You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2311 lines
77 KiB
2311 lines
77 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
#define THISFIRMWARE "ArduCopter V2.9-rc2" |
|
/* |
|
* ArduCopter Version 2.9 |
|
* Lead author: Jason Short |
|
* Based on code and ideas from the Arducopter team: Randy Mackay, Pat Hickey, Jose Julio, Jani Hirvinen, Andrew Tridgell, Justin Beech, Adam Rivera, Jean-Louis Naudin, Roberto Navoni |
|
* Thanks to: Chris Anderson, Mike Smith, Jordi Munoz, Doug Weibel, James Goppert, Benjamin Pelletier, Robert Lefebvre, Marco Robustini |
|
* |
|
* This firmware is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* Special Thanks for Contributors: |
|
* |
|
* Hein Hollander :Octo Support |
|
* Dani Saez :V Ocoto Support |
|
* Max Levine :Tri Support, Graphics |
|
* Jose Julio :Stabilization Control laws |
|
* Randy MacKay :Heli Support |
|
* Jani Hiriven :Testing feedback |
|
* Andrew Tridgell :Mavlink Support |
|
* James Goppert :Mavlink Support |
|
* Doug Weibel :Libraries |
|
* Mike Smith :Libraries, Coding support |
|
* HappyKillmore :Mavlink GCS |
|
* Michael Oborne :Mavlink GCS |
|
* Jack Dunkle :Alpha testing |
|
* Christof Schmid :Alpha testing |
|
* Oliver :Piezo support |
|
* Guntars :Arming safety suggestion |
|
* Igor van Airde :Control Law optimization |
|
* Jean-Louis Naudin :Auto Landing |
|
* Sandro Benigno :Camera support |
|
* Olivier Adler :PPM Encoder |
|
* John Arne Birkeland :PPM Encoder |
|
* Adam M Rivera :Auto Compass Declination |
|
* Marco Robustini :Alpha testing |
|
* Angel Fernandez :Alpha testing |
|
* Robert Lefebvre :Heli Support & LEDs |
|
* Amilcar Lucas :mount and camera configuration |
|
* Gregory Fletcher :mount orientation math |
|
* Leonard Hall :Flight Dynamics |
|
* |
|
* And much more so PLEASE PM me on DIYDRONES to add your contribution to the List |
|
* |
|
* Requires modified "mrelax" version of Arduino, which can be found here: |
|
* http://code.google.com/p/ardupilot-mega/downloads/list |
|
* |
|
*/ |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Header includes |
|
//////////////////////////////////////////////////////////////////////////////// |
|
|
|
#include <math.h> |
|
#include <stdio.h> |
|
#include <stdarg.h> |
|
|
|
// Common dependencies |
|
#include <AP_Common.h> |
|
#include <AP_Progmem.h> |
|
#include <AP_Menu.h> |
|
#include <AP_Param.h> |
|
// AP_HAL |
|
#include <AP_HAL.h> |
|
#include <AP_HAL_AVR.h> |
|
#include <AP_HAL_AVR_SITL.h> |
|
#include <AP_HAL_SMACCM.h> |
|
#include <AP_HAL_PX4.h> |
|
#include <AP_HAL_Empty.h> |
|
|
|
// Application dependencies |
|
#include <GCS_MAVLink.h> // MAVLink GCS definitions |
|
#include <AP_GPS.h> // ArduPilot GPS library |
|
#include <DataFlash.h> // ArduPilot Mega Flash Memory Library |
|
#include <AP_ADC.h> // ArduPilot Mega Analog to Digital Converter Library |
|
#include <AP_ADC_AnalogSource.h> |
|
#include <AP_Baro.h> |
|
#include <AP_Compass.h> // ArduPilot Mega Magnetometer Library |
|
#include <AP_Math.h> // ArduPilot Mega Vector/Matrix math Library |
|
#include <AP_Curve.h> // Curve used to linearlise throttle pwm to thrust |
|
#include <AP_InertialSensor.h> // ArduPilot Mega Inertial Sensor (accel & gyro) Library |
|
#include <AP_AHRS.h> |
|
#include <APM_PI.h> // PI library |
|
#include <AC_PID.h> // PID library |
|
#include <RC_Channel.h> // RC Channel Library |
|
#include <AP_Motors.h> // AP Motors library |
|
#include <AP_RangeFinder.h> // Range finder library |
|
#include <AP_OpticalFlow.h> // Optical Flow library |
|
#include <Filter.h> // Filter library |
|
#include <AP_Buffer.h> // APM FIFO Buffer |
|
#include <AP_LeadFilter.h> // GPS Lead filter |
|
#include <AP_Relay.h> // APM relay |
|
#include <AP_Camera.h> // Photo or video camera |
|
#include <AP_Mount.h> // Camera/Antenna mount |
|
#include <AP_Airspeed.h> // needed for AHRS build |
|
#include <AP_InertialNav.h> // ArduPilot Mega inertial navigation library |
|
#include <AP_Declination.h> // ArduPilot Mega Declination Helper Library |
|
#include <AP_Limits.h> |
|
#include <memcheck.h> // memory limit checker |
|
#include <SITL.h> // software in the loop support |
|
#include <AP_Scheduler.h> // main loop scheduler |
|
|
|
// AP_HAL to Arduino compatibility layer |
|
#include "compat.h" |
|
// Configuration |
|
#include "defines.h" |
|
#include "config.h" |
|
#include "config_channels.h" |
|
|
|
// Local modules |
|
#include "Parameters.h" |
|
#include "GCS.h" |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// cliSerial |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// cliSerial isn't strictly necessary - it is an alias for hal.console. It may |
|
// be deprecated in favor of hal.console in later releases. |
|
AP_HAL::BetterStream* cliSerial; |
|
|
|
// N.B. we need to keep a static declaration which isn't guarded by macros |
|
// at the top to cooperate with the prototype mangler. |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// AP_HAL instance |
|
//////////////////////////////////////////////////////////////////////////////// |
|
|
|
const AP_HAL::HAL& hal = AP_HAL_BOARD_DRIVER; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Parameters |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// Global parameters are all contained within the 'g' class. |
|
// |
|
static Parameters g; |
|
|
|
// main loop scheduler |
|
AP_Scheduler scheduler; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// prototypes |
|
//////////////////////////////////////////////////////////////////////////////// |
|
static void update_events(void); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Dataflash |
|
//////////////////////////////////////////////////////////////////////////////// |
|
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2 |
|
DataFlash_APM2 DataFlash; |
|
#elif CONFIG_HAL_BOARD == HAL_BOARD_APM1 |
|
DataFlash_APM1 DataFlash; |
|
#elif CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL |
|
DataFlash_SITL DataFlash; |
|
#else |
|
DataFlash_Empty DataFlash; |
|
#endif |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// the rate we run the main loop at |
|
//////////////////////////////////////////////////////////////////////////////// |
|
static const AP_InertialSensor::Sample_rate ins_sample_rate = AP_InertialSensor::RATE_200HZ; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Sensors |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// There are three basic options related to flight sensor selection. |
|
// |
|
// - Normal flight mode. Real sensors are used. |
|
// - HIL Attitude mode. Most sensors are disabled, as the HIL |
|
// protocol supplies attitude information directly. |
|
// - HIL Sensors mode. Synthetic sensors are configured that |
|
// supply data from the simulation. |
|
// |
|
|
|
// All GPS access should be through this pointer. |
|
static GPS *g_gps; |
|
|
|
// flight modes convenience array |
|
static AP_Int8 *flight_modes = &g.flight_mode1; |
|
|
|
#if HIL_MODE == HIL_MODE_DISABLED |
|
|
|
#if CONFIG_ADC == ENABLED |
|
AP_ADC_ADS7844 adc; |
|
#endif |
|
|
|
#if CONFIG_IMU_TYPE == CONFIG_IMU_MPU6000 |
|
AP_InertialSensor_MPU6000 ins; |
|
#elif CONFIG_IMU_TYPE == CONFIG_IMU_OILPAN |
|
AP_InertialSensor_Oilpan ins(&adc); |
|
#elif CONFIG_IMU_TYPE == CONFIG_IMU_SITL |
|
AP_InertialSensor_Stub ins; |
|
#elif CONFIG_IMU_TYPE == CONFIG_IMU_PX4 |
|
AP_InertialSensor_PX4 ins; |
|
#endif |
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL |
|
// When building for SITL we use the HIL barometer and compass drivers |
|
AP_Baro_BMP085_HIL barometer; |
|
AP_Compass_HIL compass; |
|
SITL sitl; |
|
#else |
|
// Otherwise, instantiate a real barometer and compass driver |
|
#if CONFIG_BARO == AP_BARO_BMP085 |
|
AP_Baro_BMP085 barometer; |
|
#elif CONFIG_BARO == AP_BARO_PX4 |
|
AP_Baro_PX4 barometer; |
|
#elif CONFIG_BARO == AP_BARO_MS5611 |
|
#if CONFIG_MS5611_SERIAL == AP_BARO_MS5611_SPI |
|
AP_Baro_MS5611 barometer(&AP_Baro_MS5611::spi); |
|
#elif CONFIG_MS5611_SERIAL == AP_BARO_MS5611_I2C |
|
AP_Baro_MS5611 barometer(&AP_Baro_MS5611::i2c); |
|
#else |
|
#error Unrecognized CONFIG_MS5611_SERIAL setting. |
|
#endif |
|
#endif |
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 |
|
AP_Compass_PX4 compass; |
|
#else |
|
AP_Compass_HMC5843 compass; |
|
#endif |
|
#endif |
|
|
|
#if OPTFLOW == ENABLED |
|
AP_OpticalFlow_ADNS3080 optflow; |
|
#else |
|
AP_OpticalFlow optflow; |
|
#endif |
|
|
|
// real GPS selection |
|
#if GPS_PROTOCOL == GPS_PROTOCOL_AUTO |
|
AP_GPS_Auto g_gps_driver(&g_gps); |
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_NMEA |
|
AP_GPS_NMEA g_gps_driver(); |
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_SIRF |
|
AP_GPS_SIRF g_gps_driver(); |
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_UBLOX |
|
AP_GPS_UBLOX g_gps_driver(); |
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK |
|
AP_GPS_MTK g_gps_driver(); |
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK19 |
|
AP_GPS_MTK19 g_gps_driver(); |
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_NONE |
|
AP_GPS_None g_gps_driver(); |
|
|
|
#else |
|
#error Unrecognised GPS_PROTOCOL setting. |
|
#endif // GPS PROTOCOL |
|
|
|
#if DMP_ENABLED == ENABLED && CONFIG_HAL_BOARD == HAL_BOARD_APM2 |
|
AP_AHRS_MPU6000 ahrs(&ins, g_gps); // only works with APM2 |
|
#else |
|
AP_AHRS_DCM ahrs(&ins, g_gps); |
|
#endif |
|
|
|
// ahrs2 object is the secondary ahrs to allow running DMP in parallel with DCM |
|
#if SECONDARY_DMP_ENABLED == ENABLED && CONFIG_HAL_BOARD == HAL_BOARD_APM2 |
|
AP_AHRS_MPU6000 ahrs2(&ins, g_gps); // only works with APM2 |
|
#endif |
|
|
|
#elif HIL_MODE == HIL_MODE_SENSORS |
|
// sensor emulators |
|
AP_ADC_HIL adc; |
|
AP_Baro_BMP085_HIL barometer; |
|
AP_Compass_HIL compass; |
|
AP_GPS_HIL g_gps_driver; |
|
AP_InertialSensor_Stub ins; |
|
AP_AHRS_DCM ahrs(&ins, g_gps); |
|
|
|
|
|
static int32_t gps_base_alt; |
|
|
|
#elif HIL_MODE == HIL_MODE_ATTITUDE |
|
AP_ADC_HIL adc; |
|
AP_InertialSensor_Stub ins; |
|
AP_AHRS_HIL ahrs(&ins, g_gps); |
|
AP_GPS_HIL g_gps_driver; |
|
AP_Compass_HIL compass; // never used |
|
AP_Baro_BMP085_HIL barometer; |
|
|
|
#if OPTFLOW == ENABLED |
|
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2 |
|
AP_OpticalFlow_ADNS3080 optflow; |
|
#else |
|
AP_OpticalFlow_ADNS3080 optflow; |
|
#endif // CONFIG_HAL_BOARD == HAL_BOARD_APM2 |
|
#endif // OPTFLOW == ENABLED |
|
|
|
static int32_t gps_base_alt; |
|
#else |
|
#error Unrecognised HIL_MODE setting. |
|
#endif // HIL MODE |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// GCS selection |
|
//////////////////////////////////////////////////////////////////////////////// |
|
GCS_MAVLINK gcs0; |
|
GCS_MAVLINK gcs3; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// SONAR selection |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// |
|
|
|
#if CONFIG_SONAR == ENABLED |
|
ModeFilterInt16_Size5 sonar_mode_filter(2); |
|
AP_HAL::AnalogSource *sonar_analog_source; |
|
AP_RangeFinder_MaxsonarXL *sonar; |
|
#endif |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// User variables |
|
//////////////////////////////////////////////////////////////////////////////// |
|
#ifdef USERHOOK_VARIABLES |
|
#include USERHOOK_VARIABLES |
|
#endif |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Global variables |
|
//////////////////////////////////////////////////////////////////////////////// |
|
|
|
/* Radio values |
|
* Channel assignments |
|
* 1 Ailerons (rudder if no ailerons) |
|
* 2 Elevator |
|
* 3 Throttle |
|
* 4 Rudder (if we have ailerons) |
|
* 5 Mode - 3 position switch |
|
* 6 User assignable |
|
* 7 trainer switch - sets throttle nominal (toggle switch), sets accels to Level (hold > 1 second) |
|
* 8 TBD |
|
* Each Aux channel can be configured to have any of the available auxiliary functions assigned to it. |
|
* See libraries/RC_Channel/RC_Channel_aux.h for more information |
|
*/ |
|
|
|
//Documentation of GLobals: |
|
static union { |
|
struct { |
|
uint8_t home_is_set : 1; // 1 |
|
uint8_t simple_mode : 1; // 2 // This is the state of simple mode |
|
uint8_t manual_attitude : 1; // 3 |
|
uint8_t manual_throttle : 1; // 4 |
|
|
|
uint8_t low_battery : 1; // 5 // Used to track if the battery is low - LED output flashes when the batt is low |
|
uint8_t loiter_override : 1; // 6 // Are we navigating while holding a positon? This is set to false once the speed drops below 1m/s |
|
uint8_t armed : 1; // 7 |
|
uint8_t auto_armed : 1; // 8 |
|
|
|
uint8_t failsafe : 1; // 9 // A status flag for the failsafe state |
|
uint8_t do_flip : 1; // 10 // Used to enable flip code |
|
uint8_t takeoff_complete : 1; // 11 |
|
uint8_t land_complete : 1; // 12 |
|
uint8_t compass_status : 1; // 13 |
|
uint8_t gps_status : 1; // 14 |
|
uint8_t fast_corner : 1; // 15 // should we take the waypoint quickly or slow down? |
|
}; |
|
uint16_t value; |
|
} ap; |
|
|
|
|
|
static struct AP_System{ |
|
uint8_t GPS_light : 1; // 1 // Solid indicates we have full 3D lock and can navigate, flash = read |
|
uint8_t motor_light : 1; // 2 // Solid indicates Armed state |
|
uint8_t new_radio_frame : 1; // 3 // Set true if we have new PWM data to act on from the Radio |
|
uint8_t nav_ok : 1; // 4 // deprecated |
|
uint8_t CH7_flag : 1; // 5 // manages state of the ch7 toggle switch |
|
uint8_t usb_connected : 1; // 6 // true if APM is powered from USB connection |
|
uint8_t alt_sensor_flag : 1; // 7 // used to track when to read sensors vs estimate alt |
|
uint8_t yaw_stopped : 1; // 8 // Used to manage the Yaw hold capabilities |
|
|
|
} ap_system; |
|
|
|
/* |
|
what navigation updated are needed |
|
*/ |
|
static struct nav_updates { |
|
uint8_t need_velpos : 1; |
|
uint8_t need_dist_bearing : 1; |
|
uint8_t need_nav_controllers : 1; |
|
uint8_t need_nav_pitch_roll : 1; |
|
} nav_updates; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// velocity in lon and lat directions calculated from GPS position and accelerometer data |
|
// updated after GPS read - 5-10hz |
|
static int16_t lon_speed; // expressed in cm/s. positive numbers mean moving east |
|
static int16_t lat_speed; // expressed in cm/s. positive numbers when moving north |
|
|
|
// The difference between the desired rate of travel and the actual rate of travel |
|
// updated after GPS read - 5-10hz |
|
static int16_t x_rate_error; |
|
static int16_t y_rate_error; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Radio |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// This is the state of the flight control system |
|
// There are multiple states defined such as STABILIZE, ACRO, |
|
static int8_t control_mode = STABILIZE; |
|
// Used to maintain the state of the previous control switch position |
|
// This is set to -1 when we need to re-read the switch |
|
static uint8_t oldSwitchPosition; |
|
|
|
// receiver RSSI |
|
static uint8_t receiver_rssi; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Motor Output |
|
//////////////////////////////////////////////////////////////////////////////// |
|
#if FRAME_CONFIG == QUAD_FRAME |
|
#define MOTOR_CLASS AP_MotorsQuad |
|
#endif |
|
#if FRAME_CONFIG == TRI_FRAME |
|
#define MOTOR_CLASS AP_MotorsTri |
|
#endif |
|
#if FRAME_CONFIG == HEXA_FRAME |
|
#define MOTOR_CLASS AP_MotorsHexa |
|
#endif |
|
#if FRAME_CONFIG == Y6_FRAME |
|
#define MOTOR_CLASS AP_MotorsY6 |
|
#endif |
|
#if FRAME_CONFIG == OCTA_FRAME |
|
#define MOTOR_CLASS AP_MotorsOcta |
|
#endif |
|
#if FRAME_CONFIG == OCTA_QUAD_FRAME |
|
#define MOTOR_CLASS AP_MotorsOctaQuad |
|
#endif |
|
#if FRAME_CONFIG == HELI_FRAME |
|
#define MOTOR_CLASS AP_MotorsHeli |
|
#endif |
|
|
|
#if FRAME_CONFIG == HELI_FRAME // helicopter constructor requires more arguments |
|
MOTOR_CLASS motors(&g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4, &g.rc_8, &g.heli_servo_1, &g.heli_servo_2, &g.heli_servo_3, &g.heli_servo_4); |
|
#elif FRAME_CONFIG == TRI_FRAME // tri constructor requires additional rc_7 argument to allow tail servo reversing |
|
MOTOR_CLASS motors(&g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4, &g.rc_7); |
|
#else |
|
MOTOR_CLASS motors(&g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4); |
|
#endif |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// PIDs |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// This is a convienience accessor for the IMU roll rates. It's currently the raw IMU rates |
|
// and not the adjusted omega rates, but the name is stuck |
|
static Vector3f omega; |
|
// This is used to hold radio tuning values for in-flight CH6 tuning |
|
float tuning_value; |
|
// used to limit the rate that the pid controller output is logged so that it doesn't negatively affect performance |
|
static uint8_t pid_log_counter; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// LED output |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// This is current status for the LED lights state machine |
|
// setting this value changes the output of the LEDs |
|
static uint8_t led_mode = NORMAL_LEDS; |
|
// Blinking indicates GPS status |
|
static uint8_t copter_leds_GPS_blink; |
|
// Blinking indicates battery status |
|
static uint8_t copter_leds_motor_blink; |
|
// Navigation confirmation blinks |
|
static int8_t copter_leds_nav_blink; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// GPS variables |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// This is used to scale GPS values for EEPROM storage |
|
// 10^7 times Decimal GPS means 1 == 1cm |
|
// This approximation makes calculations integer and it's easy to read |
|
static const float t7 = 10000000.0; |
|
// We use atan2 and other trig techniques to calaculate angles |
|
// We need to scale the longitude up to make these calcs work |
|
// to account for decreasing distance between lines of longitude away from the equator |
|
static float scaleLongUp = 1; |
|
// Sometimes we need to remove the scaling for distance calcs |
|
static float scaleLongDown = 1; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Mavlink specific |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Used by Mavlink for unknow reasons |
|
static const float radius_of_earth = 6378100; // meters |
|
|
|
// Unions for getting byte values |
|
union float_int { |
|
int32_t int_value; |
|
float float_value; |
|
} float_int; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Location & Navigation |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// This is the angle from the copter to the "next_WP" location in degrees * 100 |
|
static int32_t wp_bearing; |
|
// Status of the Waypoint tracking mode. Options include: |
|
// NO_NAV_MODE, WP_MODE, LOITER_MODE, CIRCLE_MODE |
|
static uint8_t wp_control; |
|
// Register containing the index of the current navigation command in the mission script |
|
static int16_t command_nav_index; |
|
// Register containing the index of the previous navigation command in the mission script |
|
// Used to manage the execution of conditional commands |
|
static uint8_t prev_nav_index; |
|
// Register containing the index of the current conditional command in the mission script |
|
static uint8_t command_cond_index; |
|
// Used to track the required WP navigation information |
|
// options include |
|
// NAV_ALTITUDE - have we reached the desired altitude? |
|
// NAV_LOCATION - have we reached the desired location? |
|
// NAV_DELAY - have we waited at the waypoint the desired time? |
|
static uint8_t wp_verify_byte; // used for tracking state of navigating waypoints |
|
// used to limit the speed ramp up of WP navigation |
|
// Acceleration is limited to 1m/s/s |
|
static int16_t max_speed_old; |
|
// Used to track how many cm we are from the "next_WP" location |
|
static int32_t long_error, lat_error; |
|
static int16_t control_roll; |
|
static int16_t control_pitch; |
|
static uint8_t rtl_state; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Orientation |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Convienience accessors for commonly used trig functions. These values are generated |
|
// by the DCM through a few simple equations. They are used throughout the code where cos and sin |
|
// would normally be used. |
|
// The cos values are defaulted to 1 to get a decent initial value for a level state |
|
static float cos_roll_x = 1; |
|
static float cos_pitch_x = 1; |
|
static float cos_yaw_x = 1; |
|
static float sin_yaw_y; |
|
static float sin_roll; |
|
static float sin_pitch; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// SIMPLE Mode |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Used to track the orientation of the copter for Simple mode. This value is reset at each arming |
|
// or in SuperSimple mode when the copter leaves a 20m radius from home. |
|
static int32_t initial_simple_bearing; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Rate contoller targets |
|
//////////////////////////////////////////////////////////////////////////////// |
|
static uint8_t rate_targets_frame = EARTH_FRAME; // indicates whether rate targets provided in earth or body frame |
|
static int32_t roll_rate_target_ef = 0; |
|
static int32_t pitch_rate_target_ef = 0; |
|
static int32_t yaw_rate_target_ef = 0; |
|
static int32_t roll_rate_target_bf = 0; // body frame roll rate target |
|
static int32_t pitch_rate_target_bf = 0; // body frame pitch rate target |
|
static int32_t yaw_rate_target_bf = 0; // body frame yaw rate target |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Throttle variables |
|
//////////////////////////////////////////////////////////////////////////////// |
|
static int16_t throttle_accel_target_ef; // earth frame throttle acceleration target |
|
static bool throttle_accel_controller_active; // true when accel based throttle controller is active, false when higher level throttle controllers are providing throttle output directly |
|
static float throttle_avg; // g.throttle_cruise as a float |
|
static int16_t desired_climb_rate; // pilot desired climb rate - for logging purposes only |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// ACRO Mode |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Used to control Axis lock |
|
int32_t roll_axis; |
|
int32_t pitch_axis; |
|
|
|
// Filters |
|
AP_LeadFilter xLeadFilter; // Long GPS lag filter |
|
AP_LeadFilter yLeadFilter; // Lat GPS lag filter |
|
#if FRAME_CONFIG == HELI_FRAME |
|
LowPassFilterFloat rate_roll_filter; // Rate Roll filter |
|
LowPassFilterFloat rate_pitch_filter; // Rate Pitch filter |
|
// LowPassFilterFloat rate_yaw_filter; // Rate Yaw filter |
|
#endif // HELI_FRAME |
|
|
|
// Barometer filter |
|
AverageFilterInt32_Size5 baro_filter; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Circle Mode / Loiter control |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// used to determin the desired location in Circle mode |
|
// increments at circle_rate / second |
|
static float circle_angle; |
|
// used to control the speed of Circle mode |
|
// units are in radians, default is 5° per second |
|
static const float circle_rate = 0.0872664625; |
|
// used to track the delat in Circle Mode |
|
static int32_t old_wp_bearing; |
|
// deg : how many times to circle * 360 for Loiter/Circle Mission command |
|
static int16_t loiter_total; |
|
// deg : how far we have turned around a waypoint |
|
static int16_t loiter_sum; |
|
// How long we should stay in Loiter Mode for mission scripting |
|
static uint16_t loiter_time_max; |
|
// How long have we been loitering - The start time in millis |
|
static uint32_t loiter_time; |
|
// The synthetic location created to make the copter do circles around a WP |
|
static struct Location circle_WP; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// CH7 control |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// This register tracks the current Mission Command index when writing |
|
// a mission using CH7 in flight |
|
static int8_t CH7_wp_index; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Battery Sensors |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Battery Voltage of battery, initialized above threshold for filter |
|
static float battery_voltage1 = LOW_VOLTAGE * 1.05; |
|
// refers to the instant amp draw – based on an Attopilot Current sensor |
|
static float current_amps1; |
|
// refers to the total amps drawn – based on an Attopilot Current sensor |
|
static float current_total1; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Altitude |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// The cm we are off in altitude from next_WP.alt – Positive value means we are below the WP |
|
static int32_t altitude_error; |
|
// The cm/s we are moving up or down based on sensor data - Positive = UP |
|
static int16_t climb_rate_actual; |
|
// Used to dither our climb_rate over 50hz |
|
static int16_t climb_rate_error; |
|
// The cm/s we are moving up or down based on filtered data - Positive = UP |
|
static int16_t climb_rate; |
|
// The altitude as reported by Sonar in cm – Values are 20 to 700 generally. |
|
static int16_t sonar_alt; |
|
static bool sonar_alt_ok; // true if we can trust the altitude from the sonar |
|
// The climb_rate as reported by sonar in cm/s |
|
static int16_t sonar_rate; |
|
// The altitude as reported by Baro in cm – Values can be quite high |
|
static int32_t baro_alt; |
|
// The climb_rate as reported by Baro in cm/s |
|
static int16_t baro_rate; |
|
|
|
static int16_t saved_toy_throttle; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// flight modes |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Flight modes are combinations of Roll/Pitch, Yaw and Throttle control modes |
|
// Each Flight mode is a unique combination of these modes |
|
// |
|
// The current desired control scheme for Yaw |
|
static uint8_t yaw_mode; |
|
// The current desired control scheme for roll and pitch / navigation |
|
static uint8_t roll_pitch_mode; |
|
// The current desired control scheme for altitude hold |
|
static uint8_t throttle_mode; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// flight specific |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// An additional throttle added to keep the copter at the same altitude when banking |
|
static int16_t angle_boost; |
|
// counter to verify landings |
|
static uint16_t land_detector; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Navigation general |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// The location of home in relation to the copter, updated every GPS read |
|
static int32_t home_bearing; |
|
// distance between plane and home in cm |
|
static int32_t home_distance; |
|
// distance between plane and next_WP in cm |
|
// is not static because AP_Camera uses it |
|
int32_t wp_distance; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// 3D Location vectors |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// home location is stored when we have a good GPS lock and arm the copter |
|
// Can be reset each the copter is re-armed |
|
static struct Location home; |
|
// Current location of the copter |
|
static struct Location current_loc; |
|
// Next WP is the desired location of the copter - the next waypoint or loiter location |
|
static struct Location next_WP; |
|
// Prev WP is used to get the optimum path from one WP to the next |
|
static struct Location prev_WP; |
|
// Holds the current loaded command from the EEPROM for navigation |
|
static struct Location command_nav_queue; |
|
// Holds the current loaded command from the EEPROM for conditional scripts |
|
static struct Location command_cond_queue; |
|
// Holds the current loaded command from the EEPROM for guided mode |
|
static struct Location guided_WP; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Crosstrack |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// deg * 100, The original angle to the next_WP when the next_WP was set |
|
// Also used to check when we pass a WP |
|
static int32_t original_wp_bearing; |
|
// The amount of angle correction applied to wp_bearing to bring the copter back on its optimum path |
|
static int16_t crosstrack_error; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Navigation Roll/Pitch functions |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// all angles are deg * 100 : target yaw angle |
|
// The Commanded ROll from the autopilot. |
|
static int32_t nav_roll; |
|
// The Commanded pitch from the autopilot. negative Pitch means go forward. |
|
static int32_t nav_pitch; |
|
// The desired bank towards North (Positive) or South (Negative) |
|
static int32_t auto_roll; |
|
static int32_t auto_pitch; |
|
|
|
// Don't be fooled by the fact that Pitch is reversed from Roll in its sign! |
|
static int16_t nav_lat; |
|
// The desired bank towards East (Positive) or West (Negative) |
|
static int16_t nav_lon; |
|
// The Commanded ROll from the autopilot based on optical flow sensor. |
|
static int32_t of_roll; |
|
// The Commanded pitch from the autopilot based on optical flow sensor. negative Pitch means go forward. |
|
static int32_t of_pitch; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Navigation Throttle control |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// The Commanded Throttle from the autopilot. |
|
static int16_t nav_throttle; // 0-1000 for throttle control |
|
// This is a simple counter to track the amount of throttle used during flight |
|
// This could be useful later in determining and debuging current usage and predicting battery life |
|
static uint32_t throttle_integrator; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Climb rate control |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Time when we intiated command in millis - used for controlling decent rate |
|
// Used to track the altitude offset for climbrate control |
|
static int8_t alt_change_flag; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Navigation Yaw control |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// The Commanded Yaw from the autopilot. |
|
static int32_t nav_yaw; |
|
static uint8_t yaw_timer; |
|
// Yaw will point at this location if yaw_mode is set to YAW_LOOK_AT_LOCATION |
|
static struct Location yaw_look_at_WP; |
|
// bearing from current location to the yaw_look_at_WP |
|
static int32_t yaw_look_at_WP_bearing; |
|
// yaw used for YAW_LOOK_AT_HEADING yaw_mode |
|
static int32_t yaw_look_at_heading; |
|
// Deg/s we should turn |
|
static int16_t yaw_look_at_heading_slew; |
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Repeat Mission Scripting Command |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// The type of repeating event - Toggle a servo channel, Toggle the APM1 relay, etc |
|
static uint8_t event_id; |
|
// Used to manage the timimng of repeating events |
|
static uint32_t event_timer; |
|
// How long to delay the next firing of event in millis |
|
static uint16_t event_delay; |
|
// how many times to fire : 0 = forever, 1 = do once, 2 = do twice |
|
static int16_t event_repeat; |
|
// per command value, such as PWM for servos |
|
static int16_t event_value; |
|
// the stored value used to undo commands - such as original PWM command |
|
static int16_t event_undo_value; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Delay Mission Scripting Command |
|
//////////////////////////////////////////////////////////////////////////////// |
|
static int32_t condition_value; // used in condition commands (eg delay, change alt, etc.) |
|
static uint32_t condition_start; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// IMU variables |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Integration time for the gyros (DCM algorithm) |
|
// Updated with the fast loop |
|
static float G_Dt = 0.02; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Inertial Navigation |
|
//////////////////////////////////////////////////////////////////////////////// |
|
#if INERTIAL_NAV_XY == ENABLED || INERTIAL_NAV_Z == ENABLED |
|
AP_InertialNav inertial_nav(&ahrs, &ins, &barometer, &g_gps); |
|
#endif |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Performance monitoring |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// The number of GPS fixes we have had |
|
static uint8_t gps_fix_count; |
|
|
|
// System Timers |
|
// -------------- |
|
// Time in microseconds of main control loop |
|
static uint32_t fast_loopTimer; |
|
// Counters for branching from 10 hz control loop |
|
static uint8_t medium_loopCounter; |
|
// Counters for branching from 3 1/3hz control loop |
|
static uint8_t slow_loopCounter; |
|
// Counter of main loop executions. Used for performance monitoring and failsafe processing |
|
static uint16_t mainLoop_count; |
|
// Delta Time in milliseconds for navigation computations, updated with every good GPS read |
|
static float dTnav; |
|
// Counters for branching from 4 minute control loop used to save Compass offsets |
|
static int16_t superslow_loopCounter; |
|
// Loiter timer - Records how long we have been in loiter |
|
static uint32_t rtl_loiter_start_time; |
|
// disarms the copter while in Acro or Stabilize mode after 30 seconds of no flight |
|
static uint8_t auto_disarming_counter; |
|
// prevents duplicate GPS messages from entering system |
|
static uint32_t last_gps_time; |
|
|
|
// Used to exit the roll and pitch auto trim function |
|
static uint8_t auto_trim_counter; |
|
|
|
// Reference to the relay object (APM1 -> PORTL 2) (APM2 -> PORTB 7) |
|
AP_Relay relay; |
|
|
|
//Reference to the camera object (it uses the relay object inside it) |
|
#if CAMERA == ENABLED |
|
AP_Camera camera(&relay); |
|
#endif |
|
|
|
// a pin for reading the receiver RSSI voltage. The scaling by 0.25 |
|
// is to take the 0 to 1024 range down to an 8 bit range for MAVLink |
|
AP_HAL::AnalogSource* rssi_analog_source; |
|
|
|
|
|
// Input sources for battery voltage, battery current, board vcc |
|
AP_HAL::AnalogSource* batt_volt_analog_source; |
|
AP_HAL::AnalogSource* batt_curr_analog_source; |
|
AP_HAL::AnalogSource* board_vcc_analog_source; |
|
|
|
|
|
#if CLI_ENABLED == ENABLED |
|
static int8_t setup_show (uint8_t argc, const Menu::arg *argv); |
|
#endif |
|
|
|
// Camera/Antenna mount tracking and stabilisation stuff |
|
// -------------------------------------- |
|
#if MOUNT == ENABLED |
|
// current_loc uses the baro/gps soloution for altitude rather than gps only. |
|
// mabe one could use current_loc for lat/lon too and eliminate g_gps alltogether? |
|
AP_Mount camera_mount(¤t_loc, g_gps, &ahrs, 0); |
|
#endif |
|
|
|
#if MOUNT2 == ENABLED |
|
// current_loc uses the baro/gps soloution for altitude rather than gps only. |
|
// mabe one could use current_loc for lat/lon too and eliminate g_gps alltogether? |
|
AP_Mount camera_mount2(¤t_loc, g_gps, &ahrs, 1); |
|
#endif |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Experimental AP_Limits library - set constraints, limits, fences, minima, maxima on various parameters |
|
//////////////////////////////////////////////////////////////////////////////// |
|
#if AP_LIMITS == ENABLED |
|
AP_Limits limits; |
|
AP_Limit_GPSLock gpslock_limit(g_gps); |
|
AP_Limit_Geofence geofence_limit(FENCE_START_BYTE, FENCE_WP_SIZE, MAX_FENCEPOINTS, g_gps, &home, ¤t_loc); |
|
AP_Limit_Altitude altitude_limit(¤t_loc); |
|
#endif |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// function definitions to keep compiler from complaining about undeclared functions |
|
//////////////////////////////////////////////////////////////////////////////// |
|
void get_throttle_althold(int32_t target_alt, int16_t min_climb_rate, int16_t max_climb_rate); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Top-level logic |
|
//////////////////////////////////////////////////////////////////////////////// |
|
|
|
// setup the var_info table |
|
AP_Param param_loader(var_info, WP_START_BYTE); |
|
|
|
/* |
|
scheduler table - all regular tasks apart from the fast_loop() |
|
should be listed here, along with how often they should be called |
|
(in 10ms units) and the maximum time they are expected to take (in |
|
microseconds) |
|
*/ |
|
static const AP_Scheduler::Task scheduler_tasks[] PROGMEM = { |
|
{ update_GPS, 2, 900 }, |
|
{ update_navigation, 2, 500 }, |
|
{ medium_loop, 2, 700 }, |
|
{ update_altitude_est, 2, 1000 }, |
|
{ fifty_hz_loop, 2, 950 }, |
|
{ run_nav_updates, 2, 500 }, |
|
{ slow_loop, 10, 500 }, |
|
{ gcs_check_input, 2, 700 }, |
|
{ gcs_send_heartbeat, 100, 700 }, |
|
{ gcs_data_stream_send, 2, 1500 }, |
|
{ gcs_send_deferred, 2, 1200 }, |
|
{ compass_accumulate, 2, 700 }, |
|
{ barometer_accumulate, 2, 900 }, |
|
{ super_slow_loop, 100, 1100 }, |
|
{ perf_update, 1000, 500 } |
|
}; |
|
|
|
|
|
void setup() { |
|
// this needs to be the first call, as it fills memory with |
|
// sentinel values |
|
memcheck_init(); |
|
cliSerial = hal.console; |
|
|
|
// Load the default values of variables listed in var_info[]s |
|
AP_Param::setup_sketch_defaults(); |
|
|
|
#if CONFIG_SONAR == ENABLED |
|
#if CONFIG_SONAR_SOURCE == SONAR_SOURCE_ADC |
|
sonar_analog_source = new AP_ADC_AnalogSource( |
|
&adc, CONFIG_SONAR_SOURCE_ADC_CHANNEL, 0.25); |
|
#elif CONFIG_SONAR_SOURCE == SONAR_SOURCE_ANALOG_PIN |
|
sonar_analog_source = hal.analogin->channel( |
|
CONFIG_SONAR_SOURCE_ANALOG_PIN); |
|
#else |
|
#warning "Invalid CONFIG_SONAR_SOURCE" |
|
#endif |
|
sonar = new AP_RangeFinder_MaxsonarXL(sonar_analog_source, |
|
&sonar_mode_filter); |
|
#endif |
|
|
|
rssi_analog_source = hal.analogin->channel(g.rssi_pin, 0.25); |
|
batt_volt_analog_source = hal.analogin->channel(g.battery_volt_pin); |
|
batt_curr_analog_source = hal.analogin->channel(g.battery_curr_pin); |
|
board_vcc_analog_source = hal.analogin->channel(ANALOG_INPUT_BOARD_VCC); |
|
|
|
init_ardupilot(); |
|
|
|
// initialise the main loop scheduler |
|
scheduler.init(&scheduler_tasks[0], sizeof(scheduler_tasks)/sizeof(scheduler_tasks[0])); |
|
} |
|
|
|
/* |
|
if the compass is enabled then try to accumulate a reading |
|
*/ |
|
static void compass_accumulate(void) |
|
{ |
|
if (g.compass_enabled) { |
|
compass.accumulate(); |
|
} |
|
} |
|
|
|
/* |
|
try to accumulate a baro reading |
|
*/ |
|
static void barometer_accumulate(void) |
|
{ |
|
barometer.accumulate(); |
|
} |
|
|
|
// enable this to get console logging of scheduler performance |
|
#define SCHEDULER_DEBUG 0 |
|
|
|
static void perf_update(void) |
|
{ |
|
if (g.log_bitmask & MASK_LOG_PM) |
|
Log_Write_Performance(); |
|
if (scheduler.debug()) { |
|
cliSerial->printf_P(PSTR("PERF: %u/%u %lu\n"), |
|
(unsigned)perf_info_get_num_long_running(), |
|
(unsigned)perf_info_get_num_loops(), |
|
(unsigned long)perf_info_get_max_time()); |
|
} |
|
perf_info_reset(); |
|
gps_fix_count = 0; |
|
} |
|
|
|
void loop() |
|
{ |
|
uint32_t timer = micros(); |
|
|
|
// We want this to execute fast |
|
// ---------------------------- |
|
if (ins.num_samples_available() >= 2) { |
|
|
|
// check loop time |
|
perf_info_check_loop_time(timer - fast_loopTimer); |
|
|
|
G_Dt = (float)(timer - fast_loopTimer) / 1000000.f; // used by PI Loops |
|
fast_loopTimer = timer; |
|
|
|
// for mainloop failure monitoring |
|
mainLoop_count++; |
|
|
|
// Execute the fast loop |
|
// --------------------- |
|
fast_loop(); |
|
|
|
// tell the scheduler one tick has passed |
|
scheduler.tick(); |
|
} else { |
|
uint16_t dt = timer - fast_loopTimer; |
|
if (dt < 10000) { |
|
uint16_t time_to_next_loop = 10000 - dt; |
|
scheduler.run(time_to_next_loop); |
|
} |
|
} |
|
} |
|
|
|
|
|
// Main loop - 100hz |
|
static void fast_loop() |
|
{ |
|
// run low level rate controllers that only require IMU data |
|
run_rate_controllers(); |
|
|
|
// write out the servo PWM values |
|
// ------------------------------ |
|
set_servos_4(); |
|
|
|
// IMU DCM Algorithm |
|
// -------------------- |
|
read_AHRS(); |
|
|
|
// reads all of the necessary trig functions for cameras, throttle, etc. |
|
// -------------------------------------------------------------------- |
|
update_trig(); |
|
|
|
// Inertial Nav |
|
// -------------------- |
|
read_inertia(); |
|
|
|
// optical flow |
|
// -------------------- |
|
#if OPTFLOW == ENABLED |
|
if(g.optflow_enabled) { |
|
update_optical_flow(); |
|
} |
|
#endif // OPTFLOW == ENABLED |
|
|
|
// Read radio and 3-position switch on radio |
|
// ----------------------------------------- |
|
read_radio(); |
|
read_control_switch(); |
|
|
|
// custom code/exceptions for flight modes |
|
// --------------------------------------- |
|
update_yaw_mode(); |
|
update_roll_pitch_mode(); |
|
|
|
// update targets to rate controllers |
|
update_rate_contoller_targets(); |
|
|
|
// agmatthews - USERHOOKS |
|
#ifdef USERHOOK_FASTLOOP |
|
USERHOOK_FASTLOOP |
|
#endif |
|
|
|
} |
|
|
|
static void medium_loop() |
|
{ |
|
// This is the start of the medium (10 Hz) loop pieces |
|
// ----------------------------------------- |
|
switch(medium_loopCounter) { |
|
|
|
// This case deals with the GPS and Compass |
|
//----------------------------------------- |
|
case 0: |
|
medium_loopCounter++; |
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE // don't execute in HIL mode |
|
if(g.compass_enabled) { |
|
if (compass.read()) { |
|
compass.null_offsets(); |
|
} |
|
} |
|
#endif |
|
|
|
// auto_trim - stores roll and pitch radio inputs to ahrs |
|
auto_trim(); |
|
|
|
// record throttle output |
|
// ------------------------------ |
|
throttle_integrator += g.rc_3.servo_out; |
|
break; |
|
|
|
// This case performs some navigation computations |
|
//------------------------------------------------ |
|
case 1: |
|
medium_loopCounter++; |
|
read_receiver_rssi(); |
|
break; |
|
|
|
// command processing |
|
//------------------- |
|
case 2: |
|
medium_loopCounter++; |
|
|
|
if(control_mode == TOY_A) { |
|
update_toy_throttle(); |
|
|
|
if(throttle_mode == THROTTLE_AUTO) { |
|
update_toy_altitude(); |
|
} |
|
} |
|
|
|
ap_system.alt_sensor_flag = true; |
|
break; |
|
|
|
// This case deals with sending high rate telemetry |
|
//------------------------------------------------- |
|
case 3: |
|
medium_loopCounter++; |
|
|
|
// perform next command |
|
// -------------------- |
|
if(control_mode == AUTO) { |
|
if(ap.home_is_set && g.command_total > 1) { |
|
update_commands(); |
|
} |
|
} |
|
|
|
if(motors.armed()) { |
|
if (g.log_bitmask & MASK_LOG_ATTITUDE_MED) { |
|
Log_Write_Attitude(); |
|
#if SECONDARY_DMP_ENABLED == ENABLED |
|
Log_Write_DMP(); |
|
#endif |
|
} |
|
|
|
if (g.log_bitmask & MASK_LOG_MOTORS) |
|
Log_Write_Motors(); |
|
} |
|
break; |
|
|
|
// This case controls the slow loop |
|
//--------------------------------- |
|
case 4: |
|
medium_loopCounter = 0; |
|
|
|
if (g.battery_monitoring != 0) { |
|
read_battery(); |
|
} |
|
|
|
// Accel trims = hold > 2 seconds |
|
// Throttle cruise = switch less than 1 second |
|
// -------------------------------------------- |
|
read_trim_switch(); |
|
|
|
// Check for engine arming |
|
// ----------------------- |
|
arm_motors(); |
|
|
|
// agmatthews - USERHOOKS |
|
#ifdef USERHOOK_MEDIUMLOOP |
|
USERHOOK_MEDIUMLOOP |
|
#endif |
|
|
|
#if COPTER_LEDS == ENABLED |
|
update_copter_leds(); |
|
#endif |
|
break; |
|
|
|
default: |
|
// this is just a catch all |
|
// ------------------------ |
|
medium_loopCounter = 0; |
|
break; |
|
} |
|
} |
|
|
|
// stuff that happens at 50 hz |
|
// --------------------------- |
|
static void fifty_hz_loop() |
|
{ |
|
// Update the throttle ouput |
|
// ------------------------- |
|
update_throttle_mode(); |
|
|
|
#if TOY_EDF == ENABLED |
|
edf_toy(); |
|
#endif |
|
|
|
#ifdef USERHOOK_50HZLOOP |
|
USERHOOK_50HZLOOP |
|
#endif |
|
|
|
|
|
#if HIL_MODE != HIL_MODE_DISABLED && FRAME_CONFIG != HELI_FRAME |
|
// HIL for a copter needs very fast update of the servo values |
|
gcs_send_message(MSG_RADIO_OUT); |
|
#endif |
|
|
|
#if MOUNT == ENABLED |
|
// update camera mount's position |
|
camera_mount.update_mount_position(); |
|
#endif |
|
|
|
#if MOUNT2 == ENABLED |
|
// update camera mount's position |
|
camera_mount2.update_mount_position(); |
|
#endif |
|
|
|
#if CAMERA == ENABLED |
|
camera.trigger_pic_cleanup(); |
|
#endif |
|
|
|
# if HIL_MODE == HIL_MODE_DISABLED |
|
if (g.log_bitmask & MASK_LOG_ATTITUDE_FAST && motors.armed()) { |
|
Log_Write_Attitude(); |
|
#if SECONDARY_DMP_ENABLED == ENABLED |
|
Log_Write_DMP(); |
|
#endif |
|
} |
|
|
|
if (g.log_bitmask & MASK_LOG_IMU && motors.armed()) |
|
Log_Write_IMU(); |
|
#endif |
|
|
|
} |
|
|
|
|
|
static void slow_loop() |
|
{ |
|
|
|
#if AP_LIMITS == ENABLED |
|
|
|
// Run the AP_Limits main loop |
|
limits_loop(); |
|
|
|
#endif // AP_LIMITS_ENABLED |
|
|
|
// This is the slow (3 1/3 Hz) loop pieces |
|
//---------------------------------------- |
|
switch (slow_loopCounter) { |
|
case 0: |
|
slow_loopCounter++; |
|
superslow_loopCounter++; |
|
|
|
// record if the compass is healthy |
|
set_compass_healthy(compass.healthy); |
|
|
|
if(superslow_loopCounter > 1200) { |
|
#if HIL_MODE != HIL_MODE_ATTITUDE |
|
if(g.rc_3.control_in == 0 && control_mode == STABILIZE && g.compass_enabled) { |
|
compass.save_offsets(); |
|
superslow_loopCounter = 0; |
|
} |
|
#endif |
|
} |
|
|
|
|
|
if(motors.armed()) { |
|
if (g.log_bitmask & MASK_LOG_ITERM) |
|
Log_Write_Iterm(); |
|
}else{ |
|
// check the user hasn't updated the frame orientation |
|
motors.set_frame_orientation(g.frame_orientation); |
|
} |
|
|
|
break; |
|
|
|
case 1: |
|
slow_loopCounter++; |
|
|
|
#if MOUNT == ENABLED |
|
update_aux_servo_function(&g.rc_5, &g.rc_6, &g.rc_7, &g.rc_8, &g.rc_10, &g.rc_11); |
|
#endif |
|
enable_aux_servos(); |
|
|
|
#if MOUNT == ENABLED |
|
camera_mount.update_mount_type(); |
|
#endif |
|
|
|
#if MOUNT2 == ENABLED |
|
camera_mount2.update_mount_type(); |
|
#endif |
|
|
|
// agmatthews - USERHOOKS |
|
#ifdef USERHOOK_SLOWLOOP |
|
USERHOOK_SLOWLOOP |
|
#endif |
|
|
|
break; |
|
|
|
case 2: |
|
slow_loopCounter = 0; |
|
update_events(); |
|
|
|
// blink if we are armed |
|
update_lights(); |
|
|
|
if(g.radio_tuning > 0) |
|
tuning(); |
|
|
|
#if USB_MUX_PIN > 0 |
|
check_usb_mux(); |
|
#endif |
|
break; |
|
|
|
default: |
|
slow_loopCounter = 0; |
|
break; |
|
} |
|
} |
|
|
|
#define AUTO_DISARMING_DELAY 25 |
|
// 1Hz loop |
|
static void super_slow_loop() |
|
{ |
|
if (g.log_bitmask != 0) { |
|
Log_Write_Data(DATA_AP_STATE, ap.value); |
|
} |
|
|
|
if (g.log_bitmask & MASK_LOG_CUR && motors.armed()) |
|
Log_Write_Current(); |
|
|
|
// this function disarms the copter if it has been sitting on the ground for any moment of time greater than 25 seconds |
|
// but only of the control mode is manual |
|
if((control_mode <= ACRO) && (g.rc_3.control_in == 0)) { |
|
auto_disarming_counter++; |
|
|
|
if(auto_disarming_counter == AUTO_DISARMING_DELAY) { |
|
init_disarm_motors(); |
|
}else if (auto_disarming_counter > AUTO_DISARMING_DELAY) { |
|
auto_disarming_counter = AUTO_DISARMING_DELAY + 1; |
|
} |
|
}else{ |
|
auto_disarming_counter = 0; |
|
} |
|
|
|
// agmatthews - USERHOOKS |
|
#ifdef USERHOOK_SUPERSLOWLOOP |
|
USERHOOK_SUPERSLOWLOOP |
|
#endif |
|
} |
|
|
|
// called at 100hz but data from sensor only arrives at 20 Hz |
|
#if OPTFLOW == ENABLED |
|
static void update_optical_flow(void) |
|
{ |
|
static uint32_t last_of_update = 0; |
|
static uint8_t of_log_counter = 0; |
|
|
|
// if new data has arrived, process it |
|
if( optflow.last_update != last_of_update ) { |
|
last_of_update = optflow.last_update; |
|
optflow.update_position(ahrs.roll, ahrs.pitch, cos_yaw_x, sin_yaw_y, current_loc.alt); // updates internal lon and lat with estimation based on optical flow |
|
|
|
// write to log at 5hz |
|
of_log_counter++; |
|
if( of_log_counter >= 4 ) { |
|
of_log_counter = 0; |
|
if (g.log_bitmask & MASK_LOG_OPTFLOW) { |
|
Log_Write_Optflow(); |
|
} |
|
} |
|
} |
|
} |
|
#endif // OPTFLOW == ENABLED |
|
|
|
// called at 50hz |
|
static void update_GPS(void) |
|
{ |
|
// A counter that is used to grab at least 10 reads before commiting the Home location |
|
static uint8_t ground_start_count = 10; |
|
|
|
g_gps->update(); |
|
update_GPS_light(); |
|
|
|
set_gps_healthy(g_gps->status() == g_gps->GPS_OK); |
|
|
|
if (g_gps->new_data && g_gps->fix) { |
|
// clear new data flag |
|
g_gps->new_data = false; |
|
|
|
// check for duiplicate GPS messages |
|
if(last_gps_time != g_gps->time) { |
|
|
|
// for performance monitoring |
|
// -------------------------- |
|
gps_fix_count++; |
|
|
|
if(ground_start_count > 1) { |
|
ground_start_count--; |
|
|
|
} else if (ground_start_count == 1) { |
|
|
|
// We countdown N number of good GPS fixes |
|
// so that the altitude is more accurate |
|
// ------------------------------------- |
|
if (current_loc.lat == 0) { |
|
ground_start_count = 5; |
|
|
|
}else{ |
|
if (g.compass_enabled) { |
|
// Set compass declination automatically |
|
compass.set_initial_location(g_gps->latitude, g_gps->longitude); |
|
} |
|
// save home to eeprom (we must have a good fix to have reached this point) |
|
init_home(); |
|
ground_start_count = 0; |
|
} |
|
} |
|
|
|
if (g.log_bitmask & MASK_LOG_GPS && motors.armed()) { |
|
Log_Write_GPS(); |
|
} |
|
|
|
#if HIL_MODE == HIL_MODE_ATTITUDE // only execute in HIL mode |
|
ap_system.alt_sensor_flag = true; |
|
#endif |
|
} |
|
|
|
// save GPS time so we don't get duplicate reads |
|
last_gps_time = g_gps->time; |
|
} |
|
} |
|
|
|
// set_yaw_mode - update yaw mode and initialise any variables required |
|
bool set_yaw_mode(uint8_t new_yaw_mode) |
|
{ |
|
// boolean to ensure proper initialisation of throttle modes |
|
bool yaw_initialised = false; |
|
|
|
// return immediately if no change |
|
if( new_yaw_mode == yaw_mode ) { |
|
return true; |
|
} |
|
|
|
switch( new_yaw_mode ) { |
|
case YAW_HOLD: |
|
case YAW_ACRO: |
|
yaw_initialised = true; |
|
break; |
|
case YAW_LOOK_AT_NEXT_WP: |
|
if( ap.home_is_set ) { |
|
yaw_initialised = true; |
|
} |
|
break; |
|
case YAW_LOOK_AT_LOCATION: |
|
if( ap.home_is_set ) { |
|
// update bearing - assumes yaw_look_at_WP has been intialised before set_yaw_mode was called |
|
yaw_look_at_WP_bearing = get_bearing_cd(¤t_loc, &yaw_look_at_WP); |
|
yaw_initialised = true; |
|
} |
|
break; |
|
case YAW_LOOK_AT_HEADING: |
|
yaw_initialised = true; |
|
break; |
|
case YAW_LOOK_AT_HOME: |
|
if( ap.home_is_set ) { |
|
yaw_initialised = true; |
|
} |
|
break; |
|
case YAW_TOY: |
|
yaw_initialised = true; |
|
break; |
|
case YAW_LOOK_AHEAD: |
|
if( ap.home_is_set ) { |
|
yaw_initialised = true; |
|
} |
|
break; |
|
} |
|
|
|
// if initialisation has been successful update the yaw mode |
|
if( yaw_initialised ) { |
|
yaw_mode = new_yaw_mode; |
|
} |
|
|
|
// return success or failure |
|
return yaw_initialised; |
|
} |
|
|
|
// update_yaw_mode - run high level yaw controllers |
|
// 100hz update rate |
|
void update_yaw_mode(void) |
|
{ |
|
switch(yaw_mode) { |
|
|
|
case YAW_HOLD: |
|
// heading hold at heading held in nav_yaw but allow input from pilot |
|
get_yaw_rate_stabilized_ef(g.rc_4.control_in); |
|
break; |
|
|
|
case YAW_ACRO: |
|
// pilot controlled yaw using rate controller |
|
if(g.axis_enabled) { |
|
get_yaw_rate_stabilized_ef(g.rc_4.control_in); |
|
}else{ |
|
get_acro_yaw(g.rc_4.control_in); |
|
} |
|
break; |
|
|
|
case YAW_LOOK_AT_NEXT_WP: |
|
// point towards next waypoint (no pilot input accepted) |
|
// we don't use wp_bearing because we don't want the copter to turn too much during flight |
|
nav_yaw = get_yaw_slew(nav_yaw, original_wp_bearing, AUTO_YAW_SLEW_RATE); |
|
get_stabilize_yaw(nav_yaw); |
|
|
|
// if there is any pilot input, switch to YAW_HOLD mode for the next iteration |
|
if( g.rc_4.control_in != 0 ) { |
|
set_yaw_mode(YAW_HOLD); |
|
} |
|
break; |
|
|
|
case YAW_LOOK_AT_LOCATION: |
|
// point towards a location held in yaw_look_at_WP (no pilot input accepted) |
|
nav_yaw = get_yaw_slew(nav_yaw, yaw_look_at_WP_bearing, AUTO_YAW_SLEW_RATE); |
|
get_stabilize_yaw(nav_yaw); |
|
|
|
// if there is any pilot input, switch to YAW_HOLD mode for the next iteration |
|
if( g.rc_4.control_in != 0 ) { |
|
set_yaw_mode(YAW_HOLD); |
|
} |
|
break; |
|
|
|
case YAW_LOOK_AT_HOME: |
|
// keep heading always pointing at home with no pilot input allowed |
|
nav_yaw = get_yaw_slew(nav_yaw, home_bearing, AUTO_YAW_SLEW_RATE); |
|
get_stabilize_yaw(nav_yaw); |
|
|
|
// if there is any pilot input, switch to YAW_HOLD mode for the next iteration |
|
if( g.rc_4.control_in != 0 ) { |
|
set_yaw_mode(YAW_HOLD); |
|
} |
|
break; |
|
|
|
case YAW_LOOK_AT_HEADING: |
|
// keep heading pointing in the direction held in yaw_look_at_heading with no pilot input allowed |
|
nav_yaw = get_yaw_slew(nav_yaw, yaw_look_at_heading, yaw_look_at_heading_slew); |
|
get_stabilize_yaw(nav_yaw); |
|
break; |
|
|
|
case YAW_LOOK_AHEAD: |
|
// Commanded Yaw to automatically look ahead. |
|
get_look_ahead_yaw(g.rc_4.control_in); |
|
break; |
|
|
|
#if TOY_LOOKUP == TOY_EXTERNAL_MIXER |
|
case YAW_TOY: |
|
// update to allow external roll/yaw mixing |
|
// keep heading always pointing at home with no pilot input allowed |
|
nav_yaw = get_yaw_slew(nav_yaw, home_bearing, AUTO_YAW_SLEW_RATE); |
|
get_stabilize_yaw(nav_yaw); |
|
break; |
|
#endif |
|
} |
|
} |
|
|
|
// set_roll_pitch_mode - update roll/pitch mode and initialise any variables as required |
|
bool set_roll_pitch_mode(uint8_t new_roll_pitch_mode) |
|
{ |
|
// boolean to ensure proper initialisation of throttle modes |
|
bool roll_pitch_initialised = false; |
|
|
|
// return immediately if no change |
|
if( new_roll_pitch_mode == roll_pitch_mode ) { |
|
return true; |
|
} |
|
|
|
switch( new_roll_pitch_mode ) { |
|
case ROLL_PITCH_STABLE: |
|
case ROLL_PITCH_ACRO: |
|
case ROLL_PITCH_AUTO: |
|
case ROLL_PITCH_STABLE_OF: |
|
case ROLL_PITCH_TOY: |
|
case ROLL_PITCH_LOITER_PR: |
|
roll_pitch_initialised = true; |
|
break; |
|
} |
|
|
|
// if initialisation has been successful update the yaw mode |
|
if( roll_pitch_initialised ) { |
|
roll_pitch_mode = new_roll_pitch_mode; |
|
} |
|
|
|
// return success or failure |
|
return roll_pitch_initialised; |
|
} |
|
|
|
// update_roll_pitch_mode - run high level roll and pitch controllers |
|
// 100hz update rate |
|
void update_roll_pitch_mode(void) |
|
{ |
|
if (ap.do_flip) { |
|
if(abs(g.rc_1.control_in) < 4000) { |
|
roll_flip(); |
|
return; |
|
}else{ |
|
// force an exit from the loop if we are not hands off sticks. |
|
ap.do_flip = false; |
|
Log_Write_Event(DATA_EXIT_FLIP); |
|
} |
|
} |
|
|
|
switch(roll_pitch_mode) { |
|
case ROLL_PITCH_ACRO: |
|
|
|
#if FRAME_CONFIG == HELI_FRAME |
|
if(g.axis_enabled) { |
|
get_roll_rate_stabilized_ef(g.rc_1.control_in); |
|
get_pitch_rate_stabilized_ef(g.rc_2.control_in); |
|
}else{ |
|
// ACRO does not get SIMPLE mode ability |
|
if (motors.flybar_mode == 1) { |
|
g.rc_1.servo_out = g.rc_1.control_in; |
|
g.rc_2.servo_out = g.rc_2.control_in; |
|
} else { |
|
get_acro_roll(g.rc_1.control_in); |
|
get_acro_pitch(g.rc_2.control_in); |
|
} |
|
} |
|
#else // !HELI_FRAME |
|
if(g.axis_enabled) { |
|
get_roll_rate_stabilized_ef(g.rc_1.control_in); |
|
get_pitch_rate_stabilized_ef(g.rc_2.control_in); |
|
}else{ |
|
// ACRO does not get SIMPLE mode ability |
|
get_acro_roll(g.rc_1.control_in); |
|
get_acro_pitch(g.rc_2.control_in); |
|
} |
|
#endif // HELI_FRAME |
|
break; |
|
|
|
case ROLL_PITCH_STABLE: |
|
// apply SIMPLE mode transform |
|
if(ap.simple_mode && ap_system.new_radio_frame) { |
|
update_simple_mode(); |
|
} |
|
|
|
control_roll = g.rc_1.control_in; |
|
control_pitch = g.rc_2.control_in; |
|
|
|
get_stabilize_roll(control_roll); |
|
get_stabilize_pitch(control_pitch); |
|
|
|
break; |
|
|
|
case ROLL_PITCH_AUTO: |
|
// apply SIMPLE mode transform |
|
if(ap.simple_mode && ap_system.new_radio_frame) { |
|
update_simple_mode(); |
|
} |
|
// mix in user control with Nav control |
|
nav_roll += constrain_int32(wrap_180(auto_roll - nav_roll), -g.auto_slew_rate.get(), g.auto_slew_rate.get()); // 40 deg a second |
|
nav_pitch += constrain_int32(wrap_180(auto_pitch - nav_pitch), -g.auto_slew_rate.get(), g.auto_slew_rate.get()); // 40 deg a second |
|
|
|
control_roll = g.rc_1.control_mix(nav_roll); |
|
control_pitch = g.rc_2.control_mix(nav_pitch); |
|
|
|
get_stabilize_roll(control_roll); |
|
get_stabilize_pitch(control_pitch); |
|
break; |
|
|
|
case ROLL_PITCH_STABLE_OF: |
|
// apply SIMPLE mode transform |
|
if(ap.simple_mode && ap_system.new_radio_frame) { |
|
update_simple_mode(); |
|
} |
|
|
|
control_roll = g.rc_1.control_in; |
|
control_pitch = g.rc_2.control_in; |
|
|
|
// mix in user control with optical flow |
|
get_stabilize_roll(get_of_roll(control_roll)); |
|
get_stabilize_pitch(get_of_pitch(control_pitch)); |
|
break; |
|
|
|
// THOR |
|
// a call out to the main toy logic |
|
case ROLL_PITCH_TOY: |
|
roll_pitch_toy(); |
|
break; |
|
|
|
case ROLL_PITCH_LOITER_PR: |
|
|
|
// LOITER does not get SIMPLE mode ability |
|
|
|
nav_roll += constrain(wrap_180(auto_roll - nav_roll), -g.auto_slew_rate.get(), g.auto_slew_rate.get()); // 40 deg a second |
|
nav_pitch += constrain(wrap_180(auto_pitch - nav_pitch), -g.auto_slew_rate.get(), g.auto_slew_rate.get()); // 40 deg a second |
|
|
|
get_stabilize_roll(nav_roll); |
|
get_stabilize_pitch(nav_pitch); |
|
break; |
|
} |
|
|
|
#if FRAME_CONFIG != HELI_FRAME |
|
if(g.rc_3.control_in == 0 && control_mode <= ACRO) { |
|
reset_rate_I(); |
|
reset_stability_I(); |
|
} |
|
#endif //HELI_FRAME |
|
|
|
if(ap_system.new_radio_frame) { |
|
// clear new radio frame info |
|
ap_system.new_radio_frame = false; |
|
} |
|
} |
|
|
|
// new radio frame is used to make sure we only call this at 50hz |
|
void update_simple_mode(void) |
|
{ |
|
static uint8_t simple_counter = 0; // State machine counter for Simple Mode |
|
static float simple_sin_y=0, simple_cos_x=0; |
|
|
|
// used to manage state machine |
|
// which improves speed of function |
|
simple_counter++; |
|
|
|
int16_t delta = wrap_360(ahrs.yaw_sensor - initial_simple_bearing)/100; |
|
|
|
if (simple_counter == 1) { |
|
// roll |
|
simple_cos_x = sin(radians(90 - delta)); |
|
|
|
}else if (simple_counter > 2) { |
|
// pitch |
|
simple_sin_y = cos(radians(90 - delta)); |
|
simple_counter = 0; |
|
} |
|
|
|
// Rotate input by the initial bearing |
|
int16_t _roll = g.rc_1.control_in * simple_cos_x + g.rc_2.control_in * simple_sin_y; |
|
int16_t _pitch = -(g.rc_1.control_in * simple_sin_y - g.rc_2.control_in * simple_cos_x); |
|
|
|
g.rc_1.control_in = _roll; |
|
g.rc_2.control_in = _pitch; |
|
} |
|
|
|
// set_throttle_mode - sets the throttle mode and initialises any variables as required |
|
bool set_throttle_mode( uint8_t new_throttle_mode ) |
|
{ |
|
// boolean to ensure proper initialisation of throttle modes |
|
bool throttle_initialised = false; |
|
|
|
// return immediately if no change |
|
if( new_throttle_mode == throttle_mode ) { |
|
return true; |
|
} |
|
|
|
// initialise any variables required for the new throttle mode |
|
switch(new_throttle_mode) { |
|
case THROTTLE_MANUAL: |
|
case THROTTLE_MANUAL_TILT_COMPENSATED: |
|
throttle_accel_deactivate(); // this controller does not use accel based throttle controller |
|
altitude_error = 0; // clear altitude error reported to GCS |
|
throttle_initialised = true; |
|
break; |
|
|
|
case THROTTLE_ACCELERATION: // pilot inputs the desired acceleration |
|
if( g.throttle_accel_enabled ) { // this throttle mode requires use of the accel based throttle controller |
|
altitude_error = 0; // clear altitude error reported to GCS |
|
throttle_initialised = true; |
|
} |
|
break; |
|
|
|
case THROTTLE_RATE: |
|
altitude_error = 0; // clear altitude error reported to GCS |
|
throttle_initialised = true; |
|
break; |
|
case THROTTLE_STABILIZED_RATE: |
|
case THROTTLE_DIRECT_ALT: |
|
throttle_initialised = true; |
|
break; |
|
|
|
case THROTTLE_HOLD: |
|
case THROTTLE_AUTO: |
|
set_new_altitude(current_loc.alt); // by default hold the current altitude |
|
if ( throttle_mode < THROTTLE_HOLD ) { // reset the alt hold I terms if previous throttle mode was manual |
|
reset_throttle_I(); |
|
} |
|
throttle_initialised = true; |
|
break; |
|
|
|
case THROTTLE_LAND: |
|
set_land_complete(false); // mark landing as incomplete |
|
land_detector = 0; // A counter that goes up if our climb rate stalls out. |
|
set_new_altitude(0); // Set a new target altitude |
|
throttle_initialised = true; |
|
break; |
|
|
|
case THROTTLE_SURFACE_TRACKING: |
|
if( g.sonar_enabled ) { |
|
set_new_altitude(current_loc.alt); // by default hold the current altitude |
|
if ( throttle_mode < THROTTLE_HOLD ) { // reset the alt hold I terms if previous throttle mode was manual |
|
reset_throttle_I(); |
|
} |
|
throttle_initialised = true; |
|
} |
|
// To-Do: handle the case where the sonar is not enabled |
|
break; |
|
|
|
default: |
|
// To-Do: log an error message to the dataflash or tlogs instead of printing to the serial port |
|
cliSerial->printf_P(PSTR("Unsupported throttle mode: %d!!"),new_throttle_mode); |
|
break; |
|
} |
|
|
|
// update the throttle mode |
|
if( throttle_initialised ) { |
|
throttle_mode = new_throttle_mode; |
|
|
|
// reset some variables used for logging |
|
desired_climb_rate = 0; |
|
nav_throttle = 0; |
|
} |
|
|
|
// return success or failure |
|
return throttle_initialised; |
|
} |
|
|
|
// update_throttle_mode - run high level throttle controllers |
|
// 50 hz update rate |
|
void update_throttle_mode(void) |
|
{ |
|
int16_t pilot_climb_rate; |
|
|
|
if(ap.do_flip) // this is pretty bad but needed to flip in AP modes. |
|
return; |
|
|
|
// do not run throttle controllers if motors disarmed |
|
if( !motors.armed() ) { |
|
set_throttle_out(0, false); |
|
throttle_accel_deactivate(); // do not allow the accel based throttle to override our command |
|
return; |
|
} |
|
|
|
#if FRAME_CONFIG == HELI_FRAME |
|
if (control_mode == STABILIZE){ |
|
motors.stab_throttle = true; |
|
} else { |
|
motors.stab_throttle = false; |
|
} |
|
#endif // HELI_FRAME |
|
|
|
switch(throttle_mode) { |
|
|
|
case THROTTLE_MANUAL: |
|
// completely manual throttle |
|
if(g.rc_3.control_in <= 0){ |
|
set_throttle_out(0, false); |
|
}else{ |
|
// send pilot's output directly to motors |
|
set_throttle_out(g.rc_3.control_in, false); |
|
|
|
// update estimate of throttle cruise |
|
#if FRAME_CONFIG == HELI_FRAME |
|
update_throttle_cruise(motors.coll_out); |
|
#else |
|
update_throttle_cruise(g.rc_3.control_in); |
|
#endif //HELI_FRAME |
|
|
|
|
|
// check if we've taken off yet |
|
if (!ap.takeoff_complete && motors.armed()) { |
|
if (g.rc_3.control_in > g.throttle_cruise) { |
|
// we must be in the air by now |
|
set_takeoff_complete(true); |
|
} |
|
} |
|
} |
|
break; |
|
|
|
case THROTTLE_MANUAL_TILT_COMPENSATED: |
|
// manual throttle but with angle boost |
|
if (g.rc_3.control_in <= 0) { |
|
set_throttle_out(0, false); // no need for angle boost with zero throttle |
|
}else{ |
|
set_throttle_out(g.rc_3.control_in, true); |
|
|
|
// update estimate of throttle cruise |
|
#if FRAME_CONFIG == HELI_FRAME |
|
update_throttle_cruise(motors.coll_out); |
|
#else |
|
update_throttle_cruise(g.rc_3.control_in); |
|
#endif //HELI_FRAME |
|
|
|
if (!ap.takeoff_complete && motors.armed()) { |
|
if (g.rc_3.control_in > g.throttle_cruise) { |
|
// we must be in the air by now |
|
set_takeoff_complete(true); |
|
} |
|
} |
|
} |
|
break; |
|
|
|
case THROTTLE_ACCELERATION: |
|
// pilot inputs the desired acceleration |
|
if(g.rc_3.control_in <= 0){ |
|
set_throttle_out(0, false); |
|
throttle_accel_deactivate(); // do not allow the accel based throttle to override our command |
|
}else{ |
|
int16_t desired_acceleration = get_pilot_desired_acceleration(g.rc_3.control_in); |
|
set_throttle_accel_target(desired_acceleration); |
|
} |
|
break; |
|
|
|
case THROTTLE_RATE: |
|
// pilot inputs the desired climb rate. Note this is the unstabilized rate controller |
|
if(g.rc_3.control_in <= 0){ |
|
set_throttle_out(0, false); |
|
throttle_accel_deactivate(); // do not allow the accel based throttle to override our command |
|
}else{ |
|
pilot_climb_rate = get_pilot_desired_climb_rate(g.rc_3.control_in); |
|
get_throttle_rate(pilot_climb_rate); |
|
} |
|
break; |
|
|
|
case THROTTLE_STABILIZED_RATE: |
|
// pilot inputs the desired climb rate. Note this is the stabilized rate controller |
|
if(g.rc_3.control_in <= 0){ |
|
set_throttle_out(0, false); |
|
throttle_accel_deactivate(); // do not allow the accel based throttle to override our command |
|
altitude_error = 0; // clear altitude error reported to GCS - normally underlying alt hold controller updates altitude error reported to GCS |
|
}else{ |
|
pilot_climb_rate = get_pilot_desired_climb_rate(g.rc_3.control_in); |
|
get_throttle_rate_stabilized(pilot_climb_rate); |
|
} |
|
break; |
|
|
|
case THROTTLE_DIRECT_ALT: |
|
// pilot inputs a desired altitude from 0 ~ 10 meters |
|
if(g.rc_3.control_in <= 0){ |
|
set_throttle_out(0, false); |
|
throttle_accel_deactivate(); // do not allow the accel based throttle to override our command |
|
altitude_error = 0; // clear altitude error reported to GCS - normally underlying alt hold controller updates altitude error reported to GCS |
|
}else{ |
|
int32_t desired_alt = get_pilot_desired_direct_alt(g.rc_3.control_in); |
|
get_throttle_althold(desired_alt, g.auto_velocity_z_min, g.auto_velocity_z_max); |
|
} |
|
break; |
|
|
|
case THROTTLE_HOLD: |
|
// alt hold plus pilot input of climb rate |
|
pilot_climb_rate = get_pilot_desired_climb_rate(g.rc_3.control_in); |
|
get_throttle_rate_stabilized(pilot_climb_rate); |
|
break; |
|
|
|
case THROTTLE_AUTO: |
|
// auto pilot altitude controller with target altitude held in next_WP.alt |
|
if(motors.auto_armed() == true) { |
|
get_throttle_althold(next_WP.alt, g.auto_velocity_z_min, g.auto_velocity_z_max); |
|
} |
|
break; |
|
|
|
case THROTTLE_LAND: |
|
// landing throttle controller |
|
get_throttle_land(); |
|
break; |
|
|
|
case THROTTLE_SURFACE_TRACKING: |
|
// surface tracking with sonar or other rangefinder plus pilot input of climb rate |
|
pilot_climb_rate = get_pilot_desired_climb_rate(g.rc_3.control_in); |
|
if( sonar_alt_ok ) { |
|
// if sonar is ok, use surface tracking |
|
get_throttle_surface_tracking(pilot_climb_rate); |
|
}else{ |
|
// if no sonar fall back stabilize rate controller |
|
get_throttle_rate_stabilized(pilot_climb_rate); |
|
} |
|
break; |
|
} |
|
} |
|
|
|
static void read_AHRS(void) |
|
{ |
|
// Perform IMU calculations and get attitude info |
|
//----------------------------------------------- |
|
#if HIL_MODE != HIL_MODE_DISABLED |
|
// update hil before ahrs update |
|
gcs_check_input(); |
|
#endif |
|
|
|
ahrs.update(); |
|
omega = ins.get_gyro(); |
|
|
|
#if SECONDARY_DMP_ENABLED == ENABLED |
|
ahrs2.update(); |
|
#endif |
|
} |
|
|
|
static void update_trig(void){ |
|
Vector2f yawvector; |
|
Matrix3f temp = ahrs.get_dcm_matrix(); |
|
|
|
yawvector.x = temp.a.x; // sin |
|
yawvector.y = temp.b.x; // cos |
|
yawvector.normalize(); |
|
|
|
cos_pitch_x = safe_sqrt(1 - (temp.c.x * temp.c.x)); // level = 1 |
|
cos_roll_x = temp.c.z / cos_pitch_x; // level = 1 |
|
|
|
cos_pitch_x = constrain(cos_pitch_x, 0, 1.0); |
|
// this relies on constrain() of infinity doing the right thing, |
|
// which it does do in avr-libc |
|
cos_roll_x = constrain(cos_roll_x, -1.0, 1.0); |
|
|
|
sin_yaw_y = yawvector.x; // 1y = north |
|
cos_yaw_x = yawvector.y; // 0x = north |
|
|
|
// added to convert earth frame to body frame for rate controllers |
|
sin_pitch = -temp.c.x; |
|
sin_roll = temp.c.y / cos_pitch_x; |
|
|
|
//flat: |
|
// 0 ° = cos_yaw: 0.00, sin_yaw: 1.00, |
|
// 90° = cos_yaw: 1.00, sin_yaw: 0.00, |
|
// 180 = cos_yaw: 0.00, sin_yaw: -1.00, |
|
// 270 = cos_yaw: -1.00, sin_yaw: 0.00, |
|
} |
|
|
|
// updated at 10hz |
|
static void update_altitude() |
|
{ |
|
int32_t old_baro_alt = baro_alt; |
|
int16_t old_sonar_alt = sonar_alt; |
|
|
|
#if HIL_MODE == HIL_MODE_ATTITUDE |
|
// we are in the SIM, fake out the baro and Sonar |
|
int16_t fake_relative_alt = g_gps->altitude - gps_base_alt; |
|
baro_alt = fake_relative_alt; |
|
baro_rate = (baro_alt - old_baro_alt) * 5; // 5hz |
|
if(g.sonar_enabled) { |
|
sonar_alt = fake_relative_alt; |
|
sonar_rate = baro_rate; |
|
} |
|
current_loc.alt = baro_alt; |
|
climb_rate_actual = baro_rate; |
|
#else |
|
// read in actual baro altitude |
|
baro_alt = read_barometer(); |
|
|
|
// calc baro based vertical velocity |
|
int16_t temp = (baro_alt - old_baro_alt) * 10; |
|
baro_rate = (temp + baro_rate) >> 1; |
|
baro_rate = constrain(baro_rate, -500, 500); |
|
|
|
// read in sonar altitude and calculate sonar rate |
|
if(g.sonar_enabled) { |
|
sonar_alt = read_sonar(); |
|
sonar_rate = (sonar_alt - old_sonar_alt) * 10; |
|
sonar_rate = constrain(sonar_rate, -150, 150); |
|
} |
|
|
|
// Note: with inertial nav, alt and rate are pulled from the inav lib at 50hz in update_altitude_est function |
|
// so none of the below is required |
|
# if INERTIAL_NAV_Z != ENABLED |
|
// if no sonar set current alt to baro alt |
|
if(!g.sonar_enabled) { |
|
// NO Sonar case |
|
current_loc.alt = baro_alt; |
|
climb_rate_actual = baro_rate; |
|
}else{ |
|
// Blend barometer and sonar data together |
|
float scale; |
|
if(baro_alt < 800) { |
|
scale = (float)(sonar_alt - 400) / 200.0; |
|
scale = constrain(scale, 0.0, 1.0); |
|
// solve for a blended altitude |
|
current_loc.alt = ((float)sonar_alt * (1.0 - scale)) + ((float)baro_alt * scale); |
|
|
|
// solve for a blended climb_rate |
|
climb_rate_actual = ((float)sonar_rate * (1.0 - scale)) + (float)baro_rate * scale; |
|
|
|
}else{ |
|
// we must be higher than sonar (>800), don't get tricked by bad sonar reads |
|
current_loc.alt = baro_alt; |
|
// dont blend, go straight baro |
|
climb_rate_actual = baro_rate; |
|
} |
|
} |
|
// climb_rate_error is used to spread the change in climb rate across the next 5 samples |
|
climb_rate_error = (climb_rate_actual - climb_rate) / 5; |
|
# endif // INERTIAL_NAV_Z != ENABLED |
|
#endif // HIL_MODE == HIL_MODE_ATTITUDE |
|
|
|
// update the target altitude |
|
verify_altitude(); |
|
} |
|
|
|
static void update_altitude_est() |
|
{ |
|
#if INERTIAL_NAV_Z == ENABLED |
|
// with inertial nav we can update the altitude and climb rate at 50hz |
|
current_loc.alt = inertial_nav.get_altitude(); |
|
climb_rate = inertial_nav.get_velocity_z(); |
|
|
|
// update baro and sonar alt and climb rate just for logging purposes |
|
// To-Do: remove alt_sensor_flag and move update_altitude to be called from 10hz loop |
|
if(ap_system.alt_sensor_flag) { |
|
ap_system.alt_sensor_flag = false; |
|
update_altitude(); |
|
if ((g.log_bitmask & MASK_LOG_CTUN) && motors.armed()) { |
|
Log_Write_Control_Tuning(); |
|
} |
|
} |
|
#else |
|
if(ap_system.alt_sensor_flag) { |
|
update_altitude(); |
|
ap_system.alt_sensor_flag = false; |
|
|
|
if ((g.log_bitmask & MASK_LOG_CTUN) && motors.armed()) { |
|
Log_Write_Control_Tuning(); |
|
} |
|
}else{ |
|
// simple dithering of climb rate |
|
climb_rate += climb_rate_error; |
|
current_loc.alt += (climb_rate / 50); |
|
} |
|
#endif |
|
} |
|
|
|
static void tuning(){ |
|
tuning_value = (float)g.rc_6.control_in / 1000.0; |
|
g.rc_6.set_range(g.radio_tuning_low,g.radio_tuning_high); // 0 to 1 |
|
|
|
switch(g.radio_tuning) { |
|
|
|
case CH6_RATE_KD: |
|
g.pid_rate_roll.kD(tuning_value); |
|
g.pid_rate_pitch.kD(tuning_value); |
|
break; |
|
|
|
case CH6_STABILIZE_KP: |
|
g.pi_stabilize_roll.kP(tuning_value); |
|
g.pi_stabilize_pitch.kP(tuning_value); |
|
break; |
|
|
|
case CH6_STABILIZE_KI: |
|
g.pi_stabilize_roll.kI(tuning_value); |
|
g.pi_stabilize_pitch.kI(tuning_value); |
|
break; |
|
|
|
case CH6_ACRO_KP: |
|
g.acro_p = tuning_value; |
|
break; |
|
|
|
case CH6_RATE_KP: |
|
g.pid_rate_roll.kP(tuning_value); |
|
g.pid_rate_pitch.kP(tuning_value); |
|
break; |
|
|
|
case CH6_RATE_KI: |
|
g.pid_rate_roll.kI(tuning_value); |
|
g.pid_rate_pitch.kI(tuning_value); |
|
break; |
|
|
|
case CH6_YAW_KP: |
|
g.pi_stabilize_yaw.kP(tuning_value); |
|
break; |
|
|
|
case CH6_YAW_KI: |
|
g.pi_stabilize_yaw.kI(tuning_value); |
|
break; |
|
|
|
case CH6_YAW_RATE_KP: |
|
g.pid_rate_yaw.kP(tuning_value); |
|
break; |
|
|
|
case CH6_YAW_RATE_KD: |
|
g.pid_rate_yaw.kD(tuning_value); |
|
break; |
|
|
|
case CH6_THROTTLE_KP: |
|
g.pid_throttle.kP(tuning_value); |
|
break; |
|
|
|
case CH6_THROTTLE_KI: |
|
g.pid_throttle.kI(tuning_value); |
|
break; |
|
|
|
case CH6_THROTTLE_KD: |
|
g.pid_throttle.kD(tuning_value); |
|
break; |
|
|
|
case CH6_TOP_BOTTOM_RATIO: |
|
motors.top_bottom_ratio = tuning_value; |
|
break; |
|
|
|
case CH6_RELAY: |
|
if (g.rc_6.control_in > 525) relay.on(); |
|
if (g.rc_6.control_in < 475) relay.off(); |
|
break; |
|
|
|
case CH6_TRAVERSE_SPEED: |
|
g.waypoint_speed_max = g.rc_6.control_in; |
|
break; |
|
|
|
case CH6_LOITER_KP: |
|
g.pi_loiter_lat.kP(tuning_value); |
|
g.pi_loiter_lon.kP(tuning_value); |
|
break; |
|
|
|
case CH6_LOITER_KI: |
|
g.pi_loiter_lat.kI(tuning_value); |
|
g.pi_loiter_lon.kI(tuning_value); |
|
break; |
|
|
|
case CH6_NAV_KP: |
|
g.pid_nav_lat.kP(tuning_value); |
|
g.pid_nav_lon.kP(tuning_value); |
|
break; |
|
|
|
case CH6_LOITER_RATE_KP: |
|
g.pid_loiter_rate_lon.kP(tuning_value); |
|
g.pid_loiter_rate_lat.kP(tuning_value); |
|
break; |
|
|
|
case CH6_LOITER_RATE_KI: |
|
g.pid_loiter_rate_lon.kI(tuning_value); |
|
g.pid_loiter_rate_lat.kI(tuning_value); |
|
break; |
|
|
|
case CH6_LOITER_RATE_KD: |
|
g.pid_loiter_rate_lon.kD(tuning_value); |
|
g.pid_loiter_rate_lat.kD(tuning_value); |
|
break; |
|
|
|
case CH6_NAV_KI: |
|
g.pid_nav_lat.kI(tuning_value); |
|
g.pid_nav_lon.kI(tuning_value); |
|
break; |
|
|
|
#if FRAME_CONFIG == HELI_FRAME |
|
case CH6_HELI_EXTERNAL_GYRO: |
|
motors.ext_gyro_gain = tuning_value; |
|
break; |
|
#endif |
|
|
|
case CH6_THR_HOLD_KP: |
|
g.pi_alt_hold.kP(tuning_value); |
|
break; |
|
|
|
case CH6_OPTFLOW_KP: |
|
g.pid_optflow_roll.kP(tuning_value); |
|
g.pid_optflow_pitch.kP(tuning_value); |
|
break; |
|
|
|
case CH6_OPTFLOW_KI: |
|
g.pid_optflow_roll.kI(tuning_value); |
|
g.pid_optflow_pitch.kI(tuning_value); |
|
break; |
|
|
|
case CH6_OPTFLOW_KD: |
|
g.pid_optflow_roll.kD(tuning_value); |
|
g.pid_optflow_pitch.kD(tuning_value); |
|
break; |
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE // do not allow modifying _kp or _kp_yaw gains in HIL mode |
|
case CH6_AHRS_YAW_KP: |
|
ahrs._kp_yaw.set(tuning_value); |
|
break; |
|
|
|
case CH6_AHRS_KP: |
|
ahrs._kp.set(tuning_value); |
|
break; |
|
#endif |
|
|
|
case CH6_INAV_TC: |
|
#if INERTIAL_NAV_XY == ENABLED |
|
inertial_nav.set_time_constant_xy(tuning_value); |
|
#endif |
|
#if INERTIAL_NAV_Z == ENABLED |
|
inertial_nav.set_time_constant_z(tuning_value); |
|
#endif |
|
break; |
|
|
|
case CH6_THR_ACCEL_KP: |
|
g.pid_throttle_accel.kP(tuning_value); |
|
break; |
|
|
|
case CH6_THR_ACCEL_KI: |
|
g.pid_throttle_accel.kI(tuning_value); |
|
break; |
|
|
|
case CH6_THR_ACCEL_KD: |
|
g.pid_throttle_accel.kD(tuning_value); |
|
break; |
|
} |
|
} |
|
|
|
AP_HAL_MAIN(); |
|
|
|
|