You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
337 lines
8.7 KiB
337 lines
8.7 KiB
/// @file AC_PID.cpp |
|
/// @brief Generic PID algorithm |
|
|
|
#include <AP_Math/AP_Math.h> |
|
#include "AC_PID.h" |
|
|
|
const AP_Param::GroupInfo AC_PID::var_info[] = { |
|
// @Param: P |
|
// @DisplayName: PID Proportional Gain |
|
// @Description: P Gain which produces an output value that is proportional to the current error value |
|
AP_GROUPINFO("P", 0, AC_PID, _kp, 0), |
|
|
|
// @Param: I |
|
// @DisplayName: PID Integral Gain |
|
// @Description: I Gain which produces an output that is proportional to both the magnitude and the duration of the error |
|
AP_GROUPINFO("I", 1, AC_PID, _ki, 0), |
|
|
|
// @Param: D |
|
// @DisplayName: PID Derivative Gain |
|
// @Description: D Gain which produces an output that is proportional to the rate of change of the error |
|
AP_GROUPINFO("D", 2, AC_PID, _kd, 0), |
|
|
|
// 3 was for uint16 IMAX |
|
|
|
// @Param: FF |
|
// @DisplayName: FF FeedForward Gain |
|
// @Description: FF Gain which produces an output value that is proportional to the demanded input |
|
AP_GROUPINFO("FF", 4, AC_PID, _kff, 0), |
|
|
|
// @Param: IMAX |
|
// @DisplayName: PID Integral Maximum |
|
// @Description: The maximum/minimum value that the I term can output |
|
AP_GROUPINFO("IMAX", 5, AC_PID, _kimax, 0), |
|
|
|
// 6 was for float FILT |
|
|
|
// 7 is for float ILMI and FF |
|
|
|
// index 8 was for AFF |
|
|
|
// @Param: FLTT |
|
// @DisplayName: PID Target filter frequency in Hz |
|
// @Description: Target filter frequency in Hz |
|
// @Units: Hz |
|
AP_GROUPINFO("FLTT", 9, AC_PID, _filt_T_hz, AC_PID_TFILT_HZ_DEFAULT), |
|
|
|
// @Param: FLTE |
|
// @DisplayName: PID Error filter frequency in Hz |
|
// @Description: Error filter frequency in Hz |
|
// @Units: Hz |
|
AP_GROUPINFO("FLTE", 10, AC_PID, _filt_E_hz, AC_PID_EFILT_HZ_DEFAULT), |
|
|
|
// @Param: FLTD |
|
// @DisplayName: PID Derivative term filter frequency in Hz |
|
// @Description: Derivative filter frequency in Hz |
|
// @Units: Hz |
|
AP_GROUPINFO("FLTD", 11, AC_PID, _filt_D_hz, AC_PID_DFILT_HZ_DEFAULT), |
|
|
|
AP_GROUPEND |
|
}; |
|
|
|
// Constructor |
|
AC_PID::AC_PID(float initial_p, float initial_i, float initial_d, float initial_ff, float initial_imax, float initial_filt_T_hz, float initial_filt_E_hz, float initial_filt_D_hz, float dt) : |
|
_dt(dt), |
|
_integrator(0.0f), |
|
_error(0.0f), |
|
_derivative(0.0f) |
|
{ |
|
// load parameter values from eeprom |
|
AP_Param::setup_object_defaults(this, var_info); |
|
|
|
_kp = initial_p; |
|
_ki = initial_i; |
|
_kd = initial_d; |
|
_kff = initial_ff; |
|
_kimax = fabsf(initial_imax); |
|
filt_T_hz(initial_filt_T_hz); |
|
filt_E_hz(initial_filt_E_hz); |
|
filt_D_hz(initial_filt_D_hz); |
|
|
|
// reset input filter to first value received |
|
_flags._reset_filter = true; |
|
|
|
memset(&_pid_info, 0, sizeof(_pid_info)); |
|
} |
|
|
|
// set_dt - set time step in seconds |
|
void AC_PID::set_dt(float dt) |
|
{ |
|
// set dt and calculate the input filter alpha |
|
_dt = dt; |
|
} |
|
|
|
// filt_T_hz - set target filter hz |
|
void AC_PID::filt_T_hz(float hz) |
|
{ |
|
_filt_T_hz.set(fabsf(hz)); |
|
} |
|
|
|
// filt_E_hz - set error filter hz |
|
void AC_PID::filt_E_hz(float hz) |
|
{ |
|
_filt_E_hz.set(fabsf(hz)); |
|
} |
|
|
|
// filt_D_hz - set derivative filter hz |
|
void AC_PID::filt_D_hz(float hz) |
|
{ |
|
_filt_D_hz.set(fabsf(hz)); |
|
} |
|
|
|
// update_all - set target and measured inputs to PID controller and calculate outputs |
|
// target and error are filtered |
|
// the derivative is then calculated and filtered |
|
// the integral is then updated based on the setting of the limit flag |
|
float AC_PID::update_all(float target, float measurement, bool limit) |
|
{ |
|
// don't process inf or NaN |
|
if (!isfinite(target) || !isfinite(measurement)) { |
|
return 0.0f; |
|
} |
|
|
|
// reset input filter to value received |
|
if (_flags._reset_filter) { |
|
_flags._reset_filter = false; |
|
_target = target; |
|
_error = _target - measurement; |
|
_derivative = 0.0f; |
|
} else { |
|
float error_last = _error; |
|
_target += get_filt_T_alpha() * (target - _target); |
|
_error += get_filt_E_alpha() * ((_target - measurement) - _error); |
|
|
|
// calculate and filter derivative |
|
if (_dt > 0.0f) { |
|
float derivative = (_error - error_last) / _dt; |
|
_derivative += get_filt_D_alpha() * (derivative - _derivative); |
|
} |
|
} |
|
|
|
// update I term |
|
update_i(limit); |
|
|
|
float P_out = (_error * _kp); |
|
float D_out = (_derivative * _kd); |
|
|
|
_pid_info.target = _target; |
|
_pid_info.actual = measurement; |
|
_pid_info.error = _error; |
|
_pid_info.P = P_out; |
|
_pid_info.D = D_out; |
|
|
|
return P_out + _integrator + D_out; |
|
} |
|
|
|
// update_error - set error input to PID controller and calculate outputs |
|
// target is set to zero and error is set and filtered |
|
// the derivative then is calculated and filtered |
|
// the integral is then updated based on the setting of the limit flag |
|
// Target and Measured must be set manually for logging purposes. |
|
// todo: remove function when it is no longer used. |
|
float AC_PID::update_error(float error, bool limit) |
|
{ |
|
// don't process inf or NaN |
|
if (!isfinite(error)) { |
|
return 0.0f; |
|
} |
|
|
|
_target = 0.0f; |
|
|
|
// reset input filter to value received |
|
if (_flags._reset_filter) { |
|
_flags._reset_filter = false; |
|
_error = error; |
|
_derivative = 0.0f; |
|
} else { |
|
float error_last = _error; |
|
_error += get_filt_E_alpha() * (error - _error); |
|
|
|
// calculate and filter derivative |
|
if (_dt > 0.0f) { |
|
float derivative = (_error - error_last) / _dt; |
|
_derivative += get_filt_D_alpha() * (derivative - _derivative); |
|
} |
|
} |
|
|
|
// update I term |
|
update_i(limit); |
|
|
|
float P_out = (_error * _kp); |
|
float D_out = (_derivative * _kd); |
|
|
|
_pid_info.target = 0.0f; |
|
_pid_info.actual = 0.0f; |
|
_pid_info.error = _error; |
|
_pid_info.P = P_out; |
|
_pid_info.D = D_out; |
|
|
|
return P_out + _integrator + D_out; |
|
} |
|
|
|
// update_i - update the integral |
|
// If the limit flag is set the integral is only allowed to shrink |
|
void AC_PID::update_i(bool limit) |
|
{ |
|
if (!is_zero(_ki) && is_positive(_dt)) { |
|
// Ensure that integrator can only be reduced if the output is saturated |
|
if (!limit || ((is_positive(_integrator) && is_negative(_error)) || (is_negative(_integrator) && is_positive(_error)))) { |
|
_integrator += ((float)_error * _ki) * _dt; |
|
_integrator = constrain_float(_integrator, -_kimax, _kimax); |
|
} |
|
} else { |
|
_integrator = 0.0f; |
|
} |
|
_pid_info.I = _integrator; |
|
} |
|
|
|
float AC_PID::get_p() const |
|
{ |
|
return _error * _kp; |
|
} |
|
|
|
float AC_PID::get_i() const |
|
{ |
|
return _integrator; |
|
} |
|
|
|
float AC_PID::get_d() const |
|
{ |
|
return _kd * _derivative; |
|
} |
|
|
|
float AC_PID::get_ff() |
|
{ |
|
_pid_info.FF = _target * _kff; |
|
return _target * _kff; |
|
} |
|
|
|
// todo: remove function when it is no longer used. |
|
float AC_PID::get_ff(float target) |
|
{ |
|
float FF_out = (target * _kff); |
|
_pid_info.FF = FF_out; |
|
return FF_out; |
|
} |
|
|
|
void AC_PID::reset_I() |
|
{ |
|
_integrator = 0; |
|
} |
|
|
|
void AC_PID::load_gains() |
|
{ |
|
_kp.load(); |
|
_ki.load(); |
|
_kd.load(); |
|
_kff.load(); |
|
_kimax.load(); |
|
_kimax = fabsf(_kimax); |
|
_filt_T_hz.load(); |
|
_filt_E_hz.load(); |
|
_filt_D_hz.load(); |
|
} |
|
|
|
// save_gains - save gains to eeprom |
|
void AC_PID::save_gains() |
|
{ |
|
_kp.save(); |
|
_ki.save(); |
|
_kd.save(); |
|
_kff.save(); |
|
_kimax.save(); |
|
_filt_T_hz.save(); |
|
_filt_E_hz.save(); |
|
_filt_D_hz.save(); |
|
} |
|
|
|
/// Overload the function call operator to permit easy initialisation |
|
void AC_PID::operator()(float p_val, float i_val, float d_val, float ff_val, float imax_val, float input_filt_T_hz, float input_filt_E_hz, float input_filt_D_hz, float dt) |
|
{ |
|
_kp = p_val; |
|
_ki = i_val; |
|
_kd = d_val; |
|
_kff = ff_val; |
|
_kimax = fabsf(imax_val); |
|
_filt_T_hz = input_filt_T_hz; |
|
_filt_E_hz = input_filt_E_hz; |
|
_filt_D_hz = input_filt_D_hz; |
|
_dt = dt; |
|
} |
|
|
|
// get_filt_T_alpha - get the target filter alpha |
|
float AC_PID::get_filt_T_alpha() const |
|
{ |
|
return get_filt_alpha(_filt_T_hz); |
|
} |
|
|
|
// get_filt_E_alpha - get the error filter alpha |
|
float AC_PID::get_filt_E_alpha() const |
|
{ |
|
return get_filt_alpha(_filt_E_hz); |
|
} |
|
|
|
// get_filt_D_alpha - get the derivative filter alpha |
|
float AC_PID::get_filt_D_alpha() const |
|
{ |
|
return get_filt_alpha(_filt_D_hz); |
|
} |
|
|
|
// get_filt_alpha - calculate a filter alpha |
|
float AC_PID::get_filt_alpha(float filt_hz) const |
|
{ |
|
if (is_zero(filt_hz)) { |
|
return 1.0f; |
|
} |
|
|
|
// calculate alpha |
|
float rc = 1 / (M_2PI * filt_hz); |
|
return _dt / (_dt + rc); |
|
} |
|
|
|
void AC_PID::set_integrator(float target, float measurement, float i) |
|
{ |
|
set_integrator(target - measurement, i); |
|
} |
|
|
|
void AC_PID::set_integrator(float error, float i) |
|
{ |
|
_integrator = constrain_float(i - error * _kp, -_kimax, _kimax); |
|
_pid_info.I = _integrator; |
|
} |
|
|
|
void AC_PID::set_integrator(float i) |
|
{ |
|
_integrator = constrain_float(i, -_kimax, _kimax); |
|
_pid_info.I = _integrator; |
|
}
|
|
|