You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
217 lines
8.8 KiB
217 lines
8.8 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
|
|
/* |
|
* AP_MotorsTri.cpp - ArduCopter motors library |
|
* Code by RandyMackay. DIYDrones.com |
|
* |
|
*/ |
|
#include <AP_HAL.h> |
|
#include <AP_Math.h> |
|
#include "AP_MotorsTri.h" |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
// init |
|
void AP_MotorsTri::Init() |
|
{ |
|
// call parent Init function to set-up throttle curve |
|
AP_Motors::Init(); |
|
|
|
// set update rate for the 3 motors (but not the servo on channel 7) |
|
set_update_rate(_speed_hz); |
|
|
|
// set the motor_enabled flag so that the ESCs can be calibrated like other frame types |
|
motor_enabled[AP_MOTORS_MOT_1] = true; |
|
motor_enabled[AP_MOTORS_MOT_2] = true; |
|
motor_enabled[AP_MOTORS_MOT_4] = true; |
|
} |
|
|
|
// set update rate to motors - a value in hertz |
|
void AP_MotorsTri::set_update_rate( uint16_t speed_hz ) |
|
{ |
|
// record requested speed |
|
_speed_hz = speed_hz; |
|
|
|
// set update rate for the 3 motors (but not the servo on channel 7) |
|
uint32_t mask = |
|
1U << _motor_to_channel_map[AP_MOTORS_MOT_1] | |
|
1U << _motor_to_channel_map[AP_MOTORS_MOT_2] | |
|
1U << _motor_to_channel_map[AP_MOTORS_MOT_4]; |
|
hal.rcout->set_freq(mask, _speed_hz); |
|
} |
|
|
|
// enable - starts allowing signals to be sent to motors |
|
void AP_MotorsTri::enable() |
|
{ |
|
// enable output channels |
|
hal.rcout->enable_ch(_motor_to_channel_map[AP_MOTORS_MOT_1]); |
|
hal.rcout->enable_ch(_motor_to_channel_map[AP_MOTORS_MOT_2]); |
|
hal.rcout->enable_ch(_motor_to_channel_map[AP_MOTORS_MOT_4]); |
|
hal.rcout->enable_ch(AP_MOTORS_CH_TRI_YAW); |
|
} |
|
|
|
// output_min - sends minimum values out to the motors |
|
void AP_MotorsTri::output_min() |
|
{ |
|
// set lower limit flag |
|
limit.throttle_lower = true; |
|
// fill the motor_out[] array for HIL use |
|
motor_out[AP_MOTORS_MOT_1] = _rc_throttle->radio_min; |
|
motor_out[AP_MOTORS_MOT_2] = _rc_throttle->radio_min; |
|
motor_out[AP_MOTORS_MOT_4] = _rc_throttle->radio_min; |
|
|
|
// send minimum value to each motor |
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], _rc_throttle->radio_min); |
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], _rc_throttle->radio_min); |
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], _rc_throttle->radio_min); |
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_CH_TRI_YAW], _rc_yaw->radio_trim); |
|
} |
|
|
|
// output_armed - sends commands to the motors |
|
void AP_MotorsTri::output_armed() |
|
{ |
|
int16_t out_min = _rc_throttle->radio_min + _min_throttle; |
|
int16_t out_max = _rc_throttle->radio_max; |
|
|
|
// initialize lower limit flag |
|
limit.throttle_lower = false; |
|
|
|
// Throttle is 0 to 1000 only |
|
_rc_throttle->servo_out = constrain_int16(_rc_throttle->servo_out, 0, _max_throttle); |
|
|
|
// capture desired roll, pitch, yaw and throttle from receiver |
|
_rc_roll->calc_pwm(); |
|
_rc_pitch->calc_pwm(); |
|
_rc_throttle->calc_pwm(); |
|
_rc_yaw->calc_pwm(); |
|
|
|
// if we are not sending a throttle output, we cut the motors |
|
if(_rc_throttle->servo_out == 0) { |
|
// range check spin_when_armed |
|
if (_spin_when_armed_ramped < 0) { |
|
_spin_when_armed_ramped = 0; |
|
} |
|
if (_spin_when_armed_ramped > _min_throttle) { |
|
_spin_when_armed_ramped = _min_throttle; |
|
} |
|
motor_out[AP_MOTORS_MOT_1] = _rc_throttle->radio_min + _spin_when_armed_ramped; |
|
motor_out[AP_MOTORS_MOT_2] = _rc_throttle->radio_min + _spin_when_armed_ramped; |
|
motor_out[AP_MOTORS_MOT_4] = _rc_throttle->radio_min + _spin_when_armed_ramped; |
|
|
|
// Every thing is limited |
|
limit.throttle_lower = true; |
|
|
|
}else{ |
|
int16_t roll_out = (float)_rc_roll->pwm_out * 0.866f; |
|
int16_t pitch_out = _rc_pitch->pwm_out / 2; |
|
|
|
// check if throttle is below limit |
|
if (_rc_throttle->radio_out <= out_min) { |
|
limit.throttle_lower = true; |
|
} |
|
//left front |
|
motor_out[AP_MOTORS_MOT_2] = _rc_throttle->radio_out + roll_out + pitch_out; |
|
//right front |
|
motor_out[AP_MOTORS_MOT_1] = _rc_throttle->radio_out - roll_out + pitch_out; |
|
// rear |
|
motor_out[AP_MOTORS_MOT_4] = _rc_throttle->radio_out - _rc_pitch->pwm_out; |
|
|
|
// Tridge's stability patch |
|
if(motor_out[AP_MOTORS_MOT_1] > out_max) { |
|
motor_out[AP_MOTORS_MOT_2] -= (motor_out[AP_MOTORS_MOT_1] - out_max); |
|
motor_out[AP_MOTORS_MOT_4] -= (motor_out[AP_MOTORS_MOT_1] - out_max); |
|
motor_out[AP_MOTORS_MOT_1] = out_max; |
|
} |
|
|
|
if(motor_out[AP_MOTORS_MOT_2] > out_max) { |
|
motor_out[AP_MOTORS_MOT_1] -= (motor_out[AP_MOTORS_MOT_2] - out_max); |
|
motor_out[AP_MOTORS_MOT_4] -= (motor_out[AP_MOTORS_MOT_2] - out_max); |
|
motor_out[AP_MOTORS_MOT_2] = out_max; |
|
} |
|
|
|
if(motor_out[AP_MOTORS_MOT_4] > out_max) { |
|
motor_out[AP_MOTORS_MOT_1] -= (motor_out[AP_MOTORS_MOT_4] - out_max); |
|
motor_out[AP_MOTORS_MOT_2] -= (motor_out[AP_MOTORS_MOT_4] - out_max); |
|
motor_out[AP_MOTORS_MOT_4] = out_max; |
|
} |
|
|
|
// adjust for throttle curve |
|
if( _throttle_curve_enabled ) { |
|
motor_out[AP_MOTORS_MOT_1] = _throttle_curve.get_y(motor_out[AP_MOTORS_MOT_1]); |
|
motor_out[AP_MOTORS_MOT_2] = _throttle_curve.get_y(motor_out[AP_MOTORS_MOT_2]); |
|
motor_out[AP_MOTORS_MOT_4] = _throttle_curve.get_y(motor_out[AP_MOTORS_MOT_4]); |
|
} |
|
|
|
// ensure motors don't drop below a minimum value and stop |
|
motor_out[AP_MOTORS_MOT_1] = max(motor_out[AP_MOTORS_MOT_1], out_min); |
|
motor_out[AP_MOTORS_MOT_2] = max(motor_out[AP_MOTORS_MOT_2], out_min); |
|
motor_out[AP_MOTORS_MOT_4] = max(motor_out[AP_MOTORS_MOT_4], out_min); |
|
} |
|
|
|
// send output to each motor |
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], motor_out[AP_MOTORS_MOT_1]); |
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], motor_out[AP_MOTORS_MOT_2]); |
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], motor_out[AP_MOTORS_MOT_4]); |
|
|
|
// also send out to tail command (we rely on any auto pilot to have updated the rc_yaw->radio_out to the correct value) |
|
// note we do not save the radio_out to the motor_out array so it may not appear in the ch7out in the status screen of the mission planner |
|
// note: we use _rc_tail's (aka channel 7's) REV parameter to control whether the servo is reversed or not but this is a bit nonsensical. |
|
// a separate servo object (including min, max settings etc) would be better or at least a separate parameter to specify the direction of the tail servo |
|
if( _rc_tail->get_reverse() == true ) { |
|
hal.rcout->write(AP_MOTORS_CH_TRI_YAW, _rc_yaw->radio_trim - (_rc_yaw->radio_out - _rc_yaw->radio_trim)); |
|
}else{ |
|
hal.rcout->write(AP_MOTORS_CH_TRI_YAW, _rc_yaw->radio_out); |
|
} |
|
} |
|
|
|
// output_disarmed - sends commands to the motors |
|
void AP_MotorsTri::output_disarmed() |
|
{ |
|
// fill the motor_out[] array for HIL use |
|
for (unsigned char i = AP_MOTORS_MOT_1; i < AP_MOTORS_MOT_4; i++) { |
|
motor_out[i] = _rc_throttle->radio_min; |
|
} |
|
|
|
// Send minimum values to all motors |
|
output_min(); |
|
} |
|
|
|
// output_disarmed - sends commands to the motors |
|
void AP_MotorsTri::output_test() |
|
{ |
|
// Send minimum values to all motors |
|
output_min(); |
|
|
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], _rc_throttle->radio_min); |
|
hal.scheduler->delay(4000); |
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], _rc_throttle->radio_min + _min_throttle); |
|
hal.scheduler->delay(300); |
|
|
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], _rc_throttle->radio_min); |
|
hal.scheduler->delay(2000); |
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], _rc_throttle->radio_min + _min_throttle); |
|
hal.scheduler->delay(300); |
|
|
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], _rc_throttle->radio_min); |
|
hal.scheduler->delay(2000); |
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], _rc_throttle->radio_min + _min_throttle); |
|
hal.scheduler->delay(300); |
|
|
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], motor_out[AP_MOTORS_MOT_1]); |
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], motor_out[AP_MOTORS_MOT_2]); |
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], motor_out[AP_MOTORS_MOT_4]); |
|
}
|
|
|