You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
244 lines
8.2 KiB
244 lines
8.2 KiB
#include <AP_HAL/AP_HAL.h> |
|
#include "AC_PrecLand.h" |
|
#include "AC_PrecLand_Backend.h" |
|
#include "AC_PrecLand_Companion.h" |
|
#include "AC_PrecLand_IRLock.h" |
|
#include "AC_PrecLand_SITL_Gazebo.h" |
|
#include "AC_PrecLand_SITL.h" |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
const AP_Param::GroupInfo AC_PrecLand::var_info[] = { |
|
// @Param: ENABLED |
|
// @DisplayName: Precision Land enabled/disabled and behaviour |
|
// @Description: Precision Land enabled/disabled and behaviour |
|
// @Values: 0:Disabled, 1:Enabled Always Land, 2:Enabled Strict |
|
// @User: Advanced |
|
AP_GROUPINFO_FLAGS("ENABLED", 0, AC_PrecLand, _enabled, 0, AP_PARAM_FLAG_ENABLE), |
|
|
|
// @Param: TYPE |
|
// @DisplayName: Precision Land Type |
|
// @Description: Precision Land Type |
|
// @Values: 0:None, 1:CompanionComputer, 2:IRLock, 3:SITL_Gazebo, 4:SITL |
|
// @User: Advanced |
|
AP_GROUPINFO("TYPE", 1, AC_PrecLand, _type, 0), |
|
|
|
// @Param: YAW_ALIGN |
|
// @DisplayName: Sensor yaw alignment |
|
// @Description: Yaw angle from body x-axis to sensor x-axis. |
|
// @Range: 0 360 |
|
// @Increment: 1 |
|
// @User: Advanced |
|
// @Units: Centi-degrees |
|
AP_GROUPINFO("YAW_ALIGN", 2, AC_PrecLand, _yaw_align, 0), |
|
|
|
// @Param: LAND_OFS_X |
|
// @DisplayName: Land offset forward |
|
// @Description: Desired landing position of the camera forward of the target in vehicle body frame |
|
// @Range: -20 20 |
|
// @Increment: 1 |
|
// @User: Advanced |
|
// @Units: Centimeters |
|
AP_GROUPINFO("LAND_OFS_X", 3, AC_PrecLand, _land_ofs_cm_x, 0), |
|
|
|
// @Param: LAND_OFS_Y |
|
// @DisplayName: Land offset right |
|
// @Description: desired landing position of the camera right of the target in vehicle body frame |
|
// @Range: -20 20 |
|
// @Increment: 1 |
|
// @User: Advanced |
|
// @Units: Centimeters |
|
AP_GROUPINFO("LAND_OFS_Y", 4, AC_PrecLand, _land_ofs_cm_y, 0), |
|
|
|
AP_GROUPEND |
|
}; |
|
|
|
// Default constructor. |
|
// Note that the Vector/Matrix constructors already implicitly zero |
|
// their values. |
|
// |
|
AC_PrecLand::AC_PrecLand(const AP_AHRS& ahrs, const AP_InertialNav& inav) : |
|
_ahrs(ahrs), |
|
_inav(inav), |
|
_last_update_ms(0), |
|
_last_backend_los_meas_ms(0), |
|
_backend(nullptr) |
|
{ |
|
// set parameters to defaults |
|
AP_Param::setup_object_defaults(this, var_info); |
|
|
|
// other initialisation |
|
_backend_state.healthy = false; |
|
} |
|
|
|
|
|
// init - perform any required initialisation of backends |
|
void AC_PrecLand::init() |
|
{ |
|
// exit immediately if init has already been run |
|
if (_backend != nullptr) { |
|
return; |
|
} |
|
|
|
// default health to false |
|
_backend = nullptr; |
|
_backend_state.healthy = false; |
|
|
|
// instantiate backend based on type parameter |
|
switch ((enum PrecLandType)(_type.get())) { |
|
// no type defined |
|
case PRECLAND_TYPE_NONE: |
|
default: |
|
return; |
|
// companion computer |
|
case PRECLAND_TYPE_COMPANION: |
|
_backend = new AC_PrecLand_Companion(*this, _backend_state); |
|
break; |
|
// IR Lock |
|
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN |
|
case PRECLAND_TYPE_IRLOCK: |
|
_backend = new AC_PrecLand_IRLock(*this, _backend_state); |
|
break; |
|
#endif |
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL |
|
case PRECLAND_TYPE_SITL_GAZEBO: |
|
_backend = new AC_PrecLand_SITL_Gazebo(*this, _backend_state); |
|
break; |
|
case PRECLAND_TYPE_SITL: |
|
_backend = new AC_PrecLand_SITL(*this, _backend_state); |
|
break; |
|
#endif |
|
} |
|
|
|
// init backend |
|
if (_backend != nullptr) { |
|
_backend->init(); |
|
} |
|
} |
|
|
|
// update - give chance to driver to get updates from sensor |
|
void AC_PrecLand::update(float rangefinder_alt_cm, bool rangefinder_alt_valid) |
|
{ |
|
_attitude_history.push_back(_ahrs.get_rotation_body_to_ned()); |
|
|
|
// run backend update |
|
if (_backend != nullptr && _enabled) { |
|
// read from sensor |
|
_backend->update(); |
|
|
|
Vector3f vehicleVelocityNED = _inav.get_velocity()*0.01f; |
|
vehicleVelocityNED.z = -vehicleVelocityNED.z; |
|
|
|
if (target_acquired()) { |
|
// EKF prediction step |
|
float dt; |
|
Vector3f targetDelVel; |
|
_ahrs.getCorrectedDeltaVelocityNED(targetDelVel, dt); |
|
targetDelVel = -targetDelVel; |
|
|
|
_ekf_x.predict(dt, targetDelVel.x, 0.5f*dt); |
|
_ekf_y.predict(dt, targetDelVel.y, 0.5f*dt); |
|
} |
|
|
|
if (_backend->have_los_meas() && _backend->los_meas_time_ms() != _last_backend_los_meas_ms) { |
|
// we have a new, unique los measurement |
|
_last_backend_los_meas_ms = _backend->los_meas_time_ms(); |
|
|
|
Vector3f target_vec_unit_body; |
|
_backend->get_los_body(target_vec_unit_body); |
|
|
|
// Apply sensor yaw alignment rotation |
|
float sin_yaw_align = sinf(radians(_yaw_align*0.01f)); |
|
float cos_yaw_align = cosf(radians(_yaw_align*0.01f)); |
|
Matrix3f Rz = Matrix3f( |
|
cos_yaw_align, -sin_yaw_align, 0, |
|
sin_yaw_align, cos_yaw_align, 0, |
|
0, 0, 1 |
|
); |
|
|
|
Vector3f target_vec_unit_ned = _attitude_history.front() * Rz * target_vec_unit_body; |
|
|
|
bool target_vec_valid = target_vec_unit_ned.z > 0.0f; |
|
|
|
if (target_vec_valid && rangefinder_alt_valid && rangefinder_alt_cm > 0.0f) { |
|
float alt = MAX(rangefinder_alt_cm*0.01f, 0.0f); |
|
float dist = alt/target_vec_unit_ned.z; |
|
Vector3f targetPosRelMeasNED = Vector3f(target_vec_unit_ned.x*dist, target_vec_unit_ned.y*dist, alt); |
|
|
|
float xy_pos_var = sq(targetPosRelMeasNED.z*(0.01f + 0.01f*_ahrs.get_gyro().length()) + 0.02f); |
|
if (!target_acquired()) { |
|
// reset filter state |
|
if (_inav.get_filter_status().flags.horiz_pos_rel) { |
|
_ekf_x.init(targetPosRelMeasNED.x, xy_pos_var, -vehicleVelocityNED.x, sq(2.0f)); |
|
_ekf_y.init(targetPosRelMeasNED.y, xy_pos_var, -vehicleVelocityNED.y, sq(2.0f)); |
|
} else { |
|
_ekf_x.init(targetPosRelMeasNED.x, xy_pos_var, 0.0f, sq(10.0f)); |
|
_ekf_y.init(targetPosRelMeasNED.y, xy_pos_var, 0.0f, sq(10.0f)); |
|
} |
|
_last_update_ms = AP_HAL::millis(); |
|
} else { |
|
float NIS_x = _ekf_x.getPosNIS(targetPosRelMeasNED.x, xy_pos_var); |
|
float NIS_y = _ekf_y.getPosNIS(targetPosRelMeasNED.y, xy_pos_var); |
|
if (MAX(NIS_x, NIS_y) < 3.0f || _outlier_reject_count >= 3) { |
|
_outlier_reject_count = 0; |
|
_ekf_x.fusePos(targetPosRelMeasNED.x, xy_pos_var); |
|
_ekf_y.fusePos(targetPosRelMeasNED.y, xy_pos_var); |
|
_last_update_ms = AP_HAL::millis(); |
|
} else { |
|
_outlier_reject_count++; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
bool AC_PrecLand::target_acquired() const |
|
{ |
|
return (AP_HAL::millis()-_last_update_ms) < 2000; |
|
} |
|
|
|
bool AC_PrecLand::get_target_position_cm(Vector2f& ret) const |
|
{ |
|
if (!target_acquired()) { |
|
return false; |
|
} |
|
|
|
Vector3f land_ofs_ned_cm = _ahrs.get_rotation_body_to_ned() * Vector3f(_land_ofs_cm_x,_land_ofs_cm_y,0); |
|
|
|
ret.x = _ekf_x.getPos()*100.0f + _inav.get_position().x + land_ofs_ned_cm.x; |
|
ret.y = _ekf_y.getPos()*100.0f + _inav.get_position().y + land_ofs_ned_cm.y; |
|
return true; |
|
} |
|
|
|
bool AC_PrecLand::get_target_position_relative_cm(Vector2f& ret) const |
|
{ |
|
if (!target_acquired()) { |
|
return false; |
|
} |
|
|
|
Vector3f land_ofs_ned_cm = _ahrs.get_rotation_body_to_ned() * Vector3f(_land_ofs_cm_x,_land_ofs_cm_y,0); |
|
|
|
ret.x = _ekf_x.getPos()*100.0f + land_ofs_ned_cm.x; |
|
ret.y = _ekf_y.getPos()*100.0f + land_ofs_ned_cm.y; |
|
return true; |
|
} |
|
|
|
bool AC_PrecLand::get_target_velocity_relative_cms(Vector2f& ret) const |
|
{ |
|
if (!target_acquired()) { |
|
return false; |
|
} |
|
ret.x = _ekf_x.getVel()*100.0f; |
|
ret.y = _ekf_y.getVel()*100.0f; |
|
return true; |
|
} |
|
|
|
// handle_msg - Process a LANDING_TARGET mavlink message |
|
void AC_PrecLand::handle_msg(mavlink_message_t* msg) |
|
{ |
|
// run backend update |
|
if (_backend != nullptr) { |
|
_backend->handle_msg(msg); |
|
} |
|
}
|
|
|