You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
548 lines
14 KiB
548 lines
14 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
/***************************************************************************** |
|
The init_ardupilot function processes everything we need for an in - air restart |
|
We will determine later if we are actually on the ground and process a |
|
ground start in that case. |
|
|
|
*****************************************************************************/ |
|
|
|
#if CLI_ENABLED == ENABLED |
|
|
|
// Functions called from the top-level menu |
|
static int8_t process_logs(uint8_t argc, const Menu::arg *argv); // in Log.pde |
|
static int8_t setup_mode(uint8_t argc, const Menu::arg *argv); // in setup.pde |
|
static int8_t test_mode(uint8_t argc, const Menu::arg *argv); // in test.cpp |
|
static int8_t reboot_board(uint8_t argc, const Menu::arg *argv); |
|
|
|
// This is the help function |
|
// PSTR is an AVR macro to read strings from flash memory |
|
// printf_P is a version of print_f that reads from flash memory |
|
static int8_t main_menu_help(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
cliSerial->printf_P(PSTR("Commands:\n" |
|
" logs log readback/setup mode\n" |
|
" setup setup mode\n" |
|
" test test mode\n" |
|
"\n" |
|
"Move the slide switch and reset to FLY.\n" |
|
"\n")); |
|
return(0); |
|
} |
|
|
|
// Command/function table for the top-level menu. |
|
static const struct Menu::command main_menu_commands[] PROGMEM = { |
|
// command function called |
|
// ======= =============== |
|
{"logs", process_logs}, |
|
{"setup", setup_mode}, |
|
{"test", test_mode}, |
|
{"reboot", reboot_board}, |
|
{"help", main_menu_help} |
|
}; |
|
|
|
// Create the top-level menu object. |
|
MENU(main_menu, THISFIRMWARE, main_menu_commands); |
|
|
|
static int8_t reboot_board(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
hal.scheduler->reboot(false); |
|
return 0; |
|
} |
|
|
|
// the user wants the CLI. It never exits |
|
static void run_cli(AP_HAL::UARTDriver *port) |
|
{ |
|
// disable the failsafe code in the CLI |
|
hal.scheduler->register_timer_failsafe(NULL,1); |
|
|
|
// disable the mavlink delay callback |
|
hal.scheduler->register_delay_callback(NULL, 5); |
|
|
|
cliSerial = port; |
|
Menu::set_port(port); |
|
port->set_blocking_writes(true); |
|
|
|
while (1) { |
|
main_menu.run(); |
|
} |
|
} |
|
|
|
#endif // CLI_ENABLED |
|
|
|
static void init_ardupilot() |
|
{ |
|
// Console serial port |
|
// |
|
// The console port buffers are defined to be sufficiently large to support |
|
// the console's use as a logging device, optionally as the GPS port when |
|
// GPS_PROTOCOL_IMU is selected, and as the telemetry port. |
|
// |
|
// XXX This could be optimised to reduce the buffer sizes in the cases |
|
// where they are not otherwise required. |
|
// |
|
hal.uartA->begin(SERIAL0_BAUD, 128, 128); |
|
|
|
// GPS serial port. |
|
// |
|
// XXX currently the EM406 (SiRF receiver) is nominally configured |
|
// at 57600, however it's not been supported to date. We should |
|
// probably standardise on 38400. |
|
// |
|
// XXX the 128 byte receive buffer may be too small for NMEA, depending |
|
// on the message set configured. |
|
// |
|
// standard gps running |
|
hal.uartB->begin(38400, 256, 16); |
|
|
|
#if GPS2_ENABLE |
|
if (hal.uartE != NULL) { |
|
hal.uartE->begin(38400, 256, 16); |
|
} |
|
#endif |
|
|
|
cliSerial->printf_P(PSTR("\n\nInit " FIRMWARE_STRING |
|
"\n\nFree RAM: %u\n"), |
|
hal.util->available_memory()); |
|
|
|
// |
|
// Check the EEPROM format version before loading any parameters from EEPROM. |
|
// |
|
|
|
load_parameters(); |
|
|
|
BoardConfig.init(); |
|
|
|
ServoRelayEvents.set_channel_mask(0xFFF0); |
|
|
|
set_control_channels(); |
|
|
|
// after parameter load setup correct baud rate on uartA |
|
hal.uartA->begin(map_baudrate(g.serial0_baud, SERIAL0_BAUD)); |
|
|
|
// keep a record of how many resets have happened. This can be |
|
// used to detect in-flight resets |
|
g.num_resets.set_and_save(g.num_resets+1); |
|
|
|
// init baro before we start the GCS, so that the CLI baro test works |
|
barometer.init(); |
|
|
|
// init the GCS |
|
gcs[0].init(hal.uartA); |
|
|
|
// we start by assuming USB connected, as we initialed the serial |
|
// port with SERIAL0_BAUD. check_usb_mux() fixes this if need be. |
|
usb_connected = true; |
|
check_usb_mux(); |
|
|
|
// we have a 2nd serial port for telemetry |
|
hal.uartC->begin(map_baudrate(g.serial1_baud, SERIAL1_BAUD), 128, 128); |
|
gcs[1].init(hal.uartC); |
|
|
|
#if MAVLINK_COMM_NUM_BUFFERS > 2 |
|
// we may have a 3rd serial port for telemetry |
|
if (hal.uartD != NULL) { |
|
hal.uartD->begin(map_baudrate(g.serial2_baud, SERIAL2_BAUD), 128, 128); |
|
gcs[2].init(hal.uartD); |
|
} |
|
#endif |
|
|
|
mavlink_system.sysid = g.sysid_this_mav; |
|
|
|
#if LOGGING_ENABLED == ENABLED |
|
DataFlash.Init(log_structure, sizeof(log_structure)/sizeof(log_structure[0])); |
|
if (!DataFlash.CardInserted()) { |
|
gcs_send_text_P(SEVERITY_LOW, PSTR("No dataflash card inserted")); |
|
g.log_bitmask.set(0); |
|
} else if (DataFlash.NeedErase()) { |
|
gcs_send_text_P(SEVERITY_LOW, PSTR("ERASING LOGS")); |
|
do_erase_logs(); |
|
} |
|
if (g.log_bitmask != 0) { |
|
start_logging(); |
|
} |
|
#endif |
|
|
|
// Register mavlink_delay_cb, which will run anytime you have |
|
// more than 5ms remaining in your call to hal.scheduler->delay |
|
hal.scheduler->register_delay_callback(mavlink_delay_cb, 5); |
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_APM1 |
|
adc.Init(); // APM ADC library initialization |
|
#endif |
|
|
|
if (g.compass_enabled==true) { |
|
if (!compass.init()|| !compass.read()) { |
|
cliSerial->println_P(PSTR("Compass initialisation failed!")); |
|
g.compass_enabled = false; |
|
} else { |
|
ahrs.set_compass(&compass); |
|
//compass.get_offsets(); // load offsets to account for airframe magnetic interference |
|
} |
|
} |
|
|
|
// initialise sonar |
|
init_sonar(); |
|
|
|
// and baro for EKF |
|
init_barometer(); |
|
|
|
// Do GPS init |
|
g_gps = &g_gps_driver; |
|
// GPS initialisation |
|
g_gps->init(hal.uartB, GPS::GPS_ENGINE_AIRBORNE_4G, &DataFlash); |
|
|
|
#if GPS2_ENABLE |
|
if (hal.uartE != NULL) { |
|
g_gps2 = &g_gps2_driver; |
|
g_gps2->init(hal.uartE, GPS::GPS_ENGINE_AIRBORNE_4G, &DataFlash); |
|
g_gps2->set_secondary(); |
|
} |
|
#endif |
|
|
|
//mavlink_system.sysid = MAV_SYSTEM_ID; // Using g.sysid_this_mav |
|
mavlink_system.compid = 1; //MAV_COMP_ID_IMU; // We do not check for comp id |
|
mavlink_system.type = MAV_TYPE_GROUND_ROVER; |
|
|
|
rc_override_active = hal.rcin->set_overrides(rc_override, 8); |
|
|
|
init_rc_in(); // sets up rc channels from radio |
|
init_rc_out(); // sets up the timer libs |
|
|
|
relay.init(); |
|
|
|
/* |
|
setup the 'main loop is dead' check. Note that this relies on |
|
the RC library being initialised. |
|
*/ |
|
hal.scheduler->register_timer_failsafe(failsafe_check, 1000); |
|
|
|
// If the switch is in 'menu' mode, run the main menu. |
|
// |
|
// Since we can't be sure that the setup or test mode won't leave |
|
// the system in an odd state, we don't let the user exit the top |
|
// menu; they must reset in order to fly. |
|
// |
|
const prog_char_t *msg = PSTR("\nPress ENTER 3 times to start interactive setup\n"); |
|
cliSerial->println_P(msg); |
|
if (gcs[1].initialised) { |
|
hal.uartC->println_P(msg); |
|
} |
|
if (num_gcs > 2 && gcs[2].initialised) { |
|
hal.uartD->println_P(msg); |
|
} |
|
|
|
startup_ground(); |
|
|
|
if (should_log(MASK_LOG_CMD)) { |
|
Log_Write_Startup(TYPE_GROUNDSTART_MSG); |
|
} |
|
|
|
set_mode((enum mode)g.initial_mode.get()); |
|
|
|
// set the correct flight mode |
|
// --------------------------- |
|
reset_control_switch(); |
|
} |
|
|
|
//******************************************************************************** |
|
//This function does all the calibrations, etc. that we need during a ground start |
|
//******************************************************************************** |
|
static void startup_ground(void) |
|
{ |
|
set_mode(INITIALISING); |
|
|
|
gcs_send_text_P(SEVERITY_LOW,PSTR("<startup_ground> GROUND START")); |
|
|
|
#if(GROUND_START_DELAY > 0) |
|
gcs_send_text_P(SEVERITY_LOW,PSTR("<startup_ground> With Delay")); |
|
delay(GROUND_START_DELAY * 1000); |
|
#endif |
|
|
|
//IMU ground start |
|
//------------------------ |
|
// |
|
|
|
startup_INS_ground(false); |
|
|
|
// read the radio to set trims |
|
// --------------------------- |
|
trim_radio(); |
|
|
|
// initialise mission library |
|
mission.init(); |
|
|
|
hal.uartA->set_blocking_writes(false); |
|
hal.uartC->set_blocking_writes(false); |
|
|
|
gcs_send_text_P(SEVERITY_LOW,PSTR("\n\n Ready to drive.")); |
|
} |
|
|
|
/* |
|
set the in_reverse flag |
|
reset the throttle integrator if this changes in_reverse |
|
*/ |
|
static void set_reverse(bool reverse) |
|
{ |
|
if (in_reverse == reverse) { |
|
return; |
|
} |
|
g.pidSpeedThrottle.reset_I(); |
|
in_reverse = reverse; |
|
} |
|
|
|
static void set_mode(enum mode mode) |
|
{ |
|
|
|
if(control_mode == mode){ |
|
// don't switch modes if we are already in the correct mode. |
|
return; |
|
} |
|
control_mode = mode; |
|
throttle_last = 0; |
|
throttle = 500; |
|
set_reverse(false); |
|
g.pidSpeedThrottle.reset_I(); |
|
|
|
if (control_mode != AUTO) { |
|
auto_triggered = false; |
|
} |
|
|
|
switch(control_mode) |
|
{ |
|
case MANUAL: |
|
case HOLD: |
|
case LEARNING: |
|
case STEERING: |
|
break; |
|
|
|
case AUTO: |
|
rtl_complete = false; |
|
restart_nav(); |
|
break; |
|
|
|
case RTL: |
|
do_RTL(); |
|
break; |
|
|
|
default: |
|
do_RTL(); |
|
break; |
|
} |
|
|
|
if (should_log(MASK_LOG_MODE)) { |
|
Log_Write_Mode(); |
|
} |
|
} |
|
|
|
/* |
|
called to set/unset a failsafe event. |
|
*/ |
|
static void failsafe_trigger(uint8_t failsafe_type, bool on) |
|
{ |
|
uint8_t old_bits = failsafe.bits; |
|
if (on) { |
|
failsafe.bits |= failsafe_type; |
|
} else { |
|
failsafe.bits &= ~failsafe_type; |
|
} |
|
if (old_bits == 0 && failsafe.bits != 0) { |
|
// a failsafe event has started |
|
failsafe.start_time = millis(); |
|
} |
|
if (failsafe.triggered != 0 && failsafe.bits == 0) { |
|
// a failsafe event has ended |
|
gcs_send_text_fmt(PSTR("Failsafe ended")); |
|
} |
|
|
|
failsafe.triggered &= failsafe.bits; |
|
|
|
if (failsafe.triggered == 0 && |
|
failsafe.bits != 0 && |
|
millis() - failsafe.start_time > g.fs_timeout*1000 && |
|
control_mode != RTL && |
|
control_mode != HOLD) { |
|
failsafe.triggered = failsafe.bits; |
|
gcs_send_text_fmt(PSTR("Failsafe trigger 0x%x"), (unsigned)failsafe.triggered); |
|
switch (g.fs_action) { |
|
case 0: |
|
break; |
|
case 1: |
|
set_mode(RTL); |
|
break; |
|
case 2: |
|
set_mode(HOLD); |
|
break; |
|
} |
|
} |
|
} |
|
|
|
static void startup_INS_ground(bool force_accel_level) |
|
{ |
|
gcs_send_text_P(SEVERITY_MEDIUM, PSTR("Warming up ADC...")); |
|
mavlink_delay(500); |
|
|
|
// Makes the servos wiggle twice - about to begin INS calibration - HOLD LEVEL AND STILL!! |
|
// ----------------------- |
|
gcs_send_text_P(SEVERITY_MEDIUM, PSTR("Beginning INS calibration; do not move vehicle")); |
|
mavlink_delay(1000); |
|
|
|
ahrs.init(); |
|
ahrs.set_fly_forward(true); |
|
|
|
AP_InertialSensor::Start_style style; |
|
if (g.skip_gyro_cal && !force_accel_level) { |
|
style = AP_InertialSensor::WARM_START; |
|
} else { |
|
style = AP_InertialSensor::COLD_START; |
|
} |
|
|
|
ins.init(style, ins_sample_rate); |
|
|
|
if (force_accel_level) { |
|
// when MANUAL_LEVEL is set to 1 we don't do accelerometer |
|
// levelling on each boot, and instead rely on the user to do |
|
// it once via the ground station |
|
ins.init_accel(); |
|
ahrs.set_trim(Vector3f(0, 0, 0)); |
|
} |
|
ahrs.reset(); |
|
} |
|
|
|
// updates the notify state |
|
// should be called at 50hz |
|
static void update_notify() |
|
{ |
|
notify.update(); |
|
} |
|
|
|
static void resetPerfData(void) { |
|
mainLoop_count = 0; |
|
G_Dt_max = 0; |
|
perf_mon_timer = millis(); |
|
} |
|
|
|
|
|
/* |
|
map from a 8 bit EEPROM baud rate to a real baud rate |
|
*/ |
|
static uint32_t map_baudrate(int8_t rate, uint32_t default_baud) |
|
{ |
|
switch (rate) { |
|
case 1: return 1200; |
|
case 2: return 2400; |
|
case 4: return 4800; |
|
case 9: return 9600; |
|
case 19: return 19200; |
|
case 38: return 38400; |
|
case 57: return 57600; |
|
case 111: return 111100; |
|
case 115: return 115200; |
|
} |
|
cliSerial->println_P(PSTR("Invalid baudrate")); |
|
return default_baud; |
|
} |
|
|
|
|
|
static void check_usb_mux(void) |
|
{ |
|
bool usb_check = hal.gpio->usb_connected(); |
|
if (usb_check == usb_connected) { |
|
return; |
|
} |
|
|
|
// the user has switched to/from the telemetry port |
|
usb_connected = usb_check; |
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2 |
|
// the APM2 has a MUX setup where the first serial port switches |
|
// between USB and a TTL serial connection. When on USB we use |
|
// SERIAL0_BAUD, but when connected as a TTL serial port we run it |
|
// at SERIAL1_BAUD. |
|
if (usb_connected) { |
|
hal.uartA->begin(SERIAL0_BAUD); |
|
} else { |
|
hal.uartA->begin(map_baudrate(g.serial1_baud, SERIAL1_BAUD)); |
|
} |
|
#endif |
|
} |
|
|
|
|
|
static void |
|
print_mode(AP_HAL::BetterStream *port, uint8_t mode) |
|
{ |
|
switch (mode) { |
|
case MANUAL: |
|
port->print_P(PSTR("Manual")); |
|
break; |
|
case HOLD: |
|
port->print_P(PSTR("HOLD")); |
|
break; |
|
case LEARNING: |
|
port->print_P(PSTR("Learning")); |
|
break; |
|
case STEERING: |
|
port->print_P(PSTR("Steering")); |
|
break; |
|
case AUTO: |
|
port->print_P(PSTR("AUTO")); |
|
break; |
|
case RTL: |
|
port->print_P(PSTR("RTL")); |
|
break; |
|
default: |
|
port->printf_P(PSTR("Mode(%u)"), (unsigned)mode); |
|
break; |
|
} |
|
} |
|
|
|
/* |
|
check a digitial pin for high,low (1/0) |
|
*/ |
|
static uint8_t check_digital_pin(uint8_t pin) |
|
{ |
|
int8_t dpin = hal.gpio->analogPinToDigitalPin(pin); |
|
if (dpin == -1) { |
|
return 0; |
|
} |
|
// ensure we are in input mode |
|
hal.gpio->pinMode(dpin, GPIO_INPUT); |
|
|
|
// enable pullup |
|
hal.gpio->write(dpin, 1); |
|
|
|
return hal.gpio->read(dpin); |
|
} |
|
|
|
/* |
|
write to a servo |
|
*/ |
|
static void servo_write(uint8_t ch, uint16_t pwm) |
|
{ |
|
#if HIL_MODE != HIL_MODE_DISABLED |
|
if (ch < 8) { |
|
RC_Channel::rc_channel(ch)->radio_out = pwm; |
|
} |
|
#else |
|
hal.rcout->enable_ch(ch); |
|
hal.rcout->write(ch, pwm); |
|
#endif |
|
} |
|
|
|
/* |
|
should we log a message type now? |
|
*/ |
|
static bool should_log(uint32_t mask) |
|
{ |
|
if (!(mask & g.log_bitmask) || in_mavlink_delay) { |
|
return false; |
|
} |
|
bool ret = ahrs.get_armed() || (g.log_bitmask & MASK_LOG_WHEN_DISARMED) != 0; |
|
if (ret && !DataFlash.logging_started() && !in_log_download) { |
|
// we have to set in_mavlink_delay to prevent logging while |
|
// writing headers |
|
in_mavlink_delay = true; |
|
start_logging(); |
|
in_mavlink_delay = false; |
|
} |
|
return ret; |
|
}
|
|
|