You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
511 lines
14 KiB
511 lines
14 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
#include "Rover.h" |
|
|
|
#if CLI_ENABLED == ENABLED |
|
|
|
// Creates a constant array of structs representing menu options |
|
// and stores them in Flash memory, not RAM. |
|
// User enters the string in the console to call the functions on the right. |
|
// See class Menu in AP_Common for implementation details |
|
static const struct Menu::command test_menu_commands[] PROGMEM = { |
|
{"pwm", MENU_FUNC(test_radio_pwm)}, |
|
{"radio", MENU_FUNC(test_radio)}, |
|
{"passthru", MENU_FUNC(test_passthru)}, |
|
{"failsafe", MENU_FUNC(test_failsafe)}, |
|
{"relay", MENU_FUNC(test_relay)}, |
|
{"waypoints", MENU_FUNC(test_wp)}, |
|
{"modeswitch", MENU_FUNC(test_modeswitch)}, |
|
|
|
// Tests below here are for hardware sensors only present |
|
// when real sensors are attached or they are emulated |
|
{"gps", MENU_FUNC(test_gps)}, |
|
{"ins", MENU_FUNC(test_ins)}, |
|
{"sonartest", MENU_FUNC(test_sonar)}, |
|
{"compass", MENU_FUNC(test_mag)}, |
|
{"logging", MENU_FUNC(test_logging)}, |
|
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN |
|
{"shell", MENU_FUNC(test_shell)}, |
|
#endif |
|
}; |
|
|
|
// A Macro to create the Menu |
|
MENU(test_menu, "test", test_menu_commands); |
|
|
|
int8_t Rover::test_mode(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
cliSerial->printf_P(PSTR("Test Mode\n\n")); |
|
test_menu.run(); |
|
return 0; |
|
} |
|
|
|
void Rover::print_hit_enter() |
|
{ |
|
cliSerial->printf_P(PSTR("Hit Enter to exit.\n\n")); |
|
} |
|
|
|
int8_t Rover::test_radio_pwm(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
print_hit_enter(); |
|
delay(1000); |
|
|
|
while(1){ |
|
delay(20); |
|
|
|
// Filters radio input - adjust filters in the radio.pde file |
|
// ---------------------------------------------------------- |
|
read_radio(); |
|
|
|
cliSerial->printf_P(PSTR("IN:\t1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\t8: %d\n"), |
|
channel_steer->radio_in, |
|
g.rc_2.radio_in, |
|
channel_throttle->radio_in, |
|
g.rc_4.radio_in, |
|
g.rc_5.radio_in, |
|
g.rc_6.radio_in, |
|
g.rc_7.radio_in, |
|
g.rc_8.radio_in); |
|
|
|
if(cliSerial->available() > 0){ |
|
return (0); |
|
} |
|
} |
|
} |
|
|
|
|
|
int8_t Rover::test_passthru(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
print_hit_enter(); |
|
delay(1000); |
|
|
|
while(1){ |
|
delay(20); |
|
|
|
// New radio frame? (we could use also if((millis()- timer) > 20) |
|
if (hal.rcin->new_input()) { |
|
cliSerial->print("CH:"); |
|
for(int i = 0; i < 8; i++){ |
|
cliSerial->print(hal.rcin->read(i)); // Print channel values |
|
cliSerial->print(","); |
|
hal.rcout->write(i, hal.rcin->read(i)); // Copy input to Servos |
|
} |
|
cliSerial->println(); |
|
} |
|
if (cliSerial->available() > 0){ |
|
return (0); |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
int8_t Rover::test_radio(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
print_hit_enter(); |
|
delay(1000); |
|
|
|
// read the radio to set trims |
|
// --------------------------- |
|
trim_radio(); |
|
|
|
while(1){ |
|
delay(20); |
|
read_radio(); |
|
|
|
channel_steer->calc_pwm(); |
|
channel_throttle->calc_pwm(); |
|
|
|
// write out the servo PWM values |
|
// ------------------------------ |
|
set_servos(); |
|
|
|
cliSerial->printf_P(PSTR("IN 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\t8: %d\n"), |
|
channel_steer->control_in, |
|
g.rc_2.control_in, |
|
channel_throttle->control_in, |
|
g.rc_4.control_in, |
|
g.rc_5.control_in, |
|
g.rc_6.control_in, |
|
g.rc_7.control_in, |
|
g.rc_8.control_in); |
|
|
|
if(cliSerial->available() > 0){ |
|
return (0); |
|
} |
|
} |
|
} |
|
|
|
int8_t Rover::test_failsafe(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
uint8_t fail_test; |
|
print_hit_enter(); |
|
for(int i = 0; i < 50; i++){ |
|
delay(20); |
|
read_radio(); |
|
} |
|
|
|
// read the radio to set trims |
|
// --------------------------- |
|
trim_radio(); |
|
|
|
oldSwitchPosition = readSwitch(); |
|
|
|
cliSerial->printf_P(PSTR("Unplug battery, throttle in neutral, turn off radio.\n")); |
|
while(channel_throttle->control_in > 0){ |
|
delay(20); |
|
read_radio(); |
|
} |
|
|
|
while(1){ |
|
delay(20); |
|
read_radio(); |
|
|
|
if(channel_throttle->control_in > 0){ |
|
cliSerial->printf_P(PSTR("THROTTLE CHANGED %d \n"), channel_throttle->control_in); |
|
fail_test++; |
|
} |
|
|
|
if (oldSwitchPosition != readSwitch()){ |
|
cliSerial->printf_P(PSTR("CONTROL MODE CHANGED: ")); |
|
print_mode(cliSerial, readSwitch()); |
|
cliSerial->println(); |
|
fail_test++; |
|
} |
|
|
|
if (g.fs_throttle_enabled && channel_throttle->get_failsafe()){ |
|
cliSerial->printf_P(PSTR("THROTTLE FAILSAFE ACTIVATED: %d, "), channel_throttle->radio_in); |
|
print_mode(cliSerial, readSwitch()); |
|
cliSerial->println(); |
|
fail_test++; |
|
} |
|
|
|
if(fail_test > 0){ |
|
return (0); |
|
} |
|
if(cliSerial->available() > 0){ |
|
cliSerial->printf_P(PSTR("LOS caused no change in APM.\n")); |
|
return (0); |
|
} |
|
} |
|
} |
|
|
|
int8_t Rover::test_relay(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
print_hit_enter(); |
|
delay(1000); |
|
|
|
while(1){ |
|
cliSerial->printf_P(PSTR("Relay on\n")); |
|
relay.on(0); |
|
delay(3000); |
|
if(cliSerial->available() > 0){ |
|
return (0); |
|
} |
|
|
|
cliSerial->printf_P(PSTR("Relay off\n")); |
|
relay.off(0); |
|
delay(3000); |
|
if(cliSerial->available() > 0){ |
|
return (0); |
|
} |
|
} |
|
} |
|
|
|
int8_t Rover::test_wp(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
delay(1000); |
|
|
|
cliSerial->printf_P(PSTR("%u waypoints\n"), (unsigned)mission.num_commands()); |
|
cliSerial->printf_P(PSTR("Hit radius: %f\n"), g.waypoint_radius); |
|
|
|
for(uint8_t i = 0; i < mission.num_commands(); i++){ |
|
AP_Mission::Mission_Command temp_cmd; |
|
if (mission.read_cmd_from_storage(i,temp_cmd)) { |
|
test_wp_print(temp_cmd); |
|
} |
|
} |
|
|
|
return (0); |
|
} |
|
|
|
void Rover::test_wp_print(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
cliSerial->printf_P(PSTR("command #: %d id:%d options:%d p1:%d p2:%ld p3:%ld p4:%ld \n"), |
|
(int)cmd.index, |
|
(int)cmd.id, |
|
(int)cmd.content.location.options, |
|
(int)cmd.p1, |
|
(long)cmd.content.location.alt, |
|
(long)cmd.content.location.lat, |
|
(long)cmd.content.location.lng); |
|
} |
|
|
|
int8_t Rover::test_modeswitch(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
print_hit_enter(); |
|
delay(1000); |
|
|
|
cliSerial->printf_P(PSTR("Control CH ")); |
|
|
|
cliSerial->println(MODE_CHANNEL, BASE_DEC); |
|
|
|
while(1){ |
|
delay(20); |
|
uint8_t switchPosition = readSwitch(); |
|
if (oldSwitchPosition != switchPosition){ |
|
cliSerial->printf_P(PSTR("Position %d\n"), switchPosition); |
|
oldSwitchPosition = switchPosition; |
|
} |
|
if(cliSerial->available() > 0){ |
|
return (0); |
|
} |
|
} |
|
} |
|
|
|
/* |
|
test the dataflash is working |
|
*/ |
|
int8_t Rover::test_logging(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
cliSerial->println_P(PSTR("Testing dataflash logging")); |
|
DataFlash.ShowDeviceInfo(cliSerial); |
|
return 0; |
|
} |
|
|
|
|
|
//------------------------------------------------------------------------------------------- |
|
// tests in this section are for real sensors or sensors that have been simulated |
|
|
|
int8_t Rover::test_gps(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
print_hit_enter(); |
|
delay(1000); |
|
|
|
uint32_t last_message_time_ms = 0; |
|
while(1) { |
|
delay(100); |
|
|
|
gps.update(); |
|
|
|
if (gps.last_message_time_ms() != last_message_time_ms) { |
|
last_message_time_ms = gps.last_message_time_ms(); |
|
const Location &loc = gps.location(); |
|
cliSerial->printf_P(PSTR("Lat: %ld, Lon %ld, Alt: %ldm, #sats: %d\n"), |
|
(long)loc.lat, |
|
(long)loc.lng, |
|
(long)loc.alt/100, |
|
(int)gps.num_sats()); |
|
} else { |
|
cliSerial->printf_P(PSTR(".")); |
|
} |
|
if(cliSerial->available() > 0) { |
|
return (0); |
|
} |
|
} |
|
} |
|
|
|
int8_t Rover::test_ins(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
//cliSerial->printf_P(PSTR("Calibrating.")); |
|
ahrs.init(); |
|
ahrs.set_fly_forward(true); |
|
ins.init(AP_InertialSensor::COLD_START, |
|
ins_sample_rate); |
|
ahrs.reset(); |
|
|
|
print_hit_enter(); |
|
delay(1000); |
|
|
|
uint8_t medium_loopCounter = 0; |
|
|
|
while(1){ |
|
ins.wait_for_sample(); |
|
|
|
ahrs.update(); |
|
|
|
if(g.compass_enabled) { |
|
medium_loopCounter++; |
|
if(medium_loopCounter >= 5){ |
|
compass.read(); |
|
medium_loopCounter = 0; |
|
} |
|
} |
|
|
|
// We are using the IMU |
|
// --------------------- |
|
Vector3f gyros = ins.get_gyro(); |
|
Vector3f accels = ins.get_accel(); |
|
cliSerial->printf_P(PSTR("r:%4d p:%4d y:%3d g=(%5.1f %5.1f %5.1f) a=(%5.1f %5.1f %5.1f)\n"), |
|
(int)ahrs.roll_sensor / 100, |
|
(int)ahrs.pitch_sensor / 100, |
|
(uint16_t)ahrs.yaw_sensor / 100, |
|
(double)gyros.x, (double)gyros.y, (double)gyros.z, |
|
(double)accels.x, (double)accels.y, (double)accels.z); |
|
if(cliSerial->available() > 0){ |
|
return (0); |
|
} |
|
} |
|
} |
|
|
|
void Rover::print_enabled(bool b) |
|
{ |
|
if(b) |
|
cliSerial->printf_P(PSTR("en")); |
|
else |
|
cliSerial->printf_P(PSTR("dis")); |
|
cliSerial->printf_P(PSTR("abled\n")); |
|
} |
|
|
|
int8_t Rover::test_mag(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
if (!g.compass_enabled) { |
|
cliSerial->printf_P(PSTR("Compass: ")); |
|
print_enabled(false); |
|
return (0); |
|
} |
|
|
|
if (!compass.init()) { |
|
cliSerial->println_P(PSTR("Compass initialisation failed!")); |
|
return 0; |
|
} |
|
ahrs.init(); |
|
ahrs.set_fly_forward(true); |
|
ahrs.set_compass(&compass); |
|
|
|
// we need the AHRS initialised for this test |
|
ins.init(AP_InertialSensor::COLD_START, |
|
ins_sample_rate); |
|
ahrs.reset(); |
|
|
|
int counter = 0; |
|
float heading = 0; |
|
|
|
print_hit_enter(); |
|
|
|
uint8_t medium_loopCounter = 0; |
|
|
|
while(1) { |
|
ins.wait_for_sample(); |
|
ahrs.update(); |
|
|
|
medium_loopCounter++; |
|
if(medium_loopCounter >= 5){ |
|
if (compass.read()) { |
|
// Calculate heading |
|
Matrix3f m = ahrs.get_dcm_matrix(); |
|
heading = compass.calculate_heading(m); |
|
compass.learn_offsets(); |
|
} |
|
medium_loopCounter = 0; |
|
} |
|
|
|
counter++; |
|
if (counter>20) { |
|
if (compass.healthy()) { |
|
const Vector3f mag_ofs = compass.get_offsets(); |
|
const Vector3f mag = compass.get_field(); |
|
cliSerial->printf_P(PSTR("Heading: %ld, XYZ: %.0f, %.0f, %.0f,\tXYZoff: %6.2f, %6.2f, %6.2f\n"), |
|
(wrap_360_cd(ToDeg(heading) * 100)) /100, |
|
(double)mag.x, (double)mag.y, (double)mag.z, |
|
(double)mag_ofs.x, (double)mag_ofs.y, (double)mag_ofs.z); |
|
} else { |
|
cliSerial->println_P(PSTR("compass not healthy")); |
|
} |
|
counter=0; |
|
} |
|
if (cliSerial->available() > 0) { |
|
break; |
|
} |
|
} |
|
|
|
// save offsets. This allows you to get sane offset values using |
|
// the CLI before you go flying. |
|
cliSerial->println_P(PSTR("saving offsets")); |
|
compass.save_offsets(); |
|
return (0); |
|
} |
|
|
|
//------------------------------------------------------------------------------------------- |
|
// real sensors that have not been simulated yet go here |
|
|
|
int8_t Rover::test_sonar(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
init_sonar(); |
|
delay(20); |
|
sonar.update(); |
|
|
|
if (sonar.status() == RangeFinder::RangeFinder_NotConnected) { |
|
cliSerial->println_P(PSTR("WARNING: Sonar is not enabled")); |
|
} |
|
|
|
print_hit_enter(); |
|
|
|
float sonar_dist_cm_min = 0.0f; |
|
float sonar_dist_cm_max = 0.0f; |
|
float voltage_min=0.0f, voltage_max = 0.0f; |
|
float sonar2_dist_cm_min = 0.0f; |
|
float sonar2_dist_cm_max = 0.0f; |
|
float voltage2_min=0.0f, voltage2_max = 0.0f; |
|
uint32_t last_print = 0; |
|
|
|
while (true) { |
|
delay(20); |
|
sonar.update(); |
|
uint32_t now = millis(); |
|
|
|
float dist_cm = sonar.distance_cm(0); |
|
float voltage = sonar.voltage_mv(0); |
|
if (is_zero(sonar_dist_cm_min)) { |
|
sonar_dist_cm_min = dist_cm; |
|
voltage_min = voltage; |
|
} |
|
sonar_dist_cm_max = max(sonar_dist_cm_max, dist_cm); |
|
sonar_dist_cm_min = min(sonar_dist_cm_min, dist_cm); |
|
voltage_min = min(voltage_min, voltage); |
|
voltage_max = max(voltage_max, voltage); |
|
|
|
dist_cm = sonar.distance_cm(1); |
|
voltage = sonar.voltage_mv(1); |
|
if (is_zero(sonar2_dist_cm_min)) { |
|
sonar2_dist_cm_min = dist_cm; |
|
voltage2_min = voltage; |
|
} |
|
sonar2_dist_cm_max = max(sonar2_dist_cm_max, dist_cm); |
|
sonar2_dist_cm_min = min(sonar2_dist_cm_min, dist_cm); |
|
voltage2_min = min(voltage2_min, voltage); |
|
voltage2_max = max(voltage2_max, voltage); |
|
|
|
if (now - last_print >= 200) { |
|
cliSerial->printf_P(PSTR("sonar1 dist=%.1f:%.1fcm volt1=%.2f:%.2f sonar2 dist=%.1f:%.1fcm volt2=%.2f:%.2f\n"), |
|
(double)sonar_dist_cm_min, |
|
(double)sonar_dist_cm_max, |
|
(double)voltage_min, |
|
(double)voltage_max, |
|
(double)sonar2_dist_cm_min, |
|
(double)sonar2_dist_cm_max, |
|
(double)voltage2_min, |
|
(double)voltage2_max); |
|
voltage_min = voltage_max = 0.0f; |
|
voltage2_min = voltage2_max = 0.0f; |
|
sonar_dist_cm_min = sonar_dist_cm_max = 0.0f; |
|
sonar2_dist_cm_min = sonar2_dist_cm_max = 0.0f; |
|
last_print = now; |
|
} |
|
if (cliSerial->available() > 0) { |
|
break; |
|
} |
|
} |
|
return (0); |
|
} |
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN |
|
/* |
|
* run a debug shell |
|
*/ |
|
int8_t Rover::test_shell(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
hal.util->run_debug_shell(cliSerial); |
|
return 0; |
|
} |
|
#endif |
|
|
|
#endif // CLI_ENABLED
|
|
|