You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
359 lines
14 KiB
359 lines
14 KiB
#include "Rover.h" |
|
|
|
#include <AP_RangeFinder/RangeFinder_Backend.h> |
|
|
|
// initialise compass |
|
void Rover::init_compass() |
|
{ |
|
if (!g.compass_enabled) { |
|
return; |
|
} |
|
|
|
if (!compass.init()|| !compass.read()) { |
|
hal.console->printf("Compass initialisation failed!\n"); |
|
g.compass_enabled = false; |
|
} else { |
|
ahrs.set_compass(&compass); |
|
} |
|
} |
|
|
|
/* |
|
initialise compass's location used for declination |
|
*/ |
|
void Rover::init_compass_location(void) |
|
{ |
|
// update initial location used for declination |
|
if (!compass_init_location) { |
|
Location loc; |
|
if (ahrs.get_position(loc)) { |
|
compass.set_initial_location(loc.lat, loc.lng); |
|
compass_init_location = true; |
|
} |
|
} |
|
} |
|
|
|
// init beacons used for non-gps position estimates |
|
void Rover::init_beacon() |
|
{ |
|
g2.beacon.init(); |
|
} |
|
|
|
// init visual odometry sensor |
|
void Rover::init_visual_odom() |
|
{ |
|
g2.visual_odom.init(); |
|
} |
|
|
|
// update visual odometry sensor |
|
void Rover::update_visual_odom() |
|
{ |
|
// check for updates |
|
if (g2.visual_odom.enabled() && (g2.visual_odom.get_last_update_ms() != visual_odom_last_update_ms)) { |
|
visual_odom_last_update_ms = g2.visual_odom.get_last_update_ms(); |
|
const float time_delta_sec = g2.visual_odom.get_time_delta_usec() / 1000000.0f; |
|
ahrs.writeBodyFrameOdom(g2.visual_odom.get_confidence(), |
|
g2.visual_odom.get_position_delta(), |
|
g2.visual_odom.get_angle_delta(), |
|
time_delta_sec, |
|
visual_odom_last_update_ms, |
|
g2.visual_odom.get_pos_offset()); |
|
// log sensor data |
|
DataFlash.Log_Write_VisualOdom(time_delta_sec, |
|
g2.visual_odom.get_angle_delta(), |
|
g2.visual_odom.get_position_delta(), |
|
g2.visual_odom.get_confidence()); |
|
} |
|
} |
|
|
|
// update wheel encoders |
|
void Rover::update_wheel_encoder() |
|
{ |
|
// exit immediately if not enabled |
|
if (g2.wheel_encoder.num_sensors() == 0) { |
|
return; |
|
} |
|
|
|
// update encoders |
|
g2.wheel_encoder.update(); |
|
|
|
// initialise on first iteration |
|
const uint32_t now = AP_HAL::millis(); |
|
if (wheel_encoder_last_ekf_update_ms == 0) { |
|
wheel_encoder_last_ekf_update_ms = now; |
|
for (uint8_t i = 0; i < g2.wheel_encoder.num_sensors(); i++) { |
|
wheel_encoder_last_angle_rad[i] = g2.wheel_encoder.get_delta_angle(i); |
|
wheel_encoder_last_update_ms[i] = g2.wheel_encoder.get_last_reading_ms(i); |
|
} |
|
return; |
|
} |
|
|
|
// calculate delta angle and delta time and send to EKF |
|
// use time of last ping from wheel encoder |
|
// send delta time (time between this wheel encoder time and previous wheel encoder time) |
|
// in case where wheel hasn't moved, count = 0 (cap the delta time at 50ms - or system time) |
|
// use system clock of last update instead of time of last ping |
|
const float system_dt = (now - wheel_encoder_last_ekf_update_ms) / 1000.0f; |
|
for (uint8_t i = 0; i < g2.wheel_encoder.num_sensors(); i++) { |
|
// calculate angular change (in radians) |
|
const float curr_angle_rad = g2.wheel_encoder.get_delta_angle(i); |
|
const float delta_angle = curr_angle_rad - wheel_encoder_last_angle_rad[i]; |
|
wheel_encoder_last_angle_rad[i] = curr_angle_rad; |
|
|
|
// calculate delta time |
|
float delta_time; |
|
const uint32_t latest_sensor_update_ms = g2.wheel_encoder.get_last_reading_ms(i); |
|
const uint32_t sensor_diff_ms = latest_sensor_update_ms - wheel_encoder_last_update_ms[i]; |
|
|
|
// if we have not received any sensor updates, or time difference is too high then use time since last update to the ekf |
|
// check for old or insane sensor update times |
|
if (sensor_diff_ms == 0 || sensor_diff_ms > 100) { |
|
delta_time = system_dt; |
|
wheel_encoder_last_update_ms[i] = wheel_encoder_last_ekf_update_ms; |
|
} else { |
|
delta_time = sensor_diff_ms / 1000.0f; |
|
wheel_encoder_last_update_ms[i] = latest_sensor_update_ms; |
|
} |
|
|
|
/* delAng is the measured change in angular position from the previous measurement where a positive rotation is produced by forward motion of the vehicle (rad) |
|
* delTime is the time interval for the measurement of delAng (sec) |
|
* timeStamp_ms is the time when the rotation was last measured (msec) |
|
* posOffset is the XYZ body frame position of the wheel hub (m) |
|
*/ |
|
EKF3.writeWheelOdom(delta_angle, delta_time, wheel_encoder_last_update_ms[i], g2.wheel_encoder.get_position(i), g2.wheel_encoder.get_wheel_radius(i)); |
|
|
|
// calculate rpm for reporting to GCS |
|
if (is_positive(delta_time)) { |
|
wheel_encoder_rpm[i] = (delta_angle / M_2PI) / (delta_time / 60.0f); |
|
} else { |
|
wheel_encoder_rpm[i] = 0.0f; |
|
} |
|
} |
|
|
|
// record system time update for next iteration |
|
wheel_encoder_last_ekf_update_ms = now; |
|
} |
|
|
|
// Calibrate compass |
|
void Rover::compass_cal_update() { |
|
if (!hal.util->get_soft_armed()) { |
|
compass.compass_cal_update(); |
|
} |
|
} |
|
|
|
// Save compass offsets |
|
void Rover::compass_save() { |
|
if (g.compass_enabled && |
|
compass.get_learn_type() >= Compass::LEARN_INTERNAL && |
|
!arming.is_armed()) { |
|
compass.save_offsets(); |
|
} |
|
} |
|
|
|
// Accel calibration |
|
|
|
void Rover::accel_cal_update() { |
|
if (hal.util->get_soft_armed()) { |
|
return; |
|
} |
|
ins.acal_update(); |
|
// check if new trim values, and set them float trim_roll, trim_pitch; |
|
float trim_roll, trim_pitch; |
|
if (ins.get_new_trim(trim_roll, trim_pitch)) { |
|
ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0)); |
|
} |
|
} |
|
|
|
// read the rangefinders |
|
void Rover::read_rangefinders(void) |
|
{ |
|
rangefinder.update(); |
|
|
|
AP_RangeFinder_Backend *s0 = rangefinder.get_backend(0); |
|
AP_RangeFinder_Backend *s1 = rangefinder.get_backend(1); |
|
|
|
if (s0 == nullptr || s0->status() == RangeFinder::RangeFinder_NotConnected) { |
|
// this makes it possible to disable rangefinder at runtime |
|
return; |
|
} |
|
|
|
if (s1 != nullptr && s1->has_data()) { |
|
// we have two rangefinders |
|
obstacle.rangefinder1_distance_cm = s0->distance_cm(); |
|
obstacle.rangefinder2_distance_cm = s1->distance_cm(); |
|
if (obstacle.rangefinder1_distance_cm < static_cast<uint16_t>(g.rangefinder_trigger_cm) && |
|
obstacle.rangefinder1_distance_cm < static_cast<uint16_t>(obstacle.rangefinder2_distance_cm)) { |
|
// we have an object on the left |
|
if (obstacle.detected_count < 127) { |
|
obstacle.detected_count++; |
|
} |
|
if (obstacle.detected_count == g.rangefinder_debounce) { |
|
gcs().send_text(MAV_SEVERITY_INFO, "Rangefinder1 obstacle %u cm", |
|
static_cast<uint32_t>(obstacle.rangefinder1_distance_cm)); |
|
} |
|
obstacle.detected_time_ms = AP_HAL::millis(); |
|
obstacle.turn_angle = g.rangefinder_turn_angle; |
|
} else if (obstacle.rangefinder2_distance_cm < static_cast<uint16_t>(g.rangefinder_trigger_cm)) { |
|
// we have an object on the right |
|
if (obstacle.detected_count < 127) { |
|
obstacle.detected_count++; |
|
} |
|
if (obstacle.detected_count == g.rangefinder_debounce) { |
|
gcs().send_text(MAV_SEVERITY_INFO, "Rangefinder2 obstacle %u cm", |
|
static_cast<uint32_t>(obstacle.rangefinder2_distance_cm)); |
|
} |
|
obstacle.detected_time_ms = AP_HAL::millis(); |
|
obstacle.turn_angle = -g.rangefinder_turn_angle; |
|
} |
|
} else { |
|
// we have a single rangefinder |
|
obstacle.rangefinder1_distance_cm = s0->distance_cm(); |
|
obstacle.rangefinder2_distance_cm = 0; |
|
if (obstacle.rangefinder1_distance_cm < static_cast<uint16_t>(g.rangefinder_trigger_cm)) { |
|
// obstacle detected in front |
|
if (obstacle.detected_count < 127) { |
|
obstacle.detected_count++; |
|
} |
|
if (obstacle.detected_count == g.rangefinder_debounce) { |
|
gcs().send_text(MAV_SEVERITY_INFO, "Rangefinder obstacle %u cm", |
|
static_cast<uint32_t>(obstacle.rangefinder1_distance_cm)); |
|
} |
|
obstacle.detected_time_ms = AP_HAL::millis(); |
|
obstacle.turn_angle = g.rangefinder_turn_angle; |
|
} |
|
} |
|
|
|
Log_Write_Rangefinder(); |
|
Log_Write_Depth(); |
|
|
|
// no object detected - reset after the turn time |
|
if (obstacle.detected_count >= g.rangefinder_debounce && |
|
AP_HAL::millis() > obstacle.detected_time_ms + g.rangefinder_turn_time*1000) { |
|
gcs().send_text(MAV_SEVERITY_INFO, "Obstacle passed"); |
|
obstacle.detected_count = 0; |
|
obstacle.turn_angle = 0; |
|
} |
|
} |
|
|
|
// initialise proximity sensor |
|
void Rover::init_proximity(void) |
|
{ |
|
g2.proximity.init(); |
|
g2.proximity.set_rangefinder(&rangefinder); |
|
} |
|
|
|
/* |
|
ask airspeed sensor for a new value, duplicated from plane |
|
*/ |
|
void Rover::read_airspeed(void) |
|
{ |
|
g2.airspeed.update(should_log(MASK_LOG_IMU)); |
|
} |
|
|
|
// update error mask of sensors and subsystems. The mask |
|
// uses the MAV_SYS_STATUS_* values from mavlink. If a bit is set |
|
// then it indicates that the sensor or subsystem is present but |
|
// not functioning correctly. |
|
void Rover::update_sensor_status_flags(void) |
|
{ |
|
// default sensors present |
|
control_sensors_present = MAVLINK_SENSOR_PRESENT_DEFAULT; |
|
|
|
// first what sensors/controllers we have |
|
if (g.compass_enabled) { |
|
control_sensors_present |= MAV_SYS_STATUS_SENSOR_3D_MAG; // compass present |
|
} |
|
if (gps.status() > AP_GPS::NO_GPS) { |
|
control_sensors_present |= MAV_SYS_STATUS_SENSOR_GPS; |
|
} |
|
if (g2.visual_odom.enabled()) { |
|
control_sensors_present |= MAV_SYS_STATUS_SENSOR_VISION_POSITION; |
|
} |
|
if (rover.DataFlash.logging_present()) { // primary logging only (usually File) |
|
control_sensors_present |= MAV_SYS_STATUS_LOGGING; |
|
} |
|
if (rover.g2.proximity.get_status() > AP_Proximity::Proximity_NotConnected) { |
|
control_sensors_present |= MAV_SYS_STATUS_SENSOR_LASER_POSITION; |
|
} |
|
|
|
// all present sensors enabled by default except rate control, attitude stabilization, yaw, altitude, position control and motor output which we will set individually |
|
control_sensors_enabled = control_sensors_present & (~MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL & |
|
~MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION & |
|
~MAV_SYS_STATUS_SENSOR_YAW_POSITION & |
|
~MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL & |
|
~MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS & |
|
~MAV_SYS_STATUS_LOGGING & |
|
~MAV_SYS_STATUS_SENSOR_BATTERY); |
|
if (control_mode->attitude_stabilized()) { |
|
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control |
|
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // 3D angular rate control |
|
} |
|
if (control_mode->is_autopilot_mode()) { |
|
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_YAW_POSITION; // yaw position |
|
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL; // X/Y position control |
|
} |
|
|
|
if (rover.DataFlash.logging_enabled()) { |
|
control_sensors_enabled |= MAV_SYS_STATUS_LOGGING; |
|
} |
|
|
|
// set motors outputs as enabled if safety switch is not disarmed (i.e. either NONE or ARMED) |
|
if (hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED) { |
|
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS; |
|
} |
|
|
|
if (battery.num_instances() > 0) { |
|
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_BATTERY; |
|
} |
|
|
|
// default to all healthy except compass and gps which we set individually |
|
control_sensors_health = control_sensors_present & (~MAV_SYS_STATUS_SENSOR_3D_MAG & ~MAV_SYS_STATUS_SENSOR_GPS); |
|
if (g.compass_enabled && compass.healthy(0) && ahrs.use_compass()) { |
|
control_sensors_health |= MAV_SYS_STATUS_SENSOR_3D_MAG; |
|
} |
|
if (gps.is_healthy()) { |
|
control_sensors_health |= MAV_SYS_STATUS_SENSOR_GPS; |
|
} |
|
if (g2.visual_odom.enabled() && !g2.visual_odom.healthy()) { |
|
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_VISION_POSITION; |
|
} |
|
if (!ins.get_gyro_health_all() || !ins.gyro_calibrated_ok_all()) { |
|
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_GYRO; |
|
} |
|
if (!ins.get_accel_health_all()) { |
|
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_ACCEL; |
|
} |
|
|
|
if (ahrs.initialised() && !ahrs.healthy()) { |
|
// AHRS subsystem is unhealthy |
|
control_sensors_health &= ~MAV_SYS_STATUS_AHRS; |
|
} |
|
|
|
if (rangefinder.num_sensors() > 0) { |
|
control_sensors_present |= MAV_SYS_STATUS_SENSOR_LASER_POSITION; |
|
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_LASER_POSITION; |
|
AP_RangeFinder_Backend *s = rangefinder.get_backend(0); |
|
if (s != nullptr && s->has_data()) { |
|
control_sensors_health |= MAV_SYS_STATUS_SENSOR_LASER_POSITION; |
|
} |
|
} |
|
if (rover.g2.proximity.get_status() == AP_Proximity::Proximity_NoData) { |
|
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_LASER_POSITION; |
|
} |
|
if (rover.DataFlash.logging_failed()) { |
|
control_sensors_health &= ~MAV_SYS_STATUS_LOGGING; |
|
} |
|
|
|
if (!battery.healthy() || battery.has_failsafed()) { |
|
control_sensors_enabled &= ~MAV_SYS_STATUS_SENSOR_BATTERY; |
|
} |
|
|
|
if (!initialised || ins.calibrating()) { |
|
// while initialising the gyros and accels are not enabled |
|
control_sensors_enabled &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL); |
|
control_sensors_health &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL); |
|
} |
|
#if FRSKY_TELEM_ENABLED == ENABLED |
|
// give mask of error flags to Frsky_Telemetry |
|
frsky_telemetry.update_sensor_status_flags(~control_sensors_health & control_sensors_enabled & control_sensors_present); |
|
#endif |
|
}
|
|
|