You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
225 lines
5.4 KiB
225 lines
5.4 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
#include <AP_HAL.h> |
|
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 |
|
|
|
#include "AP_HAL_PX4.h" |
|
#include "Scheduler.h" |
|
#include <sys/time.h> |
|
#include <unistd.h> |
|
#include <signal.h> |
|
#include <sched.h> |
|
#include <errno.h> |
|
#include <stdio.h> |
|
|
|
#define MAIN_TIMER_SIGNAL 17 |
|
|
|
using namespace PX4; |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
|
|
AP_HAL::TimedProc PX4Scheduler::_failsafe = NULL; |
|
volatile bool PX4Scheduler::_timer_suspended = false; |
|
AP_HAL::TimedProc PX4Scheduler::_timer_proc[PX4_SCHEDULER_MAX_TIMER_PROCS] = {NULL}; |
|
uint8_t PX4Scheduler::_num_timer_procs = 0; |
|
bool PX4Scheduler::_in_timer_proc = false; |
|
struct timeval PX4Scheduler::_sketch_start_time; |
|
|
|
PX4Scheduler::PX4Scheduler() |
|
{} |
|
|
|
void PX4Scheduler::init(void *unused) |
|
{ |
|
sigset_t sigset; |
|
struct sigaction act; |
|
struct sigaction oact; |
|
struct sigevent notify; |
|
struct itimerspec timer; |
|
timer_t timerid; |
|
int status; |
|
|
|
gettimeofday(&_sketch_start_time,NULL); |
|
|
|
/* setup a posix timer at 1kHz */ |
|
(void)sigemptyset(&sigset); |
|
(void)sigaddset(&sigset, MAIN_TIMER_SIGNAL); |
|
status = sigprocmask(SIG_UNBLOCK, &sigset, NULL); |
|
if (status != OK) goto failed; |
|
|
|
act.sa_sigaction = _timer_event; |
|
act.sa_flags = SA_SIGINFO; |
|
|
|
(void)sigfillset(&act.sa_mask); |
|
(void)sigdelset(&act.sa_mask, MAIN_TIMER_SIGNAL); |
|
status = sigaction(MAIN_TIMER_SIGNAL, &act, &oact); |
|
if (status != OK) goto failed; |
|
|
|
notify.sigev_notify = SIGEV_SIGNAL; |
|
notify.sigev_signo = MAIN_TIMER_SIGNAL; |
|
notify.sigev_value.sival_int = 0; |
|
|
|
status = timer_create(CLOCK_REALTIME, ¬ify, &timerid); |
|
if (status != OK) goto failed; |
|
|
|
/* Start the POSIX timer */ |
|
|
|
timer.it_value.tv_sec = 0; |
|
timer.it_value.tv_nsec = 1000000; |
|
timer.it_interval.tv_sec = 0; |
|
timer.it_interval.tv_nsec = 1000000; |
|
|
|
status = timer_settime(timerid, 0, &timer, NULL); |
|
if (status != OK) goto failed; |
|
|
|
return; |
|
|
|
failed: |
|
panic("Failed to setup PX4 1kHz timer"); |
|
} |
|
|
|
uint32_t PX4Scheduler::_micros() |
|
{ |
|
struct timeval tp; |
|
gettimeofday(&tp,NULL); |
|
return 1.0e6*((tp.tv_sec + (tp.tv_usec*1.0e-6)) - |
|
(_sketch_start_time.tv_sec + |
|
(_sketch_start_time.tv_usec*1.0e-6))); |
|
} |
|
|
|
uint32_t PX4Scheduler::micros() |
|
{ |
|
return _micros(); |
|
} |
|
|
|
uint32_t PX4Scheduler::millis() |
|
{ |
|
struct timeval tp; |
|
gettimeofday(&tp,NULL); |
|
return 1.0e3*((tp.tv_sec + (tp.tv_usec*1.0e-6)) - |
|
(_sketch_start_time.tv_sec + |
|
(_sketch_start_time.tv_usec*1.0e-6))); |
|
} |
|
|
|
void PX4Scheduler::delay_microseconds(uint16_t usec) |
|
{ |
|
uint32_t start = micros(); |
|
while (micros() - start < usec) { |
|
usleep(usec - (micros() - start)); |
|
} |
|
} |
|
|
|
void PX4Scheduler::delay(uint16_t ms) |
|
{ |
|
uint32_t start = micros(); |
|
|
|
while (ms > 0) { |
|
while ((micros() - start) >= 1000) { |
|
ms--; |
|
if (ms == 0) break; |
|
start += 1000; |
|
} |
|
if (_min_delay_cb_ms <= ms) { |
|
if (_delay_cb) { |
|
_delay_cb(); |
|
} |
|
} |
|
} |
|
} |
|
|
|
void PX4Scheduler::register_delay_callback(AP_HAL::Proc proc, |
|
uint16_t min_time_ms) |
|
{ |
|
_delay_cb = proc; |
|
_min_delay_cb_ms = min_time_ms; |
|
} |
|
|
|
void PX4Scheduler::register_timer_process(AP_HAL::TimedProc proc) |
|
{ |
|
for (uint8_t i = 0; i < _num_timer_procs; i++) { |
|
if (_timer_proc[i] == proc) { |
|
return; |
|
} |
|
} |
|
|
|
if (_num_timer_procs < PX4_SCHEDULER_MAX_TIMER_PROCS) { |
|
_timer_proc[_num_timer_procs] = proc; |
|
_num_timer_procs++; |
|
} |
|
|
|
} |
|
|
|
void PX4Scheduler::register_timer_failsafe(AP_HAL::TimedProc failsafe, uint32_t period_us) |
|
{ |
|
_failsafe = failsafe; |
|
} |
|
|
|
void PX4Scheduler::suspend_timer_procs() { |
|
_timer_suspended = true; |
|
} |
|
|
|
void PX4Scheduler::resume_timer_procs() { |
|
_timer_suspended = false; |
|
} |
|
|
|
void PX4Scheduler::begin_atomic() { |
|
_nested_atomic_ctr++; |
|
} |
|
|
|
void PX4Scheduler::end_atomic() { |
|
if (_nested_atomic_ctr == 0) { |
|
hal.uartA->println_P(PSTR("ATOMIC NESTING ERROR")); |
|
return; |
|
} |
|
_nested_atomic_ctr--; |
|
} |
|
|
|
void PX4Scheduler::reboot() |
|
{ |
|
hal.uartA->println_P(PSTR("REBOOT NOT IMPLEMENTED\r\n")); |
|
} |
|
|
|
void PX4Scheduler::_timer_event(int signo, siginfo_t *info, void *ucontext) |
|
{ |
|
uint32_t tnow = _micros(); |
|
if (_in_timer_proc) { |
|
// the timer calls took longer than the period of the |
|
// timer. This is bad, and may indicate a serious |
|
// driver failure. We can't just call the drivers |
|
// again, as we could run out of stack. So we only |
|
// call the _failsafe call. It's job is to detect if |
|
// the drivers or the main loop are indeed dead and to |
|
// activate whatever failsafe it thinks may help if |
|
// need be. We assume the failsafe code can't |
|
// block. If it does then we will recurse and die when |
|
// we run out of stack |
|
if (_failsafe != NULL) { |
|
_failsafe(tnow); |
|
} |
|
return; |
|
} |
|
_in_timer_proc = true; |
|
|
|
if (!_timer_suspended) { |
|
// now call the timer based drivers |
|
for (int i = 0; i < _num_timer_procs; i++) { |
|
if (_timer_proc[i] != NULL) { |
|
_timer_proc[i](tnow); |
|
} |
|
} |
|
} |
|
|
|
// and the failsafe, if one is setup |
|
if (_failsafe != NULL) { |
|
_failsafe(tnow); |
|
} |
|
|
|
_in_timer_proc = false; |
|
} |
|
|
|
void PX4Scheduler::panic(const prog_char_t *errormsg) { |
|
hal.console->println_P(errormsg); |
|
for(;;); |
|
} |
|
|
|
#endif
|
|
|