reload_defaults_file(); |
|
|
|
// now setup some frame-class specific defaults |
|
switch ((AP_Motors::motor_frame_class)g2.frame_class.get()) { |
|
case AP_Motors::MOTOR_FRAME_Y6: |
|
attitude_control->get_rate_roll_pid().kP().set_default(0.1); |
|
attitude_control->get_rate_roll_pid().kD().set_default(0.006); |
|
attitude_control->get_rate_pitch_pid().kP().set_default(0.1); |
|
attitude_control->get_rate_pitch_pid().kD().set_default(0.006); |
|
attitude_control->get_rate_yaw_pid().kP().set_default(0.15); |
|
attitude_control->get_rate_yaw_pid().kI().set_default(0.015); |
|
break; |
|
case AP_Motors::MOTOR_FRAME_TRI: |
|
attitude_control->get_rate_yaw_pid().filt_hz().set_default(100); |
|
break; |
|
default: |
|
break; |
|
} |
|
|
|
if (upgrading_frame_params) { |
|
// do frame specific upgrade. This is only done the first time we run the new firmware |
|
#if FRAME_CONFIG == HELI_FRAME |
|
SRV_Channels::upgrade_motors_servo(Parameters::k_param_motors, 12, CH_1); |
|
SRV_Channels::upgrade_motors_servo(Parameters::k_param_motors, 13, CH_2); |
|
SRV_Channels::upgrade_motors_servo(Parameters::k_param_motors, 14, CH_3); |
|
SRV_Channels::upgrade_motors_servo(Parameters::k_param_motors, 15, CH_4); |
|
#else |
|
if (g2.frame_class == AP_Motors::MOTOR_FRAME_TRI) { |
|
const AP_Param::ConversionInfo tri_conversion_info[] = { |
|
{ Parameters::k_param_motors, 32, AP_PARAM_INT16, "SERVO7_TRIM" }, |
|
{ Parameters::k_param_motors, 33, AP_PARAM_INT16, "SERVO7_MIN" }, |
|
{ Parameters::k_param_motors, 34, AP_PARAM_INT16, "SERVO7_MAX" }, |
|
{ Parameters::k_param_motors, 35, AP_PARAM_FLOAT, "MOT_YAW_SV_ANGLE" }, |
|
}; |
|
// we need to use CONVERT_FLAG_FORCE as the SERVO7_* parameters will already be set from RC7_* |
|
AP_Param::convert_old_parameters(tri_conversion_info, ARRAY_SIZE(tri_conversion_info), AP_Param::CONVERT_FLAG_FORCE); |
|
const AP_Param::ConversionInfo tri_conversion_info_rev { Parameters::k_param_motors, 31, AP_PARAM_INT8, "SERVO7_REVERSED" }; |
|
AP_Param::convert_old_parameter(&tri_conversion_info_rev, 1, AP_Param::CONVERT_FLAG_REVERSE | AP_Param::CONVERT_FLAG_FORCE); |
|
// AP_MotorsTri was converted from having nested var_info to one level |
|
AP_Param::convert_parent_class(Parameters::k_param_motors, motors, motors->var_info); |
|
} |
|
#endif |
|
} |
|
|
|
// upgrade parameters. This must be done after allocating the objects |
|
convert_pid_parameters(); |
|
}
|
|
|