You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
295 lines
12 KiB
295 lines
12 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*- |
|
|
|
#include "AC_AttitudeControl_Heli.h" |
|
#include <AP_HAL/AP_HAL.h> |
|
|
|
// table of user settable parameters |
|
const AP_Param::GroupInfo AC_AttitudeControl_Heli::var_info[] = { |
|
// parameters from parent vehicle |
|
AP_NESTEDGROUPINFO(AC_AttitudeControl, 0), |
|
|
|
// @Param: PIRO_COMP |
|
// @DisplayName: Piro Comp Enable |
|
// @Description: Pirouette compensation enabled |
|
// @Range: 0:Disabled 1:Enabled |
|
// @User: Advanced |
|
AP_GROUPINFO("PIRO_COMP", 0, AC_AttitudeControl_Heli, _piro_comp_enabled, 0), |
|
|
|
// @Param: HOVR_ROL_TRM |
|
// @DisplayName: Hover Roll Trim |
|
// @Description: Trim the hover roll angle to counter tail rotor thrust in a hover |
|
// @Units: Centi-Degrees |
|
// @Range: 0 1000 |
|
// @User: Advanced |
|
AP_GROUPINFO("HOVR_ROL_TRM", 1, AC_AttitudeControl_Heli, _hover_roll_trim, AC_ATTITUDE_HELI_HOVER_ROLL_TRIM_DEFAULT), |
|
|
|
AP_GROUPEND |
|
}; |
|
|
|
// passthrough_bf_roll_pitch_rate_yaw - passthrough the pilots roll and pitch inputs directly to swashplate for flybar acro mode |
|
void AC_AttitudeControl_Heli::passthrough_bf_roll_pitch_rate_yaw(float roll_passthrough, float pitch_passthrough, float yaw_rate_bf) |
|
{ |
|
// store roll, pitch and passthroughs |
|
_passthrough_roll = roll_passthrough; |
|
_passthrough_pitch = pitch_passthrough; |
|
_passthrough_yaw = yaw_rate_bf; |
|
|
|
// set rate controller to use pass through |
|
_flags_heli.flybar_passthrough = true; |
|
|
|
// set bf rate targets to current body frame rates (i.e. relax and be ready for vehicle to switch out of acro) |
|
_rate_bf_desired.x = _ahrs.get_gyro().x * AC_ATTITUDE_CONTROL_DEGX100; |
|
_rate_bf_desired.y = _ahrs.get_gyro().y * AC_ATTITUDE_CONTROL_DEGX100; |
|
|
|
// accel limit desired yaw rate |
|
if (_accel_yaw_max > 0.0f) { |
|
float rate_change_limit = _accel_yaw_max * _dt; |
|
float rate_change = yaw_rate_bf - _rate_bf_desired.z; |
|
rate_change = constrain_float(rate_change, -rate_change_limit, rate_change_limit); |
|
_rate_bf_desired.z += rate_change; |
|
} else { |
|
_rate_bf_desired.z = yaw_rate_bf; |
|
} |
|
|
|
integrate_bf_rate_error_to_angle_errors(); |
|
_angle_bf_error.x = 0; |
|
_angle_bf_error.y = 0; |
|
|
|
// update our earth-frame angle targets |
|
Vector3f angle_ef_error; |
|
if (frame_conversion_bf_to_ef(_angle_bf_error, angle_ef_error)) { |
|
_angle_ef_target.x = wrap_180_cd_float(angle_ef_error.x + _ahrs.roll_sensor); |
|
_angle_ef_target.y = wrap_180_cd_float(angle_ef_error.y + _ahrs.pitch_sensor); |
|
_angle_ef_target.z = wrap_360_cd_float(angle_ef_error.z + _ahrs.yaw_sensor); |
|
} |
|
|
|
// handle flipping over pitch axis |
|
if (_angle_ef_target.y > 9000.0f) { |
|
_angle_ef_target.x = wrap_180_cd_float(_angle_ef_target.x + 18000.0f); |
|
_angle_ef_target.y = wrap_180_cd_float(18000.0f - _angle_ef_target.x); |
|
_angle_ef_target.z = wrap_360_cd_float(_angle_ef_target.z + 18000.0f); |
|
} |
|
if (_angle_ef_target.y < -9000.0f) { |
|
_angle_ef_target.x = wrap_180_cd_float(_angle_ef_target.x + 18000.0f); |
|
_angle_ef_target.y = wrap_180_cd_float(-18000.0f - _angle_ef_target.x); |
|
_angle_ef_target.z = wrap_360_cd_float(_angle_ef_target.z + 18000.0f); |
|
} |
|
|
|
// convert body-frame angle errors to body-frame rate targets |
|
update_rate_bf_targets(); |
|
|
|
// set body-frame roll/pitch rate target to current desired rates which are the vehicle's actual rates |
|
_rate_bf_target.x = _rate_bf_desired.x; |
|
_rate_bf_target.y = _rate_bf_desired.y; |
|
|
|
// add desired target to yaw |
|
_rate_bf_target.z += _rate_bf_desired.z; |
|
} |
|
|
|
// subclass non-passthrough too, for external gyro, no flybar |
|
void AC_AttitudeControl_Heli::rate_bf_roll_pitch_yaw(float roll_rate_bf, float pitch_rate_bf, float yaw_rate_bf) |
|
{ |
|
_passthrough_yaw = yaw_rate_bf; |
|
|
|
AC_AttitudeControl::rate_bf_roll_pitch_yaw(roll_rate_bf, pitch_rate_bf, yaw_rate_bf); |
|
} |
|
|
|
// |
|
// rate controller (body-frame) methods |
|
// |
|
|
|
// rate_controller_run - run lowest level rate controller and send outputs to the motors |
|
// should be called at 100hz or more |
|
void AC_AttitudeControl_Heli::rate_controller_run() |
|
{ |
|
// call rate controllers and send output to motors object |
|
// if using a flybar passthrough roll and pitch directly to motors |
|
if (_flags_heli.flybar_passthrough) { |
|
_motors.set_roll(_passthrough_roll); |
|
_motors.set_pitch(_passthrough_pitch); |
|
} else { |
|
rate_bf_to_motor_roll_pitch(_rate_bf_target.x, _rate_bf_target.y); |
|
} |
|
if (_flags_heli.tail_passthrough) { |
|
_motors.set_yaw(_passthrough_yaw); |
|
} else { |
|
_motors.set_yaw(rate_bf_to_motor_yaw(_rate_bf_target.z)); |
|
} |
|
} |
|
|
|
// get lean angle max for pilot input that prioritises altitude hold over lean angle |
|
float AC_AttitudeControl_Heli::get_althold_lean_angle_max() const |
|
{ |
|
// calc maximum tilt angle based on throttle |
|
return ToDeg(acos(constrain_float(_throttle_in_filt.get()/900.0f, 0.0f, 1000.0f) / 1000.0f)) * 100.0f; |
|
} |
|
|
|
// |
|
// private methods |
|
// |
|
|
|
// |
|
// body-frame rate controller |
|
// |
|
|
|
// rate_bf_to_motor_roll_pitch - ask the rate controller to calculate the motor outputs to achieve the target rate in centi-degrees / second |
|
void AC_AttitudeControl_Heli::rate_bf_to_motor_roll_pitch(float rate_roll_target_cds, float rate_pitch_target_cds) |
|
{ |
|
float roll_pd, roll_i, roll_ff; // used to capture pid values |
|
float pitch_pd, pitch_i, pitch_ff; // used to capture pid values |
|
float rate_roll_error, rate_pitch_error; // simply target_rate - current_rate |
|
float roll_out, pitch_out; |
|
const Vector3f& gyro = _ahrs.get_gyro(); // get current rates |
|
|
|
// calculate error |
|
rate_roll_error = rate_roll_target_cds - gyro.x * AC_ATTITUDE_CONTROL_DEGX100; |
|
rate_pitch_error = rate_pitch_target_cds - gyro.y * AC_ATTITUDE_CONTROL_DEGX100; |
|
|
|
// input to PID controller |
|
_pid_rate_roll.set_input_filter_all(rate_roll_error); |
|
_pid_rate_roll.set_desired_rate(rate_roll_target_cds); |
|
_pid_rate_pitch.set_input_filter_all(rate_pitch_error); |
|
_pid_rate_pitch.set_desired_rate(rate_pitch_target_cds); |
|
|
|
// call p and d controllers |
|
roll_pd = _pid_rate_roll.get_p() + _pid_rate_roll.get_d(); |
|
pitch_pd = _pid_rate_pitch.get_p() + _pid_rate_pitch.get_d(); |
|
|
|
// get roll i term |
|
roll_i = _pid_rate_roll.get_integrator(); |
|
|
|
// update i term as long as we haven't breached the limits or the I term will certainly reduce |
|
if (!_flags_heli.limit_roll || ((roll_i>0&&rate_roll_error<0)||(roll_i<0&&rate_roll_error>0))){ |
|
if (_flags_heli.leaky_i){ |
|
roll_i = ((AC_HELI_PID&)_pid_rate_roll).get_leaky_i(AC_ATTITUDE_HELI_RATE_INTEGRATOR_LEAK_RATE); |
|
}else{ |
|
roll_i = _pid_rate_roll.get_i(); |
|
} |
|
} |
|
|
|
// get pitch i term |
|
pitch_i = _pid_rate_pitch.get_integrator(); |
|
|
|
// update i term as long as we haven't breached the limits or the I term will certainly reduce |
|
if (!_flags_heli.limit_pitch || ((pitch_i>0&&rate_pitch_error<0)||(pitch_i<0&&rate_pitch_error>0))){ |
|
if (_flags_heli.leaky_i) { |
|
pitch_i = ((AC_HELI_PID&)_pid_rate_pitch).get_leaky_i(AC_ATTITUDE_HELI_RATE_INTEGRATOR_LEAK_RATE); |
|
}else{ |
|
pitch_i = _pid_rate_pitch.get_i(); |
|
} |
|
} |
|
|
|
roll_ff = roll_feedforward_filter.apply(((AC_HELI_PID&)_pid_rate_roll).get_vff(rate_roll_target_cds), _dt); |
|
pitch_ff = pitch_feedforward_filter.apply(((AC_HELI_PID&)_pid_rate_pitch).get_vff(rate_pitch_target_cds), _dt); |
|
|
|
// add feed forward and final output |
|
roll_out = roll_pd + roll_i + roll_ff; |
|
pitch_out = pitch_pd + pitch_i + pitch_ff; |
|
|
|
// constrain output and update limit flags |
|
if (fabsf(roll_out) > AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX) { |
|
roll_out = constrain_float(roll_out,-AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX,AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX); |
|
_flags_heli.limit_roll = true; |
|
}else{ |
|
_flags_heli.limit_roll = false; |
|
} |
|
if (fabsf(pitch_out) > AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX) { |
|
pitch_out = constrain_float(pitch_out,-AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX,AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX); |
|
_flags_heli.limit_pitch = true; |
|
}else{ |
|
_flags_heli.limit_pitch = false; |
|
} |
|
|
|
// output to motors |
|
_motors.set_roll(roll_out); |
|
_motors.set_pitch(pitch_out); |
|
|
|
// Piro-Comp, or Pirouette Compensation is a pre-compensation calculation, which basically rotates the Roll and Pitch Rate I-terms as the |
|
// helicopter rotates in yaw. Much of the built-up I-term is needed to tip the disk into the incoming wind. Fast yawing can create an instability |
|
// as the built-up I-term in one axis must be reduced, while the other increases. This helps solve that by rotating the I-terms before the error occurs. |
|
// It does assume that the rotor aerodynamics and mechanics are essentially symmetrical about the main shaft, which is a generally valid assumption. |
|
if (_piro_comp_enabled){ |
|
|
|
int32_t piro_roll_i, piro_pitch_i; // used to hold I-terms while doing piro comp |
|
|
|
piro_roll_i = roll_i; |
|
piro_pitch_i = pitch_i; |
|
|
|
Vector2f yawratevector; |
|
yawratevector.x = cosf(-_ahrs.get_gyro().z * _dt); |
|
yawratevector.y = sinf(-_ahrs.get_gyro().z * _dt); |
|
yawratevector.normalize(); |
|
|
|
roll_i = piro_roll_i * yawratevector.x - piro_pitch_i * yawratevector.y; |
|
pitch_i = piro_pitch_i * yawratevector.x + piro_roll_i * yawratevector.y; |
|
|
|
_pid_rate_pitch.set_integrator(pitch_i); |
|
_pid_rate_roll.set_integrator(roll_i); |
|
} |
|
|
|
} |
|
|
|
// rate_bf_to_motor_yaw - ask the rate controller to calculate the motor outputs to achieve the target rate in centi-degrees / second |
|
float AC_AttitudeControl_Heli::rate_bf_to_motor_yaw(float rate_target_cds) |
|
{ |
|
float pd,i,vff,aff; // used to capture pid values for logging |
|
float current_rate; // this iteration's rate |
|
float rate_error; // simply target_rate - current_rate |
|
float yaw_out; |
|
|
|
// get current rate |
|
// To-Do: make getting gyro rates more efficient? |
|
current_rate = (_ahrs.get_gyro().z * AC_ATTITUDE_CONTROL_DEGX100); |
|
|
|
// calculate error and call pid controller |
|
rate_error = rate_target_cds - current_rate; |
|
|
|
// send input to PID controller |
|
_pid_rate_yaw.set_input_filter_all(rate_error); |
|
_pid_rate_yaw.set_desired_rate(rate_target_cds); |
|
|
|
// get p and d |
|
pd = _pid_rate_yaw.get_p() + _pid_rate_yaw.get_d(); |
|
|
|
// get i term |
|
i = _pid_rate_yaw.get_integrator(); |
|
|
|
// update i term as long as we haven't breached the limits or the I term will certainly reduce |
|
if (!_flags_heli.limit_yaw || ((i>0&&rate_error<0)||(i<0&&rate_error>0))) { |
|
if (((AP_MotorsHeli&)_motors).rotor_runup_complete()) { |
|
i = _pid_rate_yaw.get_i(); |
|
} else { |
|
i = ((AC_HELI_PID&)_pid_rate_yaw).get_leaky_i(AC_ATTITUDE_HELI_RATE_INTEGRATOR_LEAK_RATE); // If motor is not running use leaky I-term to avoid excessive build-up |
|
} |
|
} |
|
|
|
vff = yaw_velocity_feedforward_filter.apply(((AC_HELI_PID&)_pid_rate_yaw).get_vff(rate_target_cds), _dt); |
|
aff = yaw_acceleration_feedforward_filter.apply(((AC_HELI_PID&)_pid_rate_yaw).get_aff(rate_target_cds), _dt); |
|
|
|
// add feed forward |
|
yaw_out = pd + i + vff + aff; |
|
|
|
// constrain output and update limit flag |
|
if (fabsf(yaw_out) > AC_ATTITUDE_RATE_YAW_CONTROLLER_OUT_MAX) { |
|
yaw_out = constrain_float(yaw_out,-AC_ATTITUDE_RATE_YAW_CONTROLLER_OUT_MAX,AC_ATTITUDE_RATE_YAW_CONTROLLER_OUT_MAX); |
|
_flags_heli.limit_yaw = true; |
|
}else{ |
|
_flags_heli.limit_yaw = false; |
|
} |
|
|
|
// output to motors |
|
return yaw_out; |
|
} |
|
|
|
// |
|
// throttle functions |
|
// |
|
|
|
// returns a throttle including compensation for roll/pitch angle |
|
// throttle value should be 0 ~ 1000 |
|
float AC_AttitudeControl_Heli::get_boosted_throttle(float throttle_in) |
|
{ |
|
// no angle boost for trad helis |
|
_angle_boost = 0; |
|
return throttle_in; |
|
}
|
|
|